
Asymmetric Key Aggregate Encryption 

Technique for Data Sharing in Cloud 

Storage 
 

 

 
Shilpashree

 

P
1

 

Department of Computer Science and

 

Engineering

 
Vemana IT, Vishweshwarayya

 

Technological

 

University

 
Belagavi, Karnataka,

 

India.

 

  

 
Dr.

 

K.

 

N.

 

Narasimha

 

Murthy
2

 

Department of Computer Science and

 

Engineering

 
Vemana IT, Vishweshwarayya

 

Technological

 
University

 
Belagavi, Karnataka,

 

India.

 

  

 

 

 
 

Abstract -

 

The data sharing is a kind

 

of

 

functionality in 

cloud storage and it is

 

very

 

essential too. In the cloud 

storage the data can

 

be

 

shared with others via 

secured, efficient

 

and

 

economic mode. In this paper it 

describes

 

the

 

technique that characterise unique or 

new

 

public-

 

key cryptosystems. It produces

 

constant-

size

 

ciphertexts such as qualified authorisation

 

of

 

decryption

 

rights

 

for

 

any

 

set

 

of

 

ciphertexts.

 

The

 

uniqueness works as anyone can combine any

 

set

 

of 

secret keys and make them as compressed

 

single

 

key 

by encircling the power of all the keys

 

being

 

combined. 

In other words, the secret key

 

holder

 

can release a 

constant-size aggregate key

 

for

 

flexible choices of 

ciphertext set in cloud

 

storage,

 

but outside the set the 

other encrypted files

 

remain

 

confidential. With very 

limited secure storage

 

the

 

compact aggregate key can 

be conveniently sent

 

to

 

others

 

or

 

be

 

stored

 

in

 

a

 

smart

 

card.

 

It

 

provides

 

formal security analysis of 

these schemes in the

 

standard

 

model.

 

 

Index Terms —

 

asymmetric, cloud storage, data

 

sharing, key 

aggregate

 

encryption.

 

 

I.

 

INTRODUCTION

 

 

Cloud Storage based data sharing is a

 

convenient

 

and 

important functionality

 

in current trend [27].

 

It

 

shows 

how to share the data in an secured,

 

efficient,

 

and 

economic way with other cloud 

 

storage

 

providers. Data 

from different clients can reside on

 

a

 

single physical 

machine but they are on

 

separate

 

Virtual Machines 

(VMs). Data sharing is 

 

an

 

important functionality in 

cloud storage because 

 

data

 

in a target VM could be stolen  by

 

instantiating

 

another 

VM co-resident with the target

 

machine[1].

 

For

 

example,

 

the

 

data

 

owner

 

can

 

let

 

their

 

friends

 

to

 

view a 

subset of their own private pictures.

 

Owner

 

may grant 

their employees access to a portion

 

of

 

acute data. The 

challenging problem is how

 

to

 

effectively share the 

encrypted data. The users

 

can

 

download the encrypted 

data from stored

 

source,

 

decrypt

 

it,

 

and

 

then

 

send

 

to

 

others

 

for

 

sharing,

 

but

 

doing this can loses the value of 

cloud storage.

 

The

 

user can access the data from the 

server directly

 

but

 

the users should be able to delegate 

the access

 

rights

 

of the sharing data to

 

others.

 

 

Recently cloud storage is gaining popularity.

 

In

 

enterprise settings, the cloud storage is the rise

 

in

 

demand for data outsourcing, and it assists in

 

the

 

strategic management of corporate data. Behind

 

many

 

online services for personal applications the

 

cloud

 

storage is also used as a core technology. As 

 

we

 

know 

that nowadays, it is easy to apply for

 

free

 

accounts for 

email, file sharing, photo album

 

and/or

 

remote access, 

with more than 25GB storage

 

size.

 

Together users can 

access almost all their files and

 

as

 

well as emails by a 

mobile phone with the

 

current

 

wireless technology in 

any corner of the world.

 

The

 

consideration of data 

privacy, a traditional way

 

to

 

ensure it is to rely on the 

server to enforce the

 

access

 

control in data privacy after

 

authentication.

