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Abstract  -     This paper presents the development of Neural 

Networks based fast load flow solution method, which can be 

used for such real time applications. A feed-forward model of 

the neural network based on back propagation algorithm (BP) 

and a radial basis function neural network (RBFNN) are 

proposed to solve the load flow problem under different 

loading/contingency condition for computing voltage 

magnitudes and angles of a power system. A comparative 

study is presented to assess the performance of different 

models of ANNs. The RBFNN has many advantageous 

features such as optimized system complexity, minimized 

learning, less computation time for training and simulation 

and recall times as compared to single layer and multi-layer 

perceptron models. The effectiveness of the proposed ANNs 

models for on-line application is demonstrated by 

computation of buses voltage magnitudes and voltages angles 

for different loading/contingency conditions in three typical 

test systems also, the Iraqi National Grid load flow problem is 

solved by two efficient ANN models.  

The proposed models (RBFNN) have been found to provide 

sufficiently accurate results and a robustness fast load flow 

solution which can be efficiently applied to on-line (real-time) 

implementation. 

 

Keywords: Load Flow Analysis; Contingency Conditions; 

Newton-Raphson Method; Neural Networks; Radial Basis 

Function Neural Networks. 

 
I. NOMENCLATURE 

 

ANNs:   Artificial Neural Networks 

LF:         Load Flow 

LM:       Levenberg-Marquardt Algorithm 

BP:        Back-propagation Algorithm 

ING:      Iraqi National Grid 

MLP:     Multilayer Perceptron 

N-R:      Newton Raphson 

PCA:     Principal Component Analysis 

PQ:        Load Busbar 

PV:       Generator Busbar 

RBFN:  Radial Basis Function Network 

SLFE:   Static Load Flow Equations 

VLSI:   Very Large Scale Integration 

B:          Imaginary part of nodal admittance matrix 

G:         Real part of nodal admittance matrix 

H, L, M, N: Jacobian submatrices 

k:          Busbar Index 

ΔP:    active power mismatch 

ΔQ:   reactive power mismatch 

k:    voltage  phase angle at bus k 

Vk:   voltage magnitude at bus k 

:     Momentum parameter 

:     Learning rate parameter                                                                                                            

 

II. INTRODUCTION 

 

The load flow calculation is one of the most basic problems 

in power engineering. Load flow or Power flow studies are 

conducted to determine the steady state operating condition 

of a power system, by solving the static load flow 

equations (SLFE) that mathematically are represented by a 

set of non-linear algebraic equations for a given network. 

The main objective of load flow (LF) studies is to 

determine the bus voltage magnitude with its angle at all 

the buses, real and reactive power flow (line flows) in 

different branches, and the transmission losses,…etc. It is 

the most frequently carried out study by power utilities and 

is required to be performed almost all the stages of power 

system planning, optimization, operation and control. 

During last four decades, almost all the known methods of 

numerical analysis methods for solving a set of non-linear 

algebraic equations have been applied in developing load 

flow algorithms. One or more desirable features to compare 

the different LF methods can be speed of solution, memory 

storage requirement, accuracy of solution and the 

robustness or reliability of convergence. However not all 

but only a particular combination of the various features is 

what will be needed in a given situation. For example, the 

memory requirement may be important only to small 

computers having low storage space. But, with the advent 

of modern digital computers, memory requirement is no 

more a limiting factor. Robustness or reliability of 

convergence of the methods is required in all types of 

applications. But, the speed of the solution is more 

important for on-line applications as compared to the off-

line studies. The repetitive solution of a large set of linear 

equations in the load flow problem is one of the most time 

consuming parts of power system simulations. A 

straightforward implementation of these methods becomes 

inefficient, when large-scale networks exist, resulting in 

additional memory requirement and computing time.  

   For contingency selection, fast direct method, but 

iterative in nature  approximate load flow methods, such as 

DC load flow method, linearised AC load flow, decoupled 

load flow, fast decoupled load flow methods are used, 
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which provide results having significant inaccuracies. Full 

AC load flow methods are accurate but become 

unacceptable for on-line implementation due to high 

computational time requirements. With the advent of 

artificial intelligence, in recent years, experts systems, 

pattern recognition, decision tree, neural networks and 

fuzzy logic methodologies have been applied to the 

security assessment problem. Amongst these approaches, 

the applications of artificial neural networks (ANNs) have 

shown great promises in power system engineering due to 

their ability to synthesize complex mappings accurately and 

rapidly. The artificial Neural Networks (ANNs) are gaining 

popularity in many engineering and scientific application 

due to their high computational rates, ability to handle 

nonlinear functions and a great degree of robustness. A 

single-layer ANN, separate MLP model based on 

Levenberg-Marquardt method have been used for 

computation for bus voltage magnitude and for angle at 

each bus of power system, and a radial basis neural 

network are proposed in this paper for on-line load flow 

studies. For the purpose of estimating the performance of 

the different types for the ANN algorithm, it has been 

tested on various scale test systems and practical system. 

 

III. LOAD FLOW PROBLEM SOLUTION 

 

The objective of power flow study is to determine the 

steady state conditions of a power system. For the purpose 

of power flow studies, it is assumed that the three-phase 

power system is balanced and also mutual coupling 

between elements is neglected. Variable associated with 

each bus of the power system include four quantities which 

are voltage magnitude Vk, its phase angle θk, real power Pk, 

and reactive power Qk.  

