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Abstract - In this scholarly investigation, a groundbreaking
Weighted Self-Organizing Map (SOM) paradigm is introduced for
the precise prognostication of weather patterns and crop yield
projections within the realm of agricultural applications. The
model harnesses the prowess of deep learning methodologies to
discern intricate and nuanced patterns latent within historical
weather and agricultural data, thereby furnishing invaluable
insights conducive to predictive analytics. In stark juxtaposition to
traditional prognostic techniques, this amalgamated model
demonstrates heightened precision and resilience, establishing its
prowess as a potent instrument for informed agricultural decision-
making. Amidst the formidable challenges posed by the
capriciousness inherent in agricultural meteorology, the symbiotic
amalgamation of cutting-edge deep learning methodologies with
the nuanced Weighted SOM strategy presents an ingenious and
pragmatic panacea.

To this end, it is judiciously recommended to harness the
synergistic capabilities of both the Self-Organizing Map (SOM)
and the Latent Dirichlet Allocation (LDA) methodologies. The
SOM technique, functioning as a potent dimensional reduction
mechanism, delineates inherent self-organizing topographies,
while the resultant data, rendered succinct through dimensionality
reduction, is harnessed to prognosticate climatic trends with
finesse. Furthermore, the strategic implementation of a Deep
Neural Network (DNN) classification regimen facilitates the
formulation of bespoke cultivation schedules tailored to optimal
crop selection in consonance with prevailing meteorological
trajectories. The cardinal crux of this endeavor resides in the
identification of an adept information model, an imperative that
underpins the simplification and refinement of predictive crop
valuation.

Keywords: Multi-layer Neural Network Dirichlet Allocation Model
(LDA), Agriculture, Weights, Victor Neuron, Topological Feature
Map (SOM), Meteorological Prognostication, Crop Anticipation.

1. INTRODUCTION

Machine learning, an extensively employed paradigm across
diverse domains, including agriculture, finds application in
agriculturally-focused meteorological estimations. Agricultural
system models embrace robust estimation methodolgies such as
M-Estimates and L-Estimates, anchored in neural network
algorithms. Recognizing agriculture's pivotal role in sustaining
human existence and its responsibility to cater to the burgeoning
global populace, this study responds to the escalating challenges
posed by shifting climatic dynamics. In light of the persistent
predicaments encountered by farmers encompassing crop yield,
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resource depletion, and climatic volatilities, an advanced
technique is proffered herein. The essence of this endeavor
pertains to the innovative implementation of deep learning-
infused Weighted Self-Organizing Maps (SOMs) for
meteorological and crop prognostications, a trajectory that
holds profound ramifications for the agricultural landscape.
Furthermore, the precision engendered by adept crop
predictions bequeaths improved crop administration, strategic
market planning, and astute risk evaluation, thus engendering
benefits for farmers, policymakers, and supply chain
participants alike. This study meticulously assesses the efficacy
of the proposed model, anchored in historical weather data, crop
yield information, and pertinent environmental variables

2. LITERATURE SURVEY

The literature corpus has spawned an array of methodologies
for gauging agricultural productivity, with multiple publications
engaging in comparative analyses of diverse extensions of the
Stochastic ~ Self-Organizing Map (SOM) tailored for
dissimilarity data. A distinct treatment of dissimilarity data is
discerned through topographical mappings, crafted to imbue
prototypes with sparsity via iterative refinements. Nevertheless,
these techniques have proven environmentally unsustainable
and fail to adroitly accommodate dynamic deviations. C.
Lennard and G. Hegerl pioneered a supervised approach
underpinning the evaluation of surface precipitation in the
South African context vis-a-vis synoptic circulations. This
method aptly downscale large-scale synoptic insights into
granular surface responses. Comparative evaluations against
localized atmospheric models underscored its marked cost-
effectiveness.