 

 

An illustration in Figure 1 that Agent-1 puts

 

all

 

their 

private photos on Dropbox and some of

 

the

 

photos of 

them does not want to expose to

 

everyone.

 

Agent-1 

cannot feel relieved by just relying on

 

the

 

privacy 

protection mechanisms provided by

 

Dropbox

 

due to 

various data leakage possibility, so their

 

own

 

keys can 

encrypts all the photos before

 

uploading.

 

One day, 

Agent-2, who is the friend of Agent-1, 

 

asks

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

1



Agent-1 to share the photos taken over all these years 

which Agent-2 appeared in. The share function of 

Dropbox can be used by Agent-1, but the problem 

that how to give the delegation rights for these photos 

to Agent-2. The possible way is to send secret key to 

Agent-2 securely in which secret keys are allowed. 

 

Naturally, there are two extreme ways for Agent-1 

under the traditional encryption paradigm: 

1. First, Agent-1 encrypts all files with a single 

key encryption and gives Agent-2 the 

corresponding secret key directly. 

2. The second, Agent-1 encrypts files with 

distinct keys and sends Agent-2 the 

corresponding secret keys. 

 

 

Figure 1: Agent-1 shares files with identifiers 3, 5 and 7 with 
Agent-2 by sending a single aggregate key. 

 

In the two extremes obviously here in the first 

method is inadequate since all un-chosen data may 

also be leaked to Agent-2. And in the second method, 

there are practical concerns on efficiency. The costs and 

complexities involved generally increase with the 

number of the decryption keys to be shared. 

Transferring these secret keys inherently requires a 

channel which is secured, and storing these keys needs 

rather expensive secure storage. In short, it is very 

heavy as well as costly to do that. 

 

Encryption keys also come with two flavours they are 

(1) Symmetric key or 

(2) Asymmetric (public) key 

 

Using symmetric encryption, Agent-1 has to give 

the secret key for the encryptor when they want their 

data to be originated and this is not desirable always. 

The decryption and the encryption key are different in 

public-key encryption. The use of this encryption gives 

more flexibility for the applications. For example, 

without the knowledge of the company’s master-secret 

key in the enterprise  settings, everybody can upload 

the data that is encrypted in the cloud storage. So, the 

better solution for this problem 

is here the Agent-1 encrypts all her files with distinct 

public-keys, and then only sends the Agent-2 a single 

decryption key. Since the decryption key must be sent 

through some channel which is secured and 

confidential. Here small key size is always good to 

consider. Because the large storage for  decryption key 

cannot expect like the devices smart cards and smart 

phones. These secret keys are stored in tamper- proof 

memory due to expensive costs. 

So the paper is organised as follows: In  the section 

2, literature survey is discussed. In the section 3, key 

aggregate encryption is discussed. 

 

II. LITERATURE SURVEY 

Cryptographic Keys for a Predefined Hierarchy 

using a tree structure, a key can be used to derive the 

descendent nodes of keys [11], [12], [13], [14]. It is 

like granting the parent key it implicitly grants all the 

descendant nodes of the keys. A method for tree 

hierarchy of symmetric keys is by using pseudorandom 

function/block-cipher on a fixed secret [16], [17], [7]. 

Most of these schemes produce symmetric-key 

cryptosystems for the keys. The example of this is tree 

structure. 

 

 

 

(a) 
 

 

(b) 

Figure 2:  Compact key is not always possible for a fixed 

hierarchy. 

 

In the above Figure 2, Agent-1 can classify the 

ciphertext classes according to the function. A secret 

key is represented by each node and individual 

ciphertext classes are represented by the leaf nodes. The 

classes to be delegated are represented by the filled 

circles and keys to be granted are represented 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

2



by the circles circumvented by the dotted lines. The every 

key of the non-leaf node can derive the keys of its 

descendant nodes. 

 

Compact Key in Identity Based Encryption (IBE) (e.g., 

[20], [21], [22]) is a type of public-key encryption and in 

which the public key of a user can be set as an identity-

string of the user. Private key generator is the trusted 

party in IBE and it holds a master-secret key and it 

issues a secret  key  to the each user w.r.t user identity. 

