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ABSTRACT 

The prediction of scour hole downstream a hydraulic structure is estimated quite often 

through physical and mathematical models. However, physical models are costly and 

not easily available for testing all hydraulic conditions and mathematical models were 

derived to represent certain hydraulic conditions. In this paper, Artificial Neural 

Network (ANN.) modeling using back-propagation learning technique was 

formulated to predict the maximum scour depth around bridge piers due to installation 

of aquatic weeds racks. The data used to train the ANN was obtained from a test 

series of physical model. The discharge, velocity, Froude number and opening area 

percentages; unoccupied area by rack element, were used as input parameters to ANN 

while scour hole depth as the output parameter. Results of ANN show good 

estimation of maximum scour depth compared to the measured data from physical 

model. An advantage of the use of ANN in the prediction of maximum scour hole 

depth and length that it will certainly decrease the cost and time for physical modeling 

and help in simulating different hydraulic conditions.  

 

Keywords: Physical Models, Scour Depth, Artificial Neural Networks 

 

1. INTRODUCTION 

Most of the open water irrigation channels in Egypt suffer from heavy infestation of 

aquatic weeds especially the submerged and floating ones that cause lots of hydraulic 

problems for the open channels such as increasing water losses, obstructing water 

flow, and reducing channels water distribution efficiencies as well as threat the 

hydropower plants. Installations of aquatic weeds' racks are commonly used solution 

for saving the hydropower plants turbines and trapping floating weeds and other 

trashes. Such installation either use the body of bridge structure for hanging up rack 

structural elements or insert isolated piers to support aquatic weeds racks‘ own weight 

and resist forces exerted by trapped floating weeds and trashes. These construction 

methodologies may cause excessive local and contraction scour around piers, either 

bridge' piers or the inserted ones. The current study presented in this manuscript 

utilizes the ANN technique in developing a simulation and prediction models for the 

scour behavior around piers due to installation of racks and develops the ANN models 

for an experimental data as a proof of ANN technique capability for modeling such 

scour behavior. The experimental data used in the current study for developing the 

ANN models is the one reported by T.Gamal (2013) for his PhD Thesis.  

 

 

2. APPLICATIONS OF ANN IN THE FIELD OF SCOUR 

In the field of scour, very little number of studies is available in the literature. 

Kheireldin (1999) used the ANN to develop a prediction model to predict the 

maximum depth of scour around bridge abutments. It was concluded that the ANN 
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approach performed well for one set of data and its performance was not satisfactory 

for another set of data. Liriano and Day (2001) applied the ANN to develop a 

prediction model to predict the scour depth at culvert outlet. They used in addition to 

their own data the previously published ones as training data to the proposed ANN 

model. They concluded that the ANN could be used to predict the scour depth at the 

culvert outlet with a greater accuracy compared to the available empirical scour 

formulae. Negm (2002) developed ANN model to predict the length and depth of 

hydraulic jump while Negm et al. (2002) utilized ANN prediction model for 

maximum scour depth downstream of sudden expanding stilling basins. The present 

study presents a new developed ANN to predict depth of the scour hole downstream 

hydraulic structures, case of bridge piers. 

 

3. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANN‘s) as they are known today; originate from the work 

of McCulloch and Pitts (1943), Fig (1), who demonstrated the ability of 

interconnected ―neurons" to calculate some logical functions. Hebb (1949) pointed 

out the importance of the synaptic connections in the learning process. Later, 

Rosenblatt (l958) presented the first operational model of a neural network: The 

perceptron, built as an analogy to the visual system, was able to learn some logical 

functions by modifying the synaptic connections. 

 

 

 
 

Fig (1) The McCullough-Pitts model 

 

ANNs are massively parallel, distributed and adaptive systems, modeled on the 

general features of biological networks with the potential for ever improving 

performance through a dynamical learning process (Bavarian, 1988). Neural networks 
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are made up of a great number of individual processing elements, the neurons, which 

perform simple tasks. A neuron, schematically represented in Fig (2), is the basic 

building block of neural network technology which performs a nonlinear 

Transformation of the weighted sum of the incoming inputs to produce the output of 

the neuron. The input to a neuron can come from other neurons or from outside the 

network. The nonlinear transfer function cans be a threshold, sigmoid, a sine or a 

hyperbolic tangent function. 