Mitigating the dearth of reliable weather prognostications
stemming from simulation systems, this study advocates
Regression Analysis (RA) as a tool to ascertain the intricate
interplay between environmental determinants and agricultural
productivity trends over a decade span. Scheffel, Lindvall, and
Yik elucidated a time-spectral methodology hinged on the
Generalized Weighted Residual Method (GWRM) for
numerical weather forecasting. GWRM, leveraging Chebyshev
series expansions, outperformed antecedent methodologies in
terms of accuracy and computational efficiency.
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A confluence of methodologies, encompassing SOM, Latent
Dirichlet Allocation (LDA), and a multi-objective classifier
Deep Neural Network (DNN), is adroitly marshaled to elevate
the precision of seasonal and crop prognostications.
Augmenting the efficacy of rainfall predictions mandates a
nuanced fusion of multiple SOM attributes synergistically
aligned with meteorological data streams.

3. .DATASET DESCRIPTION

The dataset underpinning this scholarly inquiry encompasses an
exhaustive assemblage of data, aggregating information
pertaining to crops, meteorology, and soil characteristics across
the entire expanse of India. Sourced from the Indian
Meteorological Data repository accessible on Kaggle—an
esteemed online repository for datasets and data-driven research
endeavors—this repository serves as the fount from which this
study draws its empirical sustenance. A multiplicity of attributes
intrinsic to agricultural exigencies have been thoughtfully
enriched within this dataset, constituting a veritable trove for
agro-centric applications. With keen discernment towards its
utility for meteorological prediction and crop anticipation, the
dataset traverses a comprehensive gamut of agrarian facets. At
its nucleus, the dataset delineates diverse crop typologies
cultivated across manifold Indian regions, each tethered to its
specific pedological profile. Concomitantly, this schema
catalogues the concomitant climatic tapestry within which these
crops thrive, encapsulating meteorological beacons such as
precipitation rates, temperature oscillations, and humidity
gradients over distinct temporal cadences. This array of
meteorological attributes, cast against the backdrop of
chronological epochs, assumes a pivotal role in steering the
trajectory of crop maturation and yield manifestation.

In consonance with the holistic narrative espoused by the
dataset, a palpable economic undercurrent emerges through the
amalgamation of crop cost metrics. This fiscal dimension,
intrinsically interwoven with agriculture, lays bare the financial
underpinnings of diverse crops within disparate geographic
enclaves, effectively illuminating the profitability quotient that
underscores agrarian endeavors.

The dataset, a formidable repository unto itself, boasts an
aggregate expanse exceeding two thousand records. This
voluminous corpus mirrors the kaleidoscopic diversity of agro-
climatic scenarios that characterize India's multifarious
geographical contours. This breadth, coupled with the dataset's
depth, renders it an invaluable arsenal for the conceptualization,
refinement, and validation of the deep learning-imbued
Weighted Self-Organizing Map model. This pioneering
approach, predicated on the fusion of deep learning paradigms
with the Weighted SOM methodology, endeavors to elucidate
intricate and lucid forecasts hinged upon this expansive dataset.
In doing so, it bestows a formidable impetus upon data-driven
decision-making vis-a-vis the intricate tapestry of agricultural
landscapes..

4. PROPOSED METHODOLOGY

This section delineates the orchestrated utilization of the Self-
Organizing Map (SOM) in conjunction with the Topic modeling
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with Dirichlet prior mechanisms, harmonized within the ambit
of a multifaceted predictive framework for discerning optimal
crop selections and geospatial locales conducive to agricultural
pursuits. The SOM's efficacy lies in its parsimonious
computational demands and deterministic outcomes, while the
Deep Neural Network (DNN) classifier exerts an augmentative
thrust upon predictive precision.

The envisioned methodology amalgamates a novel array of
element-weighting techniques synergized with judicious
partitioning of class disparities and intra-class fluctuations. This
orchestration not only expedites classification processes but also
embellishes the predictive fidelity of the nearest neighbor
classifier paradigm, thus curtailing component requisites. This
multi-pronged strategy is embarked upon as follows:

Gather Historical
Weather and Crop yicld

Collect more
Historical data

NO

ess the o [ Trinhe model
Classification using DNN
Analyze the Data Classifier
Test the model

nsion reduction
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Initialize he model |