Public parameter and the user identity can be used by the 

encryptor to encrypt a message. The decryptor can decrypt 

this ciphertext by his secret key. One of the schemes 

assumes that random oracles but some other not. Key 

aggregation should come from different identity divisions 

but there are an exponential identities in number and thus 

secret keys, only some of them aggregate which are 

polynomial numbers. The important is that the key 

aggregation comes [23], [9] at O(n) sizes of the expense

 for both public parameter and the 

ciphertexts, where n is the secret keys in number which 

can be aggregated in a size of constant one. 

 

Compact key in Symmetric-key Encryption for 

supporting flexible hierarchy was motivated by the same 

problem in decryption power delegation but in symmetric 

setting. Benaloh et al. [8] presented an encryption scheme 

and it has originally proposed [18] for transmitting large 

number of keys in broadcast scenario. In the simple way 

the key has got constructed and they briefly review it’s  

key derivation process for a concrete description of what 

are the desirable properties they want to achieve. The 

approach achieves similar performance and the properties 

of their schemes. Instead it has designed for the 

symmetric key settings. The corresponding secret keys 

the encryptor must needs to encrypt the data and which is 

not suitable for many applications. Considering their 

method is used to generate a value which is secret rather 

than a pair of  secret/public keys, this is unclear to apply 

this idea for public-key encryption scheme. 

 

Finally, they note that there schemes which try to 

reduce the key size in symmetric key encryption in 

achieving authentication, e.g., [19]. However, the sharing 

of decryption power is not concern in these schemes. 

 

The other Encryption Schemes by A.Sahai et al. [5], 

conducted the experiments to securely share the data 

example like, Attribute-Based Encryption for Fine-

Grained Access Control of Encrypted data. Encryption of 

the data is needed whenever the more sensitive data is 

shared and stored by third-party on the internet. The 

drawback of encrypting data is  that it can be share to 

another party then the data owner has to give the private 

key, this level is called coarse grained  level.  They  

develop  a  unique cryptosystem 

for fine grained sharing of data that is encrypted and that 

they call it as Key-Policy Attribute-Based Encryption 

(KP-ABE). In their cryptosystem, the message or the 

ciphertexts are labelled with sets of attributes and the 

private key are with access structures that restrict which 

ciphertext a user is able to decrypt. 

 

B. Waters et al, selected decryption key size as non-

constant. They took the ciphertext size as constant and 

the encryption type as public key. 

 

Attribute Based Encryption (ABE) [10], [24] allows 

each ciphertext to be combined with an attribute and the 

master secret key holder can extract a secret key for a 

policy of these attributes. So the ciphertext can be 

decrypted by this key if it’s combined attribute conforms 

to the policy. The major concern in ABE is collusion 

resistance but not the compactness of secret key. 

 

III. KEY AGGREGATE ENCRYPTION 

A KAE called Key Aggregate Encryption scheme 

and it consists of five polynomial-time  algorithms and 

are as follows. The data owner is the one who 

establishes the public system parameter  through Setup 

and generates a master/public-secret key through 

KeyGen. Anyone who decides what ciphertext class can 

encrypt the messages and it is associated with the 

plaintext message to be encrypted. The master-secret key 

can be used by the data owner to generate an aggregate 

decryption key to a set of ciphertext classes through 

Extract. These keys which have got generated can be 

passed to the delegates in secure way via e-mails or the 

devices which are secure. Finally, anybody else can 

decrypt any ciphertext with the use of aggregate key. 

The ciphertext’s class is contained in the aggregate 

key via Decrypt. 

 

 

 Setup: This is executed by the data owner to 

setup an account on an untrusted server. On 

input a security level parameter and the 

number of ciphertext classes n (i.e., class index 

should be an integer bounded by 1 and n), it 

outputs the parameter called public system 

parameter param and this is omitted from the 

input of the other algorithms for brevity. 

 KeyGen: This is executed by the data owner to 

generate randomly a public/master-secret key 

pair. 

 Encrypt: This is executed by anybody who 

wants to encrypt the data. This is done by an 

input a public-key pk, an ciphertext class by 

denoting index i, and a message m, by doing 

this it outputs a ciphertext C. 