 Newton-Raphson method 

The most widely used numerical method in solving the 

load flow problem is the Newton-Raphson method. The 

Newton-Raphson load flow equations are [1], 

 

ΔPk=Pk
sp

-Vk



km

BG )sincos( kmkmkmkm  Vm       (1) 

ΔQk=Qk
sp

-Vk
km

BG )sincos( kmkm-kmkm  Vm       (2) 

 
Where, , , km = k - m , 

Em

 

= Vm e
jӨm

, and 
 

















t

t

Q

P
=







t

t

M

H







t

t

L

N

























t

t

t

V

V 1

1

                                 (3) 







t

t

M

H







t

t

L

N
=






















Q

P


















V

P

V

P

                                      (4) 

Where the sub-matrices H, N, M and L form the Jacobian 

matrix and t is the iteration index. When the voltage 

corrections Δθ and ΔV are solved in (3) the new voltages 

are found from:  

Vk
t+1

 = Vk
t
 + (ΔV)

 t+1
  

  θk
t+1

=θk
t
+Δθk

t+1
                                                   (5) 

The solution of (3) provides the correction vector i.e. Δθ’s 

for all the PV and PQ type buses and ΔV’s for all the PQ 

type buses, which are used to update the earlier estimates of 

θ’s and V’s. This iterative process is continued till the 

mismatch vector i.e. ΔP’s for all the PV and PQ type buses 

and ΔQ’s for all the PQ buses become less than a pre-

assigned tolerance value (). 

IV. ARTIFICIAL NEURAL NETWORKS 

 

The intelligence of ANN and its capability to solve hard 

problems emerges from the high degree of connectivity 

that gives neurons its high computational power through 

its massive parallel-distributed structure. The current 

resurgent of interest in ANN is largely because ANN 

algorithms and architectures can be implemented in VLSI 

technology for real time applications [3]. The 

development of ANN involves two phases: training or 

learning phase and testing phase. Training of ANN is done 

by presenting the network with examples called training 

patterns. During training, the synaptic weights get modified 

to model the given problem. Soon as the network has learnt 

the problem it may be tested with new unknown patterns 

and its efficiency can be checked (testing phase). 

Depending upon the training important, ANN can be 

classified as supervised ANN or unsupervised ANN. 

A. The One Layer Neural Network  

  A one layer neural network is characterized by a layer of 

input neurons and layer of output neurons 

interconnected to one another by weights to be determined 

by the training process. This process is illustrated in (1). 
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Figure (1)

 

One-Layer

 

Neural Network

                                                                                                                                         

 

 

 

  

A few configurations of the neural network are 

experimented with, and the best results are achieved with a 

single-layer feed forward

 

neural network with nonlinear 

feedback. Using the trained neural network, an approximate 

solution of power flow can be obtained almost 

immediately.

 

  For application to power flow, the power 

system is linearised

 

and then modeled by one layer of the 

forward neural network, as shown in (2). The input data are 

selected by using active and reactive loads added to 

diagonal elements of the bus admittances (G, B) 

respectively, and the output data are the complex bus 

voltages. Single layer neural network represents a linear 

system and it is obvious that results obtained for a 

nonlinear system such as a power system can be accurate. 

One possible solution is to introduce additional input layers 

to generate second and higher order nonlinear terms. This 

approach however, will result in significant increase of the 

size of a neural network and it will be impractical for large 

power systems to be analyzed. 
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A possible approach to increase accuracy is to use a 

feedback loop, as shown in (3). Line power vector can be 

directly computed from bus voltages and line impedances. 

Using simple summation with complex arithmetic, the 

input vector INF (bus powers) can obtained from line 

powers summation. At the initial state, the vector of line 

powers SL is zero and there is no feedback – INF is zero. 

Therefore in the first step the input vector IN alone, is 

applied to the neural network and an approximate initial 

vector of bus voltages VB is obtained. In the second step 

the difference between input vector IN and feedback vector 

INF is computed from line powers SL and bus voltages VB. 

Therefore the neural network operates on the difference 

(error) and the vector of the line powers is corrected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

 

By adding the non-linear feedback, we can obtain 

significant improvement over the case with no feedback. 

Usually a few iterations are enough to obtain convergence 

as shown in the results section. The results are very much 

 

Figure (3)

 

Neural Network with Feedback for power Flow Analysis
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comparable with those from a rigorous mathematical 

analysis, but the computational effort is negligibly smaller 

in comparison.  

B. Multilayer Perceptron (MLP) Model Based Back 

Propagation Algorithm 

   All types of networks (MLP) discussed in the following 

sections use feed forward network architecture, consisting 

of an input layer, one or more hidden layer(s) and an output 

layer. Initially a random weight (usually in the range of -1 

to +1) is assigned to each connection. These weights are 

then adjusted as learning progresses. The main difference 

between the network types lies in the type of activation 

function used by the hidden neurons. In MLPs, a common 

type of activation  

 

 

 

 

 

 

 

 

 function used by the hidden neurons has a sigmoid transfer 

function. This sigmoid function divides a high-dimensional 

input space into two halves, with a high output in one half 

and a low output in the other, as illustrated in Figure (4).
 The back-propagation algorithm uses an objective function, 

which is defined to be the summation of square errors 

between the desired outputs and the network outputs
 
[4]. It 

then employs a steepest-descent search algorithm to seek 

the minimum of the objective function. Training the MLP 

NN by using the standard (BP) Algorithm can be 

performed according to the following algorithm:
 1. Initialization the network synaptic weights values.

 2. Repeat the following steps until some criterion is 

reached:
 For each training input-output pairs:

 -
 
Do a Forward Pass.

 -
 
Do a Back

 
Pass.

 

 
Update weights.

 

 
Test network generalization, and Run the train network.