Output the
visualization
STOP ~

Fig 4.1.1 Flow diagram

4.1 Dimension reduction using SOM
Central to the methodology, the Self-Organizing Map (SOM) is
an exemplary instantiation of an artificial neural network,
distinguished by its competitive learning process. The SOM
architecture, underpinned by a two-dimensional grid-based
arrangement of neurons, orchestrates intricate interplay
between input and neuron strata. The neuron with the minimum
distance between the input vector and weight vector attains the
mantle of the "winner" neuron. Pivotal steps encompass
selection of input samples, computation raised to the power of
two Euclidean distances for each output node's weight vectors,
and eventual determination of the output node—endowed with
the minimal weight vector—in the Weighted SOM paradigm.
The lateral interplay amongst neurons is encapsulated in the
Gaussian function model, with the championing unit designated

nsn
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1) If the computational confines are not violated, then
hand-pick an input sample after Probabilistic latent
semantic analysis. The three-level Bayesian visual
model employed by LDA algorithms, where each node
is regarded as a random variable and edges represent
the actual association between these variables.

2) Calculation of the Straight line distance square yields
the "yi" variable, as articulated in Equation (1). This
factor, synonymous with the weighting vector (wij)
attributed to each output node, precipitates the selection
of the output node "j*," embodying the minimal weight
vector, as delineated in Equation (2).

yi,=F (xi,—wj, tn2 k=1 (1)

Select output node j * that has weight vector with
minimum value.

j=argmm j {lxn —wjl} 2)

3) The orchestration of lateral feedback among neurons,
synonymously labeled as the "Gaussian functional
model," is quintessential. The salient feature is the
computation of the proximity function (A)—as
stipulated in Equation (3)—corresponding to the
weighted champion neuron (wj) at time "t." This
function conveys the relative significance attributed to
neighboring nodes in proximity to the winner node,
substantiating an intricate interplay pivotal for
subsequent weight adjustment

A0 .0 = e dj o(9)2),j=1,2 ... .n.(3)

The Euclidean distance between the weighted winning
node wj(x) and the matching neuron wj in the lattice is
given by the formula dj = wj(x) wj, where the parameter
(t) specifies the practical width of the feature maps
around the winning node. A monotonically dropping
function, (t) and (wj,t) both exist. Each neuron will
subsequently alter its synaptic vector weights to
conform to the formulation.

4) Akin to a carefully choreographed dance, the synaptic
vector weights of each neuron are adroitly tailored to
adhere to the evolving formulations. Equation (4)
encapsulates the weight update process, wherein the
weights of neurons within a specific topographical
vicinity are attuned during the backpropagation phase.

=wj (r+ 1)y =wj(t) +nlr)alw .t) bule) - wy ()], J
12,..n(3)

X

This measurement information set is given as
contribution to the following stage for prediction
process with the aid of DNN
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4.2 Classification using Deep Neural network

Effectuating a significant departure from conventional
paradigms, the DNN morphs into a feed-forward construct,
hinging upon a stratagem of layer-wise training through
unsupervised pre-training. The encapsulation of data
propagation, devoid of loop constructs, transmutes data
from input strata to output tiers. The salient distinction of
DNN classifiers resides in their inherent resilience against
data gaps during categorization, thus embracing an inherent
robustness. With a forward pass, apply x = [x1,... XN] to
each input data sample. Characteristically, f is the function
that, as shown in Eq. (5), involves a series of layers for
calculation.

Zij=xiwij; Zj =Y i Zij + ; Xj = g(Zj) )

Where wij are the model parameters, xi is the layer input,
and denotes the layer's output, and g(Zj) implements the
mapping or pooling function. The classification choice in
Eq. (6) is influenced by layer-wise relevance propagation,
which breaks down the classifier output (x) in terms of
relevance's ri assigning to each input component xi.

(x)=2iri (6)

Where ri > 0 denotes favorable evidence confirming the
classification choice and ri 0 indicates unfavorable or
otherwise neutral evidence for the labelling. Despite the
fact that Eq. (7) is used for determining the relevance
attribute ri.

ri=Y zij >izij j @)

The DNN might peer into the unrecognized feature
coherences of input. A hierarchical feature learning strategy
is offered by the DNN. Therefore, handling complex
functions that can serve as high-level abstractions is the
primary purpose of DNN.