 Extract: This is executed by the data owner for 

delegating the decrypting rights for a 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

3



certain set of ciphertext classes to a delegatee. 

On input the master-secret key called msk and a 

set S of indices corresponding to different 

classes, it outputs the aggregate key for set S 

denoted by KS. 

 Decrypt: This is executed by a  delegatee who 

received an aggregate key KS generated by 

Extract. 

 

(A)  Sharing Encrypted Data: 

A data sharing is a kind of canonical application. 

This property is useful when it provide the efficient and 

flexible delegation. The scheme here is enable to share 

their data in a confidential way with a small and fixed 

ciphertext expansion by a single aggregate key. The cloud 

storage using KAC scheme is illustrated in Figure 3. 

 

Suppose that Alice wants to share her personal data 

on the server, first she performs the Setup to get param 

and then execute the KeyGen to get the master/public 

secret key pair. The parameter and master-secret key both 

should be kept secret by Alice. Anyone or even Alice can 

encrypt the data and encrypted data are uploaded to the 

server. With the use of public and param key, the people 

who cooperate with Alice can update Alice’s data on the 

server. Alice can compute the  aggregate  key when she 

willing to share a set S of her data with Alice’s friend 

Bob. Alice can compute the aggregate key for Bob by 

performing Extract. Since the key is constant size so it 

can be easily sent to Bob via  a secure e- mail. After 

getting the e-mail the Bob can download the data and he 

is the right person to access. Bob can download the file 

then decrypt each by using some needed values and 

parameters.

  

Figure 3: Using KAC for data sharing in cloud storage 

 

IV. CONSTRUCTION OF KAC 

 

A Basic Construction – The design is inspired from 

collusion-resistant encryption scheme proposed by 

Boneh et al.,[26]. These schemes  supports constant size 

secret keys but every key only has the power for 

decrypting ciphertexts associated to a index in particular. 

It has come up with a new Extract algorithm and the 

corresponding Decrypt  algorithm. It includes the 

following steps: 

 

(A) Initial Setup Algorithm: 

1. Based on number (n) of classes 

2. Owner required to create a n pairs of 

Encryption key (Ek). 

3. Decryption key (Dk). 
 

(B) KAC – Key Aggregate Cryptosystem generation 

Algorithm: 

   Owner  has to  select the  number  of classes 

allowed (I) for a particular users. 

   Based   on   classes   allowed,   Extract     the 

corresponding keys from a set-up keys (k1, 

k2….ki). 

   Compress all the  keys and encrypt the    file 

using symmetric cryptosystem and create 

master secret key (MSK). 

   The KeyGen is executed by the data    owner to 

generate randomly a MSK. 

 Distribute MSK to data consumer. 

 

Extract and Decrypt Algorithm: 

   Data  owner  has  to  provide  MSK  and  file 

requested by the data consumer. 

   Verify data consumer  has an access to    file 

which they have requested. 

       If pass then find the class of the file. Extract 

the key (Kc) belongs to ciphertext. 
   The data consumer then decrypts the MSK. 
   The    data    consumer    decompresses    the 

content. 

   Decrypt the file using Kc. 

 

Performance: 
 

The encryption can be pre-computed and the 

decryption takes two pairings means it needs only one 

pairing computation within the security chip storing the 

secret aggregate key. Nowadays it is fast to compute a 

pairing even in the devices like resource constrained. 

The motivation of this paper is to reduce the secure 

storage. In public key extension, if a user needs to 

classify his/her ciphertexts into more than n classes, 

he/she can register for additional key pairs (pk, msk). 

Since essentially the new public key can be treated as 

a new user, their is a concern that the key aggregation 

is not possible across two independent users. Their still 

one can achieve shorter key size and gain flexibility 

illustrated in Figure 4. 

Figure 4: Key assignment approach.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

4



  

 

Figure 4 shows the flexibility of the scheme. Here it 

achieves local aggregation, it means the secret keys can 

always be aggregated under the same branch. The 

extended public scheme is very similar to the basic 

scheme so it is omitted here. But it makes the key size as 

small as possible. This key extension approach can also 

be given as key update process. The aggregation key size 

is small then it minimises the communication overhead. 