 

 

 

 

 

 

C. Radial Basis Function Neural Network (RBFNN) 

      The RBFNN, whose structure is a three-layer ANN. 

The input vectors are transformed in vectors of an n-

dimensional space by the n non-linear units (called basis 

functions) of the hidden layer. The weights of the output 

layer are easily computable by linear regression. Therefore, 

the input-output relationship is approximated by a linear 

combination of non-linear functions. 

In RBF networks, hidden neurons usually have a Q 

Gaussian basis functions G(X,cj) at the center cj: 

 G(X,cj) = G(||X-cj||) = exp )
22σ

2||||
(

j
cX 

     (6)                                                                                                           

Figure (4) The Transfer Function of hidden nodes in MLP nets. ″The output layer neurons 

are sometimes linear″ 
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Here cj indicates the centre of the basis functions of the 

neuron and σ is its width. This function is selective to a 

small portion of the input space, as illustrated in (5). Where 

||X-cj|| is the Euclidean distance between the input vector X 

and the cj, and σ is estimated by the following empirical 

formula. 

                      σ = dmax /   Q                                 (7) 

Where, dmax is the maximum Euclidean separation 

between the RBFN centers. And Q is the number of the 

RBFN centers [5]. 

 

 

                
 

    

The parameters of the RBF units are determined in three 

steps of the training activity. First, the unit centers are 

determined by some form of clustering algorithm. Then the 

widths are determined by a nearest neighbor method. 

Finally weights connecting the RBF units and the output 

units are calculated using multiple regression techniques. 

Euclidean distance based clustering technique has been 

employed to select the number of hidden (RBF) units and 

unit centers. The normalized input and output data are used 

for training of the RBF neural network. For the commonly 

used neural networks such as Multi-layer Perceptrons 

(MLP), the design of the network involves all the layers of 

the network simultaneously. The design of the hidden and 

output layer of an RBFNN can be carried out separately, at 

different points of time. The hidden layer applies non-linear 

transformation from the input space to the hidden space. 

The output layer is a linear combination of the activations 

in the hidden layer. The weights in the output layer are 

found by using linear optimization techniques. As 

described in the next section, the centers of the RBFNN for 

selected contingencies are chosen by using a sequential 

learning strategy. The optimal output weights are found for 

different contingencies, which linearly combine the 

activations of the same hidden layer to give the desired 

output for different contingencies [10]. 

1. Unsupervised Learning to select data centers of the 

training patterns  

The well-known clustering algorithm is used to find center 

of desired number of clusters for the training patterns for 

each contingency. The steps of process of the unsupervised 

learning are described in the preceding section. 

2. Selection of centers for Basis Function using sequential 

learning strategy  

After data centers for the training patterns for the base case 

and the selected contingencies are found by k-means 

clustering algorithm. Let   be the data center for the training 

pattern for the rth contingency; r = 1,2,…,g, where g is the 

number of selected contingencies; r=0 correspond to the 

base case. Number of data centers chosen to represent the 

training data set for the rth contingency is qr. The data 

centers are updated for each contingency by using a 

sequential learning strategy as described below. 

Starting with the data centers for the base case, a new data 

center is added for a contingency, if the Euclidean distance 

of the particular data center from the nearest one in the 

existing set of data centers is more than a specified value α, 

which is set by experimentation. The steps for updating the 

data centers are summarized below: 

a) The data centers for the base case topology are chosen as 

the initial centers for the RBFN. Let  

the initial set of centers be designated by, S =  , where, 

Q(0) denotes the number of centers at the beginning. 

b) A new data centre c is added for rth contingency to the 

overall set of centers if the following  

criterion is satisfied.  

    min ||c - cj (r-1)|| ≥ α,   k=1,…,qr;  j=1,…..Q(r-1)                                                                    

                                                                               (8) 

c) The update set of centers is S= , where Q(r) is the 

number of centers after considering rth  

                                                     
Figure (5) Transfer function of hidden nodes in RBF nets 

ai(Xt) 

X 
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contingency. The above steps are repeated till all the 

contingencies are considered in the overall set of centers. 

3. Off-line Training of the RBFNN  

    Once the hidden layer is designed for the RBFNN by 

choosing desired number and locations of the centers of 

basis functions, the network can be trained with sample 

patterns for different contingencies. 

Let { Xi,di} be the training patterns, where Xi is the vector 

of real and reactive load powers at buses and di is the 

corresponding the complex voltages, for any system 

topology. The optimal weight vector between the hidden 

layer and the output of the RBFNN is determined by linear 

optimization, which is described later. The same RBFNN is 

trained separately for different contingencies and the 

corresponding optimal weight vectors are recorded in the 

output weight vector matrix, WM. 

                WM = [ w0, w1, …..,wc]        

                                                                               (9) 

The output value ym of the mth output node is given as: 

              ym =  



Q

i

omiiim wXaw
1

)(                      (10)                                

Where, Q is the number of the hidden layer, wom: biasing 

term at mth output node, and ai(Xi), the  

output in the hidden layer for the input patterns. 

Figure (6) shows the architecture of the proposed radial 

basis function neural network but without the synaptic 

weights between the input and hidden 

layers, these weights are used in case of MLP networks.  
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Figure (6)

 

Radial Basis Function Neural Network or MLP Network model in Load Flow Solution
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V. CHOICE OF INPUT PARAMETERS 

 

 

 

 

 

Figures (7) & (8) show the architectures of the two models 

for the neural networks. The composition of the input 

variables for the proposed neural network has been selected 

to emulate the solution process of a conventional load flow 

program.  