 

 

  

 
 

Fig (2). A simple Neuron 

 

Neural networks are comprised of a great number of interconnected neurons. There 

exists a wide range of network architectures. The choice of the architecture depends 

upon the task to be performed. It consists of a layer of input neurons, a layer of output 

neurons and one or more hidden layers. In the present work, a three-layer feed 

forward network was used. 

 

In a neural network, the knowledge lies in the interconnection weights between 

neuron and topology of the networks (Jones and Hoskins, 1987). Therefore, one 

important aspect of a neural network is the learning process whereby representative 

examples of the knowledge to be acquired are represented to the network so that it can 

integrate this knowledge within its structure. Learning implies that the processing 

element somehow changes its input/output behavior in response to the environment. 

The learning process thereby consists in determining the weight matrices that produce 

the best fit of the predicted outputs over the entire training data set. The basic 

procedure is to first set the weights between adjacent layers to random values. An 

input vector is then impressed on the input layer and is propagated through the 

network to the output layer. The difference between the computed output vector of the 

network and the target output vector is then adapt the weight matrices using an 

iterative optimization technique in order to progressively minimize the sum of squares 

of the errors (Hornik et al., 1989). The most versatile learning algorithm for the feed 

forward layered network is back-propagation (Irie and Miyanki, 1988). The back-

propagation learning law is a supervised error-correction rule in which the output 

error, that is, the difference between the desired and the actual output is propagated 

back to the hidden layers. Now, if the error at the output of each layer can he 

determined, it is possible to apply any method which minimizes the performance 

index to each layer sequentially. Multi-Layer Perceptrons (MLP) are perhaps the best-

known type of feed forward networks. MLP has generally three layers: an input layer, 
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an output layer and an intermediate or hidden layer. Neurons in the input layer only 

act as buffers for distributing the input signal xi to neurons in the hidden layer. Each 

neuron j in the hidden layer sums up its input signals xi after weighting them with the 

strengths of the respective connections Wji from the input layer and computes its 

outputs yj as a function of the sum as: 

 

yj = ƒ(Σ Wji Xi)          (1) 

 

Where, ƒ can be a simple threshold function or a sigmoid, hyperbolic tangent or radial 

basis function. 

 

The output of neurons in the output layer is computed similarly. The back propagation 

algorithm, a gradient descent algorithm, is the most commonly adopted MLP training 

algorithm. It gives the change Σ Wji in the weight of a connection between neurons j 

and i as follows. 

 

Δ Wji = η ó j Xi                                                   (2)  

 

Where η is a parameter called the learning rate and ᵹj is a factor depending on whether 

neuron j is an output neuron or a hidden neuron. For output neurons, 

 

ó j = {∂ƒ/∂net j} (yj
2
-yj)                                  (3) 

 

And for hidden neurons 

 

ó j = {∂ƒ/∂net j} Σq (Wij ó q)             (4) 

 

Where netj is the total weighted sum of input signals to neuron j and yj is the target 

output of neuron j. As there are no target outputs for hidden neurons, in equation (4), 

the difference between the target and actual output of a hidden neuron j is replaced by 

the weighted sum of the terms already obtained for neurons q connected to the output 

of j. Thus. Iteratively j, beginning with the output layer, the ó term is computed for 

neurons in all layers and weight updates determined for all connections. 