CONCLUSION

 

 

The protection of the data privacy is the

 

central

 

question of cloud storage. Cryptographic schemes

 

are

 

getting more versatile with more mathematics

 

tools.

 

Here the main consideration is to compress the

 

secret

 

keys in public-key cryptosystems and it supports

 

the

 

delegation of secret keys for ciphertext

 

classes.

 

Among 

the power set of classes, the delegate can

 

get

 

the 

aggregate key of constant size. The number of

 

the

 

ciphertexts in cloud storage usually grows rapidly.

 

So

 

enough ciphertext classes have to reserve for

 

the

 

future 

extension or else need to expand the

 

public-

 

key. On the 

other way, around in a mobile

 

device

 

when anyone 

carries the delegated keys without

 

using

 

any trusted 

hardware, the key is prompt for

 

the

 

leakage, the 

designing of

 

leakage-resilient

 

cryptosystem yet allows 

flexible and

 

efficient

 

delegation is also an interesting

 

direction.

 

V PERFORMANCE ANALYSIS

For a comparison, first to investigate the space

requirements for the file upload. Here we take a

parameter like file size in kb, start time, end time and

total time. To measure this we use a tool called wire

shark portable as a network analyser tool. Using this tool 

one can measure the upload time of a file. As the size of 

the file increases the time is also get increases. The key 
aggregation never affects the file upload time and 

download time. The file is encrypted and then we upload 

and the generated key produced by the KAC is encrypted 

and then sent to the consumers e-mail. So the key sent to 

the e-mail is in unreadable format and using this key the

file can be decrypted by the data consumer. The Figure 

5 shows the upload time of file versus file size.

Figure 5: Upload time of file versus filesize.

Time

80
70
60
50

taken 30
20
10

0

40 Time
taken

File size in kb

1 4

16 64

2
5

6

1
0

2
4

REFERENCES

[1]    S.  S.  M.  Chow,  Y.  J.  He,  L.  C.  K.  Hui,  and  S.-M. Yiu,

“SPICE - Simple Privacy-Preserving Identity-Management for 
Cloud Environment,” in Applied Cryptography and Network 
Security – ACNS 2012, ser. LNCS, vol. 7341. Springer, 2012, 
pp. 526–543.

[2] L. Hardesty, “Secure computers aren’t so secure,” 
MITpress,2009,http://www.physorg.com/news176107396.ht ml.

[3] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-
Preserving Public Auditing for Secure Cloud Storage,” IEEE 
Trans. Computers, vol. 62, no. 2, pp. 362– 375, 2013.

[4] B. Wang, S. S. M. Chow, M. Li, and H. Li, “Storing Shared Data 
on the Cloud via Security-Mediator,” in International Conference 

on Distributed Computing Systems - ICDCS 2013. IEEE, 2013.

[5] S. S. M. Chow, C.-K. Chu, X. Huang, J. Zhou, and R. H. 
Deng, “Dynamic Secure Cloud Storage with Provenance,” in 
Cryptography and Security: From Theory to Applications -

Essays Dedicated to Jean-Jacques Quisquater  on the Occasion of 

His 65th Birthday, ser. LNCS, vol. 6805. Springer, 2012, pp.
442–464.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and 
Verifiably Encrypted Signatures from Bilinear Maps,” in 

Proceedings of Advances in Cryptology - EUROCRYPT ’03, ser. 
LNCS, vol. 2656. Springer, 2003, pp.416–432.

[7] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic 

and Efficient Key Management for Access Hierarchies,” ACM 
Transactions on Information and System Security (TISSEC), vol. 

12, no. 3, 2009.

[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient 
Controlled Encryption: Ensuring Privacy of Electronic Medical 
Records,” in Proceedings of ACM Workshop on Cloud 

Computing Security (CCSW ’09). ACM, 2009, pp. 103–114.