Input features to the MLP models shown in (7)  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 Input features to the RBF models shown in (8) 
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The input consists of the electric network parameters 

represented by the diagonal elements of the bus 

conductance and susceptance matrix, voltage magnitudes 

Vg of generation, the active power generations Pg of PV 

buses. In order to speed up the neural network training, the 

conductance and susceptance are normalized between 0.1 

and 0.9. Since, only one RBFNs with multi-output node is 

designed to predict the bus voltages for the base case as 

well as for the line outage cases, a topology number in the 

form of bipolar digits (+1 or –1) is used as an input to the 

RBFNs to represent the corresponding case. For example, 

the base case is represented by a bipolar string (-1 -1 -1 -1 -

1) and the first line outage by (-1 -1 -1 -1 +1). 

 

 

 

 

VI. DATA

 

PROCESSING

 

AND POST-

 

PROCESSING

 

   In

 

general, the performance of a neural network is 

strongly dependent on the preprocessing that is performed 

on the training data

 

[6].

 

The neural network training 

process can also be made more efficient if certain 

preprocessing steps are carried out on the input patterns and 

target values. That is, many times the "raw" data are not the 

best data to use for training a neural network.

 

The 

preprocessing and post-processing

 

for input data of 

artificial neural networks are as follows:
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Figure (7) Model No.1 Proposed ANNs Architecture 
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Figure (8) Model No.2 Proposed ANNs Architecture 
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 A.
 
Data Scaling

 The training
 
data can be amplitude-scaled in basically two 

ways: so that the values of the pattern lie between -1 and 1. 

Or the values of the patterns lie between 0 and 1.                               

 B.
 
Dimensionality Reduction

 Dimensionality reduction is another area, which reduces 

the number of patterns required for network training and 

hence network complexity. Using statistical analysis and 

dimensional analysis and combining the number of 

variables to a smaller set of input variables are useful 

methods for optimizing the number of input and output 

parameters. Principal Component Analysis (PCA) can be 

used to "compress" the input training data set (or reduce the 

dimension of the inputs). The resulting "compressed" input 

vectors will have elements that are uncorrelated.
 C.

 
Removing Data Outside and Data Selection 

      for the ANN Training
 In order to ensure that the network has properly mapped 

input training data to the target output, it is essential that 

the set of patterns presented to the network is appropriately 

selected to cover a good sample of the training domain. A 

well trained network is one which is able to respond to any 

unseen pattern within an appropriate domain. At present 

NNs. are not good at extrapolating information outside the 

training domain.
 

 D.
 
Training Modes

 Training a neural network involves gradual reduction of the 

error between neural network output and the target output. 

Generally, there are two different modes of training neural 

networks: batch mode and pattern mode. In a batch mode, 

when an epoch is completed (i.e. when the entire set of 

training data is presented to the network) a single average 

error is calculated and the weights in the network are 

adjusted according to that error. In a pattern mode, the error 

is calculated after each pattern is presented to the network, 

and network weights are adjusted.
 

 VII. IMPLEMENTATION
 
AND

 
RESULTS

     The effectiveness of the proposed ANNs models are 

demonstrated by computation of bus voltage magnitudes 

and angles following different loading/contingency
 conditions in

 
the following test systems,

 
5 buses

 
test 

system
 
[12], IEEE

 
14-bus system, IEEE

 
30-bus system, 

and 362-bus practical system,
 
Iraqi National Grid

 
(ING).

 

 A.
 
Solution Algorithm

 
of the Robustness 

      Proposed Method
 The solution algorithm for load flow problem using RBF 

networks is as follows:
 1. A large number of load patterns are generated randomly 

by spreading
 
the load at all the buses, real power generation 

at the generator buses, voltage magnitudes at PV and slack 

buses.
 2. Principal Component Analysis (PCA) is applied to 

compress the input training data set thus, reduce the input 

and output variables.
 

3. AC load flow (NR) programs are run for all the load 

patterns and also for contingency cases to calculate bus 

voltage magnitudes at all the PQ type buses and voltage 

angles at all the PV and PQ type buses. 

4. Input features for RBF (Pi and Qi) are selected on the 

basis of entropy gain, voltage magnitude at PV and real 

power generations at PV buses. 

5. The number of hidden (RBF) units and unit centers are 

determined using Euclidean distance based clustering 

technique. Then width of the RBF unit is determined. 

While MLP model, the number of hidden nodes could be 

decided using some trial and error method.  

6. For training of the ANNs, initialize all the connection 

weights between the hidden nodes and output nodes. 

7. Calculate the output of the ANNs. 

8. Calculate the Mean Squared Error ep for the p
th

 pattern 

using 

         ep=

2

1
.
no

1




no

1j

2)
jpjp

(T L                        (11) 

Where, no = number of neurons in output layer 

 Tjp = target value at j
th

 neuron of output layer 

 Ljp = actual output at j
th

 neuron for p
th

 pattern 

9. Repeat steps (6) & (7) for all the training patterns. 

10. Calculate the error function Ek using the following 

equation: 

        Ek= 


max
P

1p
ep =

2)
max

P

1p
(

no

1

1
jp

LT
NO

j

jp 





     (12) 

11. The connection weights wji between the hidden nodes 

and -output nodes at K
th

 iteration are updated using 

equations 

         wji(k+1)=wji(k)+Δwji(k)                             (13) 

Where, 

        Δwji(k)=η(k).δj.Ai+α.Δwji(k−1)                   (14) 

        δj = Tj −Wj .Ai 

 η (k) = learning rate or adaptive size at K
th

 iteration 

 δj = error signal for unit j,  α = Momentum term  

        Tj = [ tj1, tj1, ………….., tjp
max

] 

        Wj = [ wj1, wj1, ………….., wjo] 

for i =1,2,……Q+1, Q = number of hidden layer (RBF) 

nodes. 