 

Back-propagation searches on the error surface by means of the gradient descent 

technique in order to minimize the error Fig (3). Various other modifications to back-

propagation to overcome this aspect of back- propagation have been proposed and the 

Levenherg-Marquardt modification (Hagan and Menhaj. 1994) has been found to be a 

very efficient algorithm in comparison with the others like Conjugate gradient 

algorithm or variable learning rate algorithm. Levenberg-Marquardt works by making 

the assumption that the underlying function being modeled by the neural network is 

linear. Based on this calculation, the minimum can he determined exactly in a single 

step. The calculated minimum is tested, and if the error there is lower, the algorithm 

moves the weights to the new point. This process is repeated iteratively on each 

generation. Since the linear assumption is ill- founded, it can easily lead Levenberg-

Marquardt to test a point that is inferior (perhaps even wildly inferior) to the current 

one. The clever aspect of Levenberg-Marquardt is that the determination of the new 

point is actually a compromise between a step in the direction of steepest descent and 

the above-mentioned leap. Successful steps are accepted and lead to a strengthening 

of the linearity assumption (which is approximately true near to a minimum).  

2325

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60245



 

 

 
Fig (3) Back Propagation Algorithm 

 

 

Unsuccessful steps are rejected and lead to a more cautious downhill step. Thus, 

Levenberg-Marquardt continuously switches its approach and can make very rapid 

progress. The equations for changing the weights during training in Levenberg-

Marquardt method are given as follows: 

 

Modifying ΔẄ = (J
T
J + μI)

-1
 J

T
e      (5) 

 

Where J is the Jacobian matrix of the derivative of each error to each weight. T is a 

scalar and e is an error vector. The Levenberg-Marquardt algorithm performs very 

well and its efficiency is found to be of several orders above the conventional back 

propagation with learning rate and momentum factor. 

 

4. EXPERIMENTAL WORK  

The experimental work performed by T.Gamal for his PhD Thesis. The work was 

carried out in the hydraulics laboratory of the Channel Maintenance Research Institute 

within the National Water Research Center, El_Kanater El_Khairiah, Egypt. The 

flume used in the experimental work is a reinforced concrete flume and has a total 

length of 22.10 m. The operating system of this flume is re-circulated through an 

underground reservoir, with dimensions (24.10 m long, 1.75 m wide, and 1.5 m 

height) to supply the flume with water. The layout of the flume and all the hydraulic 

structures within the experiment can be shown in Figs (4), (5).  
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Figure (4) experimental flume and its underground reservoir 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5). The flume structure and its scoured soil basin 
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5. SIMULATION CASES AND DATA COLLECTED FOR (ANN)  

To investigate and model the scour around piers using ANN technique, the 

experimental work data of T.Gamal (2013) was utilized in the current study. To fully 

understand how the scour depth around piers can be affected by weeds‘ accumulation 

on aquatic weeds racks, five different discharges were examined for simulation cases 

in this study; and three various trash racks‘ depths (2/3, 1/2 and 1/3 of water depth 

from surface), as water depth kept constant at 30 cm, and for every trash rack‘s depth, 

opening areas of trash racks were varied from 10% to 90% Fig (6). Opening area 

percentages mentioned in table (1) area referred to total water cross section. The 

simulation cases are divided into three main groups based on racks‘ depth. The three 

groups simulate and model the impact of different discharges on scour depth 

according to various weeds' accumulation percentages and various opening areas. 

 

Table (1), Key inputs and out puts variable for the three network simulation groups.  

 

Groups 

No  

Simulation 

Case 
Variables Input Variables 

Output 

Variables 

First 

Group 

Rack depth = 

(2/3) water 

depth 

Various 

Discharges 

& Various 

Blocking% 

Froude 

Number 

Opening area 

% 
Scour depth 

Second 

Group 

Rack depth = 

(1/2) water 

depth 

Various 

Discharges 

& Various 

Blocking% 

Froude 

Number 

Opening area 

% 
Scour depth 

Third 

Group 

Rack depth = 

(1/3) water 

depth 

Various 

Discharges 

& Various 

Blocking% 

Froude 

Number 

Opening area 

% 
Scour depth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (6) Weed’s trash rack prototype 
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The critical step in building a robust ANN is to create an architecture, which should 