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-Identity Single- Key 
Decryption without Random Oracles,” in Proceedings of 

Information Security and Cryptology (Inscrypt ’07), ser. LNCS, 

vol. 4990. Springer, 2007, pp.384–398.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute- Based 
Encryption for Fine-Grained Access Control of Encrypted data,” 

in Proceedings of the  13th ACM Conference on Computer and 

Communications Security (CCS ’06). ACM, 2006, pp. 89–98.
[11] S. G. Akl and P. D. Taylor, “Cryptographic Solution to a 

Problem of Access Control in a Hierarchy,” ACM Transactions 

on Computer Systems (TOCS), vol. 1, no. 3, pp. 239–248, 1983.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

5



 

: 
 

  

  
 

  
  

 
  

  
 

    
             

 

   

             

  

 

  
 

 
 

  
  

 

 
 

  

          
 

 

  

            
 

 

  

  
 

 

   
           

  

   

[12] G. C. Chick and S. E. Tavares, “Flexible Access Control

 

with 

Master Keys,” in Proceedings of Advances in Cryptology

 

–

 

CRYPTO ’89, ser. LNCS, vol. 435. Springer, 1989, pp.

 

316–

 

322.

 

[13] W.-G. Tzeng, “A Time-Bound Cryptographic 

 

Key Assignment 
Scheme for Access Control in a 

 

Hierarchy,” IEEE Transactions 

on Knowledge and Data

 

Engineering (TKDE), vol. 14, no. 1, pp. 
182–188,

 

2002.

 

[14] G. Ateniese, A. D. Santis, A. L. Ferrara, and B.

 

Masucci, 
“Provably-Secure Time-Bound Hierarchical Key

 

Assignment 

Schemes,”

 

J.

 

Cryptology,

 

vol.

 

25,

 

no.

 

2,

 

pp.

 

243–270,

 

2012.

 

[15] R. S. Sandhu, “Cryptographic Implementation of a

 

Tree 
Hierarchy for Access Control,” Information

 

Processing Letters, 

vol. 27, no. 2, pp. 95–98,

 

1988.

 

[16] Y. Sun and K. J. R. Liu, “Scalable Hierarchical 

 

Access Control in 
Secure Group Communications,” in 

 

Proceedings of the 23th 

IEEE International Conference on

 

Computer Communications 

(INFOCOM ’04). IEEE,

 

2004.

 

[17] Q. Zhang and Y. Wang, “A Centralized Key

 

Management 
Scheme for Hierarchical Access Control,” in Proceedings

 

of 

IEEE Global Telecommunications Conference

 

(GLOBECOM 

’04). IEEE, 2004, pp.

 

2067–2071.

 

[18] J. Benaloh, “Key Compression and Its Application to

 

Digital 

Fingerprinting,”

 

Microsoft

 

Research,

 

Tech.

 

Rep.,

 

2009.

 

[19] B. Alomair and R. Poovendran, “Information

 

Theoretically Secure 
Encryption with Almost Free Authentication,” 

 

J. UCS, vol. 15, 

no. 15, pp. 2937–2956,

 

2009.

 

[20] D. Boneh and M. K. Franklin,  “Identity-Based

 

Encryption from 
the Weil Pairing,” in Proceedings of Advances

 

in Cryptology –

 

CRYPTO ’01, ser. LNCS, vol. 2139.

 

Springer, 2001, pp.

 

213–

229.

[21] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” in 
Proceedings of Advances in Cryptology - EUROCRYPT ’05, 

ser. LNCS, vol. 3494. Springer, 2005.

[22] S. S. M. Chow, Y. Dodis, Y. Rouselakis, and B. Waters, “Practical 
Leakage-Resilient Identity-Based Encryption from Simple 

Assumptions,” in ACM Conference on Computer and 

Communications Security, 2010, pp.152–161.

[23] F. Guo, Y. Mu, and Z. Chen, “Identity-Based Encryption: 
How to Decrypt Multiple Ciphertexts Using a Single Decryption 

Key,” in Proceedings of Pairing-Based Cryptography (Pairing 

’07), ser. LNCS, vol. 4575. Springer, 2007, pp. 392–406.
[24] M. Chase and S. S. M. Chow, “Improving Privacy and Security in 

Multi-Authority Attribute-Based Encryption,” in ACM 

Conference on Computer and Communications Security, 2009, 
pp. 121–130.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCRTS-2015 Conference Proceedings

Volume 3, Issue 27

Special Issue - 2015

6