Tj = target value at j
th

 neuron of output layer,  

wj = The weights between the hidden layers and output 

layers 

The procedure is continued till the error becomes 

negligible. 

     Two RBFNNs were developed in this work, one 

(RBFNN1) for computation of bus voltage magnitude at all 

the PQ type buses, while the other (RBFNN2) for 

computation of bus voltage angle at PV type and PQ type 

buses are shown in (9 & 10). After training, the knowledge 

about the training patterns in form of voltage magnitudes at 

all the PQ buses and voltage angles at different PV and PQ 

buses in various contingency cases and different system 

operating conditions are stored in structured memory by the 

trained RBFNNs. 
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Figure (9)

 

RBFNN1 model in Load Flow Solution (Voltage Magnitudes for PQ buses)
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 B.

 

Training and Testing Patterns of the ANN   

      Models                                                                                   

 For training and testing of ANNs, It is changed

 

the load at 

each bus randomly from 60% to 140% of their base values, 

PV bus voltage magnitudes between 0.9 to 1.1 and real 

power generation in the range of 80% to 120%. Single-line 

outages were considered as contingencies

 

as shown in (1).   

 

 

Figure (9)

 

RBFNN2 model in Load Flow Solution (Voltage Angles)
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Table (1) Training and Testing of ANN for different type of systems 

 

   Type of System Training sets Testing sets Total of Patterns 

5-bus 160 40 200 

IEEE 

14-bus system 
418 95 513 

IEEE 

30-bus system 
836 190 1216 

362-bus (Iraqi National  Grid) 1500 500 2000 

 

For the purpose of estimating the performance of the 

different types for the ANN algorithm, IEEE 14-bus test 

system is used, which is composed of 14 buses and 20 

lines, the data for IEEE14-bus system  

 

were taken from [8]. Table (2) shows the Load-Flow 

Solution for ″IEEE 14-Busbar″ test system using single 

layer with and without nonlinear feedback. 

 

Table (2) Load-Flow Solution for ″IEEE 14-Busbar″ Test System 

Using single layer with and without nonlinear feedback 

Bus No. Bus* Type 

Load flow solution 

Without Feedback 

Load flow solution 

With feedback 

Load flow solution 

N-R Method 

V  (p.u.) θ (deg.) V  (p.u.) θ (deg.) V  (p.u.) θ (deg.) 

1 1 1.06 0 1.06 0 1.06 0 

2 2 1.045 -4.942 1.045 -4.94 1.045 -4.955 

3 2 1.01 -12.604 1.01 -12.62 1.01 -12.625 

4 0 1.0278 -10.356 1.0271 -10.36 1.0271 -10.377 

5 0 1.0343 -8.935 1.0334 -8.94 1.0334 -8.955 

6 2 1.07 -14.820 1.07 -14.83 1.07 -14.880 

7 0 1.0459 -13.415 1.0453 -13.42 1.0453 -13.459 

8 2 1.09 -13.410 1.09 -13.459 1.09 -13.459 

9 0 1.0285 -15.032 1.0281 -15.1 1.0281 -15.077 

10 0 1.0283 -15.276 1.0279 -15.325 1.0279 -15.325 

11 0 1.0455 -15.162 1.0451 -15.31 1.0451 -15.217 

12 0 1.0533 -15.660 1.0531 -15.721 1.0531 -15.721 

13 0 1.0465 -15.681 1.0463 -15.740 1.0463 -15.740 

14 0 1.0181 -16.347 1.0177 -16.35 1.0177 -16.399 

Computation Time without feedback =                                                            0.0677 second            
Computation Time with feedback =                                                                    0.0270 second            

 

       

 

*

 

Numbers appearing in this column, being as follows:

 

(0)

 

Stands for PQ buses,

 

(1) Stands for Slack busbar, and

 

(2) Stands for

 

PV buses.

 

 

The solid rectangular row represents the PV buses and the others

 

buses represent the PQ buses.

 

 

 

 

C. Application of Multilayer (MLP) NN Model    

     for Load Flow Analysis 

   Solution of load flow problem had been done using the 

feed-forward neural network based on the Levenberg-

Marquardt (LM) back propagation Algorithm. Training is a 

procedure used to minimize the difference between outputs 

of MLP and  

the desired values by adjusting the weights of the network. 

Sets of input vectors are presented to the network until 

training is completed. Then the network’s weights are 

“frozen” in the trained state and the new input data are 

presented to the network to determine the appropriate 

output. 

 

1. Network Topology with One Hidden Layer

 

(MLP)

 

    A single hidden layer with an optimum number of 

neurons will be sufficient for modeling to

 

solve

 

load flow 

problems. Table (3)

 

shows

 

Load-Flow Solution for ″14-

Busbar″ IEEE test system using MLP with Single Hidden 

layer

 

 

 

 

 

Table (3) Load-Flow Solution for ″14-Busbar″ IEEE Test System 

Using MLP with Single Hidden layer 
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Bus 

No. 