be as simple as possible and has a fast capacity for learning the data set. The 

robustness of the ANN will be the result of the complex interactions between its 

topology and the learning scheme. ‗The choice of the input variables is the key to 

insure complete description of the systems. Whereas the qualities as well as the 

number of the training observations have a tremendous impact on both the reliability 

and performance of the ANN. Determining the size of the layers is also an important 

issue. One of the most used approaches is the constructive method, which is used to 

determine the topology of the network during the training phase as an integral part of 

the learning algorithm. The common strategy of the constructive methods is to start 

with a small network, train the network until the performance criterion has been 

reached, add a new node and continue until a global performance in terms of error 

criterion has reached an acceptable level. Several neural network architectures are 

designed and tested for each of the sub-simulated cases investigated in the current 

study to finally determine the best network model to simulate, very accurately, the 

max scour depths were based on minimizing the Root Mean Square (RMS-error). 

Figure (7) shows a schematic diagram for a generic neural network. 

 

 
Figure (7) Schematic diagram of a generic neural network 

 

Regarding the adopted activation function within the current developed ANN models, 

it is important to mention here that some of the developed models incorporated the 

sigmoid activation function presented in Fig (8). The choice for any activation 

function, in the different models‘ development, was based on the power of this 

function in simulating the real nature of the water surface profile in each case. The 

Sigmoid function typically has a narrow region about zero wherein the output will be 

roughly proportional to the input, but outside this region the Sigmoid function will 

limit to full inhibition or full excitation, Shin (1996). The Sigmoid function can be 

expressed mathematically as follows: 

 

 

Aop% 

Fr 

ds/b 

Hidden Layers 

Input layer 
Output layer 
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ƒ (χ) = 1 / (1 + e 
– χ

) 

 

 

 
 

Fig (8) Typical Algorithm of Sigmoid Activation Function 

 

On the other hand, the Hyperbolic function is shaped exactly as the sigmoid one with 

the same mathematical representation but it ranges from -1 to +1 rather than from 0 to 

1. Thus it has the interesting property that there is inhibition near 0, but values at 

either extreme will be excited to full level, but in opposite sense. In addition, the 

hyperbolic function can be considered as a switch with an intermediate range where it 

can be discriminating. 

 

The training parameters of the various network models developed in the current study 

for the different sub-simulation cases can be described according to their tasks as well 

as their values for the different developed ANN models as follows: 

 

 Learning Rate (LR): determines the magnitude of the correction term applied 

to adjust each neuron‘s weights during training process. LR = 0.5 for all 

developed ANN models. 

 

 Momentum (M): determines the ―life time‖ of a correction term as the training 

process takes place. M = 0.7 for all developed ANN models. 

 

 Training Tolerance (TRT): defines the percentage error allowed in comparing 

the neural network output to the target value to be scored as ―Right‖ during the 

training process. TRT = 0.03 for all developed ANN models. 

 

 Testing Tolerance (TST): it is similar to Training Tolerance, but it is applied 

to the neural network outputs and the target values only for the test data. TST 

= 0.03 for all developed ANN models. 

 

 Input Noise (IN): provides a slight random variation to each input value for 

every training epoch. IN 0 for all developed ANN models. 
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 Function Gain (FG): allows a change in the scaling or width of the selected 

function. FG = I for all developed ANN models. 

 

 Scaling Margin (SM): adds additional headroom, as a percentage of range, to 

the rescaling computations used by Neuralyst v1.4 software, Shin (1996), in 

preparing data for the neural network or interpreting data from the neural 

network. SM = 0.1 for all developed ANN models 

 

6. RESULTS AND DISCUSSION 

As described previously, several ANN models were developed for all the simulated 

cases investigated within the current study and their modeling designs were presented 

in table. The results and the prediction power of the developed ANN models in 

simulating scour behavior in term of depth around piers are presented in a detailed 

fashion in the following sections according to their simulation group. 