Cost function Formula:

cost=12nY (Xi— )2+ni=1 Y KLmj=1 (plp]) + 12
> > 0ijm2j=1ni=l

5. PERFORMANCE MEASURE

Within the framework of the proposed methodology, the
yardstick of assessment rests upon the metrical calibration
of weather prognostication in the agricultural domain. This
evaluative framework is intricately constructed, serving as
a methodical scaffold to gauge the efficacy and potency of
the aforementioned project. This evaluation matrix casts a
wide net, encapsulating an assortment of pivotal metrics
meticulously selected to furnish a panoramic vista of the
project's efficacies and constraints. Fusing both quantitative
and qualitative facets, this matrix engenders a
comprehensive evaluation, affording insights into the
project's operational dynamism concerning meteorological
anticipation and crop projection within the precincts of
agrarian landscapes.
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By quantifying the project's throughput velocity and
judicious exploitation of resources, stakeholders are
endowed with a discerning toolkit that aids in discerning its
pragmatic utility and prospects for scalability. The general
underpinning for the assessment of sensitivity and
specificity in weather prognostication is encapsulated
within Equations (8) and (9), where the nomenclature
references true negatives, false negatives, true positives,
and false positives—signifying fundamental constituents of
assessment.

Sensitivity = Number of TP
®
Number of TP+Number of FN = 100
Specificity = Number of TN ©

Number of TN+Number of FP = 100

In which, is articulated as true negative and is stated as false
negative, is denoted as true positive, is indicated as a false
negative, and is stated as true negative. Likewise accuracy,
focus, and Recall are the appropriate measurement
parameters for determining the efficacy of crop
identification and prediction of weather. Further, it is a
statistical variability measurement and an explanation of
random mistakes. The basic formula for forecasting with
accuracy, precision, and recall Egs. (10), (11), (12) provide
crop detection rates and predictions.

Accuracy = TP+ TN

®x 100 (10)
TPH+TN+FP+FN
Precision = TP
11
TP+FP an
Recall = TP
[ (12
TP+FN
FORECAST WEATHER AND CROP YEILD PREDICTION
Temperature [should be less 44.00 degree celsius] Nitrogen(N) [Should be less than 140.00 kg]
[pae2 130
E
Potassium(K)[Should be less than 205.00 kg] Phosphorus(P)[Should be less than 145,00 kg]
16809 1257

Humidity[Should be less than 100.00 percentage]

RainFall (Cm) [Should be less than 299.00 mm]

[2s041 695 |

Ph of the Soil[Should be less than 9.93 scale]

I

Fig 6.1 Input data

Submit

State Name: Assam
rop Name: Rice

Fig 6.2 Predicted Output
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7. CONCLUSION

By embarking upon the development of a profound deep
learning prognostication venture, a profound stride is
undertaken to mitigate the entrenched quandaries of cost
outlays and crop depletion. In the swiftly evolving vista of
technology, the harmonious interplay between data-driven
solutions and age-old agricultural methodologies assumes an
increasingly discernible prominence. The endeavor of crop
yield prediction, a herculean endeavor tethered to the
exigencies of food security, takes on an exacerbated import
within the precincts of a burgeoning global populace. This
endeavor converges notably in the remarkable fusion of deep
learning paradigms into the agrarian realm, effectuating a
resounding triumph over modern tribulations. The developed
model, resplendent with an impressive precision quotient
approximating 75%, underscores its mettle in countering
contemporary challenges.

Within an epoch where precision and astute decision-making
emerge as paramount prerogatives, this threshold of accuracy
burgeons as a potent harbinger of a potential paradigm shift in
the domain of farming and crop governance. Beyond the
immediate, the conducted project casts an illuminating beacon
upon the intricate symbiosis between the two seemingly
disparate domains of Weather and Agriculture.

The assimilation of deep learning paradigms into the
agricultural milieu introduces a transformative agency,
endowing tillers of the land with temporally apt insights culled
from exhaustive data analytics. This transcendence of classical
methodologies not only augments the predictive prowess
regarding crop yield but also engenders a canvas for resource
allocation optimization, thereby curtailing wastage and
mitigating ecological footprints.
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