Bus 

Type 

           Load flow solution           Load flow solution 

V  (p.u.) V  (p.u.) 
Absolute 

Error 

θ (deg.) θ (deg.) 
Absolute 

Error 
N-R Method 

BP-LM 

Method 
N-R Method 

BP-LM 

Method 

1 1 1.06 1.06 Slack 0 0 Slack 

2 2 1.045 1.045 PV-Bus -4.955 -4.8433 0.1117 

3 2 1.01 1.01 PV-Bus -12.6258 -12.724 0.0982 

4 0 1.0271 1.0252 0.0019 -10.3777 -10.2805 0.0972 

5 0 1.0334 1.0319 0.0015 -8.9559 -8.5309 -0.425 

6 2 1.07 1.07 PV-Bus -14.8809 -14.9779 0.097 

7 0 1.0452 1.0486 0.0034 -13.4591 -12.9801 0.479 

8 2 1.09 1.09 PV-Bus -13.4591 -13.4099 0.0492 

9 0 1.028 1.0261 0.0019 -15.078 -15.1977 0.1197 

10 0 1.0279 1.0269 0.001 -15.3251 -15.3771 0.052 

11 0 1.0451 1.0489 0.0038 -15.2179 -14.972 0.2459 

12 0 1.053 1.0527 0.0003 -15.7213 -15.7314 0.0101 

13 0 1.0463 1.0437 0.0026 -15.7407 -15.5156 0.2251 

14 0 1.0177 1.0182 0.0005 -16.3991 -16.3775 0.0216 

Input neurons=32                                                           Total number of epochs =  180 

Output neurons=22                                                        Time of Training = 533.81 sec 

Neurons in hidden layer=72                                          Time of Simulation = 0.023 sec 
Momentum = 0.6 

Training Patterns = 418 

Test Patterns = 95 

 

2. Network Topology with Two Hidden Layer  

    (MLP) 

    A neural network with one hidden layer was tried first, 

but was found hard to converge. Thus, a neural network 

with two hidden layers was selected for further analysis. 

This network converges quickly and is more accurate than 

the single hidden layer. Hyperbolic tangent sigmoid 

transfer functions are used for the hidden layers and a 

linear transfer function is used for the output layer as 

shown in  (4).                                                                                                                                                     

 

Table (4) Load-Flow Solution for ″14-Busbar″ IEEE Test System 

Using MLP with Two Hidden Layers 

Bus 

No. 

Bus 

Type 

         Load flow solution          Load flow solution 

V  (p.u.) V  (p.u.) 
Absolute 

Error 

θ (deg.) θ (deg.) 
Absolute 

Error 
N-R Method 

BP-LM 

Method 

N-R 

Method 

BP-LM 

Method 

1 1 1.06 1.06 Slack 0 0 Slack 

2 2 1.045 1.045 PV-Bus -4.955 -4.9416 0.0134 

3 2 1.01 1.01 PV-Bus -12.6258 -12.6003 0.0255 

4 0 1.0271 1.0267 0.0004 -10.3777 -10.3617 0.016 

5 0 1.0334 1.033 0.0004 -8.9559 -8.9418 0.0141 

6 2 1.07 1.07 PV-Bus -14.8809 -14.8509 0.03 

7 0 1.0452 1.0448 0.0004 -13.4591 -13.4344 0.0247 

8 2 1.09 1.09 PV-Bus -13.4591 -13.4319 0.0272 

9 0 1.028 1.0276 0.0004 -15.078 -15.0507 0.0273 

10 0 1.0279 1.0275 0.0004 -15.3251 -15.2975 0.0276 

11 0 1.0451 1.0446 0.0005 -15.2179 -15.1908 0.0271 

12 0 1.053 1.0525 0.0005 -15.7213 -15.6941 0.0272 
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13 0 1.0463 1.0458 0.0005 -15.7407 -15.7135 0.0272 

14 0 1.0177 1.0172 0.0005 -16.3991 -16.3704 0.0287 

Input neurons = 32                                                      Training Patterns = 418          
                                                                                     Test Patterns = 95 

Output neuron = 22                                                     Total number of epochs =  51 

Neurons in hidden layer 1 = 10                                   Time of Training = 87.112 sec 
Neurons in hidden layer 2 = 10                                   Time of Simulation = 0.07 sec 

Momentum = 0.6                                                          

 

D. Application of RBF Neural Network Model  

     for On-Line Load Flow Analysis 

    Two RBF neural networks are developed in this work, 

one (RBFN1) for computation of bus voltage magnitude at 

all PQ type buses, while the other (RBFN2) for 

computation of bus voltage angle at PV type and PQ type 

buses. The bus voltage magnitudes and angles are affected 

by several parameters of the power system. Some of them 

are having larger effect and some are having lesser impact. 

It is not necessary to use all the available variables to train 

the RBFN. It will increase the number of input nodes and 

will result in a complex structure, requiring large training 

time.   

   An approach based on system entropy has been used to 

identify the input features, i.e. real and reactive loads 

affecting the bus voltage most. The term entropy has been 

used to describe the degree of uncertainty about an event. A 

large value of entropy indicates high degree of uncertainty 

and minimum information about an event.  

   A topology number in the form of five bipolar digits (+1 

or –1) is used as an input to the RBFNs to represent the 

corresponding case. For example, the base case is 

represented by a bipolar string (-1 -1 -1 -1 -1) and the first 

line outage by (-1 -1 -1 -1 +1). Thus the total input features 

used to train the RBFN are 25 and 27 in RBFN1 and 

RBFN2 respectively. Two RBFNs were developed, one for 

computation of bus voltage magnitudes at 9 PQ type buses, 

while the other for computation of bus voltage angles at 4 

PV type buses and 9 PQ type buses (total 13). The 

optimum structures of the neural networks were found to 

be 25-284-9 for RBFN1 and 27-273-13 for RBFN2. 

   The different models of ANNs had been tested on various 

scale test systems and practical system. Specially, the 

effectiveness of different approaches of ANNs was 

examined through three test systems as well as the practical 

system (Iraqi National Grid). The size of the test systems 

varies from a few buses up to about 362 buses. The 

following tables show input-output of ANNs, number of 

epochs and time of training for all typical test systems. The 

training of ANNs and simulations were implemented on a 

Pentium 4 personal computer, 3 GHz processor, 2 Gbytes 

RAM with 1 Gbyte internal cache memory. 