 

The prediction processes results will be presented in graphs‘ format. However, the 

maximum percentage relative error between the predicted results and the actual 

measurements for all ANN models for flow rates for each trash racks depth operation 

cases are presented in table 1. It is probably worth mentioning here that this 

percentage relative error is computed based on Equation (6) as follows: 

 

PRE = (Absolute Value (ANN PR — AMV) / AMV) * 100   (6) 

 

Where: 

PRE: Percentage Relative Error 

ANN_PR: Prediction results using the developed ANN model 

AMV: Actual Measured Value 

 

Figures (9), (10) and (11) show comparison between the actual measured and 

predicted scour depth for collected data. It is clear from this figure that the developed 

ANN models were capable of predicting the scour depth around piers with maximum 

percentage relative error less than 9%. Since the most important result for evaluating 

the prediction power of the ANN technique is the percentage relative error; the 

following figures (12), (13) and (14) presentation will focus on showing this error 

values. Considering the small values for the maximum percentage relative errors, 

presented in these figures, It is quite clear that all ANN models developed for the 

current different flow discharges and racks' depth simulation cases were very 

successful in predicting the scour depth around piers for the specific previously 

mentioned discharges.  

 

7. SUMMARY AND CONCLUSIOIN 

Lots of experimental work was performed to investigate and measure the impacts of 

weeds existence in various accumulations at weed racks on the scour behavior around 

piers. On the other hand, the mathematical modeling efforts for simulating these 

impacts are still very limited. However, the Artificial Neural Networks (ANN) 

modeling approach has proven its capabilities in providing very useful information 

and simulating various physical phenomena. In addition, ANN has been recorded as a 

very powerful modeling technique and simulation process in predicting the behavior 

of different engineering systems .The current study was aimed towards utilizing the 
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ANN technique in investigating the impacts of floating aquatic weeds existence in 

various percentages at weed racks on scour depths around piers. 

 
 

Fig (9). Comparison between measured and predicted (ANN) results of scour 

maximum depth, rack depth = 2/3 water depth. 
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Fig (10). Comparison between measured and predicted (ANN) results of scour 

maximum depth, rack depth = 1/2 water depth. 

 

 
 

Fig (11). Comparison between measured and predicted (ANN) results of scour 

maximum depth, rack depth = 1/3 water depth. 
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Fig(12). Percentage relative error between the predicted ANN results and the actual 

measured data for rack depth = 2/3 water depth. 

 

 
 

Fig(13). Percentage relative error between the predicted ANN results and the actual 

measured data for rack depth = 1/2 water depth. 
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Fig(14). Percentage relative error between the predicted ANN results and the actual 

measured data for rack depth = 1/3 water depth. 

The current study was directed towards proving the concept of utilizing ANN 

technique in an experimental flume that is designed to simulate the open channels. 

Several ANN models were developed in the current study to predict the scour depth 

pattern for particular cases as different discharges and various weeds accumulations 

percentages. Three main simulation groups were considered in the current manuscript 

according to weed rack‘s depths. 

 

The results of the various developed ANN models, with maximum percentage relative 

error less than 9% in all models, showed that ANN technique was very accurate and 

successful in simulating the scour behavior around piers. This conclusion is 

considered very encouraging for the scientific community to utilize the ANN 

approach in predicting the impacts of submerged aquatic weeds on the hydraulic 

performance of the open channels within the irrigation and drainage networks. In 

addition, the implementation of the ANN concepts and models is foreseen to provide 

the irrigation engineers with very useful information regarding the direct impacts of 

the aquatic weeds infestation on the hydraulic performance of open channels with 

almost no cost. This information is considered very essential to the distribution and 

design irrigation engineers.  

 

The scour depths around piers have been found to increase continuously with 

discharge and trash rack blocking percentage.  

 

The results presented in this paper have clearly shown that the neural network 

methodology can be used efficiently to predict the scour depth. The main advantage 

of neural networks is to remove the burden of finding an appropriate model structure 

or to find a useful regression equation. Also, ANN prediction for maximum scour 

depth decreases the cost and time for performing physical models tests, but will not 

replace it. 
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