 

 

Table (5) Feature Selection for IEEE 14-Bus System in RBFNN1 

Feature Selection 

method 

No. of  

Feature Selected 
Features 

Entropy Reduction 

Method 
20 

P2,P3,P6,P9,P10,P13,P14 

Q4,Q5,Q9,Q10,Q11,Q12,Q13,Q14 

Pg2, |Vg2|,|Vg3|,|Vg6|,|Vg8| 

 

Table (6) Feature Selection for IEEE 14-Bus System in RBFNN2  

Feature Selection 

method 

No. of  

Feature Selected 
Features 

Entropy 

Reduction 

Method 
22 

P2,P3,P4,P5,P6,P9,P10,P11,P12,P13,P14 

Q2,Q3,Q6,Q9,Q10,Q13 

Pg2, |Vg2|,|Vg3|,|Vg6|,|Vg8| 
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Bus 

No.

 

Bus 

Type

          Load flow solution

 

        Load flow solution

 

V  (p.u.)

 

V  (p.u.)

 

Absolute

 

Error

 

θ (deg.)

 

θ (deg.)

 

Absolute

 

Error

 

N-R Method

 

RBFN1

 

N-R Method

 

RBFN2

 

1

 

1

 

1.06

 

1.06

 

Slack

 

0

 

0

 

-

 

2

 

2

 

1.045

 

1.045

 

PV-Bus

 

-4.955

 

-4.932

 

0.023

 

3

 

2

 

1.01

 

1.01

 

PV-Bus

 

-12.6258

 

-12.573

 

0.0528

 

4

 

0

 

1.0271

 

1.0268

 

0.0003

 

-10.3777

 

-10.3321

 

0.0456

 

5

 

0

 

1.0334

 

1.033

 

0.0004

 

-8.9559

 

-8.9165

 

0.0394

 

6

 

2

 

1.07

 

1.07

 

PV-Bus

 

-14.8809

 

-14.821

 

0.0599

 

7

 

0

 

1.0452

 

1.0449

 

0.0003

 

-13.4591

 

-13.4036

 

0.0555

 

8

 

2

 

1.09

 

1.09

 

PV-Bus

 

-13.4591

 

-13.4055

 

0.0536

 

9

 

0

 

1.028

 

1.0277

 

0.0003

 

-15.078

 

-15.0162

 

0.0618

 

10

 

0

 

1.0279

 

1.0276

 

0.0003

 

-15.3251

 

-15.2618

 

0.0633

 

11

 

0

 

1.0451

 

1.0447

 

0.0004

 

-15.2179

 

-15.1547

 

0.0632

 

12

 

0

 

1.053

 

1.0526

 

0.0004

 

-15.7213

 

-15.6572

 

0.0641

 

13

 

0

 

1.0463

 

1.0459

 

0.0004

 

-15.7407

 

-15.6769

 

0.0638

 

14

 

0

 

1.0177

 

1.0173

 

0.0004

 

-16.3991

 

-16.3319

 

0.0672

 

Input neurons = 25(RBFN1),27(RBFN2),                                      Test Patterns = 95

 

Output

 

neuron = 9(RBFN1),13(RBFN2),                  Total number of epochs =  250

 

Neurons in hidden layer RBFN1 = 284,     Time of Training (RBFN1) =  16.39  sec 

 

Neurons in hidden layer RBFN2 = 273,     Time of Training (RBFN2) = 15.88 sec

 

Momentum = 0.9                                                       Time of Simulation = 0.016 sec      

 

Training Patterns = 418

 

 

 

Table (8)

 

Network Topology with One Hidden Layer (MLP).

 

 

Type of 

System

 

    Input

 

Output

 

Structure

 

No. of epochs

  

Time of Training

 

(sec) 

 

 

5-Bus 

 

11

 

8

 

11-25-8

 

90

 

33.845

 

14-Bus

 

IEEE

  

32

 

22

 

32-72-22

 

180

 

533.81

 

30-Bus

 

IEEE

  

63, (PCA)22

 

53, (PCA)5

 

22-45-5

 

588

 

307.13

 

  

Table (9)

 

Network Topology with Two Hidden Layer (MLP).

 

 

Type of System

 

Input

 

Output

 

     Structure

 

  No.   

 

  of    

 

  epochs

    Time           

 

    of Training

 

     (sec) 

 

    5-Bus 

 

  11 

 

   8 

 

11-10-10-8

 

51

 

87.112

 

14-Bus

 

IEEE

  

  32 

 

  22 

 

32-15-10-22

 

126

 

156.38

 

30-Bus

 

IEEE

  

  63 

 

  53                  

 

(PCA)22-25-10-5

 

111

 

265.9

 

362-Bus

 

ING

 

(Angles) 

 
 

716 

 

  361 

 

(PCA)38-36-36-53 

 

1300

 

3069.55

 

362-Bus

 

ING

 

(Voltage Mag.)

 
 

716 

 

  332 

 

(PCA)38-36-36-53

  

1476

 

4448.89

 

 

 

 

  

 

Table (7) Load-Flow Solution for ″14-Busbar″ IEEE Test System

Using RBFN1 (25-284-9) & RBFN2 (27- 273 -13)
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Type of 

 

System

 

Input

 

Output

 

Structure

 

No. of epochs

  

Time of Training

 

(sec) 

 

14-Bus

 

IEEE

 

(RBFN1) 

 

  25 

 

   9 

 

  25-284-9 

 

250

 

16.39

 

14-Bus

 

IEEE

 

(RBFN2) 

 

  27 

 

  13 

 

  27-273-13 

 

250

 

15.88

 

30-Bus

 

IEEE

 

(RBFN1) 

 

  38 

 

  24 

 

  38-595-24 

 

575

 

226.18

 

30-Bus

 

IEEE

 

(RBFN2) 

 

  42 

 

  29 

  

42-463-29 

 

450

 

142.24

 

ING-RBFN1 

  

322 

  

332 

 

322-1016-332 

 

1000

 

1350.55

 

ING-RBFN2 

  

303 

  

361 

 

303-1470-361 

 

1450

 

2053.2

 

 

 

VIII. DISCUSSION
 

 

       Tables (3)
 
and (4)

 
prove that multi-layer perceptron 

(MLP) NN with two hidden layer is better than MLP NN 

with one hidden layer.
 

For both techniques error back-

propagation learning strategy with Levenberg-Marquardt 

minimization technique, application of update momentum, 

and sigmoid transfer function are used. It is better 

according to the following criteria: a) less absolute errors or 

more accurate results, b)
 
time of training is less, c) time of 

simulation or real-time implementation is less, d) number 

of epochs for an efficient learning strategy and NN 

generalization is much less. The multi-layer perceptron 

feed-forward neural network model based back-

propagation (BP) training algorithm uses standard 

numerical optimization techniques. Three types of these 

numerical optimization techniques are Conjugate gradient, 

Levenberg-Marquardt, and Quasi-Newton algorithms. All 

these minimization algorithms were used and tested.
 
We 

found that Levenberg-Marquardt algorithm is the best in 

back-propagation training method because it is faster than 

the other algorithms and can converge from ten to one 

hundred times faster than the other mentioned
 
algorithms. 

 

    Since ING is a
 
large and practical power system so, it is 

very important and efficient to simplify the NN architecture 

by reducing the input and output neurons through the use of 

principal component analysis (PCA) by applying the 

algorithm of entropy gain and dimensionality reduction. 

Table (9)
 
shows

 
that the input neurons (nodes) and the 

output neurons were 716 and 332 neurons respectively 

without PCA application while, they became 38 and 53 

neurons respectively with PCA application.                                                                      
 

    The numbers of hidden nodes in RBF networks are 

determined by the clustering algorithm but in MLP it is 

difficult to decide about the number and size of hidden 

layers so, a
 

trial method is used. Radial basis function 

networks can require more neuron than standard feed-

forward back-propagation networks, but often they can be 

designed in a fraction of the time it takes to train standard 

feed-forward networks. They work best when many 

training vectors are available. Radial
 
basis networks need 

more neurons than a comparable feed-forward networks, 

this is because sigmoid neurons can have outputs over a 

large region of the input space, while radial basis function 

neurons only respond to relatively small regions of the 

input space. The result is that the larger the input space (in 

terms of number of inputs, and the ranges those inputs vary 

over) the more radial basis function neurons required.
  

IX.
 
CONCLUSIONS

 

 

     In this research, the solution of the load flow problem 

using artificial neural networks was achieved in a very 

short computing time for all systems of various sizes under 

different contingencies. The ANN has been trained only 

once, will operate for any load condition operation
 
with no 

outages as well as for operating
 

conditions under 

contingencies of generator and line outages, very accurate 

results could be obtained without the
 
need for changing the 

topology of the network under contingencies.
 

 
Neurocomputing has attractive features, such as its ability 

to tackle new
 
problems which are hard to define or difficult 

to solve analytically, its robustness in dealing with 

incomplete or "fuzzy" data, its processing speed, its 

flexibility and ease of maintenance.  
 

Radial basis neural network have been developed to solve 

load
 
flow problem in an efficient manner

 
and reduce the 

possibility of ending at a local minima. In the commonly 

used multi-layer perceptron feed-forward neural network 

model based back-propagation (BP) algorithm, this usually 

suffers from local minima and over-fitting problems. The 

training process of MLP is slow, and its ability to 

generalize a pattern-mapping task depends on the learning 

rate and the number of neurons in the hidden layer. On the 

other hand training of a radial basis neural network is very 

fast, at the same time the generalization capability of the 

RBFN network allows it to produce
 

an accurate output 

even when it is given an input vector that is partially 

incomplete or partially incorrect. The RBFNN has many 

advantageous features such as optimized system 

complexity, minimized learning and recall times as 

compared to multilayer perceptron model.
 

The proposed method (RBFNN) can be applied for on-line 

(real-time) load flow solution for both small and large-scale 

power systems with high accurate results.
 

 

 

  

Table (10) Network Topology for Radial Basis Function Neural Network.
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APPENDIX A 

Table A.1   Load Flow Solution Results Using Newton-Raphson Method for 

IEEE 14-Bus system for power Mismatch = 0.001p.u (0.1 MW/MVAR) 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus Number 
Bus 
 Type 

Voltage Mag. 
Voltage Ang. 
(Deg.) 

1 1 1.060 0 

2 2 1.045 -4.955 

3 2 1.01 -12.6258 

4 0 1.0271 -10.3777 

5 0 1.0334 -8.9559 

6 2 1.07 -14.8809 

7 0 1.0452 -13.4591 

8 2 1.09 -13.4591 

9 0 1.028 -15.078 

10 0 1.0279 -15.3251 

11 0 1.0451 -15.2179 

12 0 1.053 -15.7213 

13 0 1.0463 -15.7407 

14 0 1.0177 -16.3991 
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