Argument Estimates Of Strongly Close-to-star Functions In A Sector

†T.N.Shanmugam, ‡C.Ramachandran, †R.Ambrose Prabhu

†Department of Mathematics,
College of Engineering Guindy, Anna University, Chennai - 600 025,Tamilnadu,India
‡Department of Mathematics,
University College of Engineering Villupuram, Villupuram - 605 602,Tamilnadu,India

October 30, 2012

Abstract

In the present investigation, we obtain some sufficient condition for a normalized strongly close-to-star functions in the open disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \) to satisfy the condition

\[-\frac{\pi}{2} \beta \leq \arg \left\{ \frac{f(z)}{g(z)} \right\} \leq \frac{\pi}{2} \alpha, \quad 0 \leq \alpha, \beta \leq 1.\]

The aim of this paper is to generalize a result obtained by N.E.Cho and S.Owa.

2010 AMS Subject Classification: Primary 30C45.

Key words and Phrases: Analytic functions,Strongly Close-to-Star functions,convex functions,Starlike functions.

1 Introduction

Let \(A \) denote the class of functions of the form :

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in U, \tag{1.1} \]

which are analytic in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). Let \(S \) be the subclass of \(A \) consisting of all univalent functions. Let us denote \(S^*, K \) and \(C \) be the subclasses of \(A \), consisting of functions which are respectively starlike,convex and close-to-convex in \(U \).

Let \(f(z) \) and \(g(z) \) be analytic functions in \(U \). We say that \(f(z) \) is subordinate to \(g(z) \) if there exist analytic function \(w(z) \) such that \(w(0) = 0, |w(z)| < 1 \) with \(f(z) = g(w(z)) \) and is denoted by \(f \prec g \).

Let \(S^*[A,B] = \left\{ f \in A : \frac{zf'(z)}{f(z)} \prec \frac{1 + Az}{1 + Bz}, \quad z \in U, \quad -1 \leq B < A \leq 1 \right\} \)

and

\[K[A,B] = \left\{ f \in A : 1 + \frac{zf''(z)}{f'(z)} \prec \frac{1 + Az}{1 + Bz}, \quad z \in U, \quad -1 \leq B < A \leq 1 \right\} \]

The class \(S^*[A,B] \) and related classes were studied by Janowski[1] and Silverman and Silvia [4] proved
that a function \(f(z) \) is in \(S^* [A, B] \) iff

\[
\left| \frac{zf'(z)}{f(z)} \right| = \frac{1 - AB}{1 - B^2} < \frac{A - B}{1 - B^2} \quad (z \in \mathbb{U}; B \neq -1) \tag{1.2}
\]

and

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \frac{1 - A}{A - B} \quad (z \in \mathbb{U}; B = -1) \tag{1.3}
\]

Lemma 1.1. [3] Let \(p(z) \) be analytic in \(\mathbb{U} \) with \(p(0) = 1 \) and \(p(z) \neq 0 \). If there exists two points \(z_1, z_2 \in \mathbb{U} \) such that

\[
-\frac{\pi}{2} \beta = \arg p(z_1) < \arg p(z) < \arg p(z_2) = \frac{\pi}{2} \alpha, \quad \alpha, \beta > 0 \quad \text{and, for} \ |z| < |z_1| = |z_2|,
\]

then we have

\[
z_1 p'(z_1) = i \left(\frac{\alpha + \beta}{2} \right) m
\]

and

\[
z_2 p'(z_2) = i \left(\frac{\alpha + \beta}{2} \right) m
\]

where \(m \geq 1 - |\delta| \frac{1 + |\delta|}{1 + |\delta|} \) and \(\delta = \tan \left(\frac{\alpha - \beta}{\alpha + \beta} \right) \).

Theorem 1.1. Let \(f \in \mathcal{A} \). If

\[
\left| \arg \left\{ \left(\frac{f'(z)}{g'(z)} \right)^a \left(\frac{f(z)}{g(z)} \right)^b \right\} \right| \leq \frac{\pi}{2} \delta
\]

for some

\[
g(z) \in \mathcal{K} [A, B],
\]

then

\[
\left| \arg \left(\frac{f(z)}{g(z)} \right) \right| < \frac{\pi}{2} \alpha
\]

where \(0 < \alpha \leq 1 \) is the solution of the equation

\[
\delta = \left\{ \begin{array}{ll}
(a + b)\alpha + \frac{\pi}{2} \arctan \left(\frac{1}{1 + t(A, B)} \right) & , B \neq -1 \\
\frac{\tan \left(\frac{1}{2} \arctan \left(\frac{1}{1 + t(A, B)} \right) \right)}{1 + t(A, B)} & , B = -1
\end{array} \right.
\]

where \(t(A, B) = \frac{2}{\pi} \arcsin \left(\frac{A - B}{1 - AB} \right) \).

Proof. Let \(p(z) = \frac{f(z)}{g(z)} \), \(q(z) = \frac{zg'(z)}{g(z)} \)

by differentiating logarithmically, we have

\[
\frac{p'(z)}{p(z)} = \frac{f'(z)}{f(z)} - \frac{g'(z)}{g(z)}
\]

A simple computation shows that

\[
\left(\frac{f'(z)}{g'(z)} \right)^a \left(\frac{f(z)}{g(z)} \right)^b = (p(z))^a + b \left(1 + \frac{1}{q(z)} \right)^a
\]

Since \(g(z) \in \mathcal{K} [A, B], \ g(z) \in S^* [A, B] \).
If we take $q(z) = \rho e^{i \frac{\pi}{2} \phi}$, $z \in U$, then it follows from (1.2) and (1.3) that

$$\frac{1 - A}{1 - B} < \rho < \frac{1 + A}{1 + B}, \quad -t(A, B) < \phi < t(A, B), \text{if } B \neq -1,$$

and

$$\frac{1 - A}{2} < \rho < \infty, \quad -1 < \phi < \infty, \text{if } B = -1,$$

where $t(A, B) = \frac{2}{\pi} \sin^{-1}\left(\frac{A - B}{1 - AB}\right)$.

Let $p(z) = \frac{f(z)}{g(z)}$, $f \in A$ and $g \in A$. If there exists two points $z_1, z_2 \in U$ such that

$$\frac{\pi}{2} \beta = \arg p(z_1) < \arg p(z) < \arg p(z_2) = \frac{\pi}{2} \alpha, \quad \alpha, \beta > 0 \text{ and, for } |z| < |z_1| = |z_2|,$$

then by lemma (1.1), we have

$$\frac{z_1 p'(z_1)}{p(z_1)} = -i \left(\frac{\alpha + \beta}{4}\right) \left(\frac{1 + t_1^2}{t_1}\right) m$$

and

$$\frac{z_2 p'(z_2)}{p(z_2)} = i \left(\frac{\alpha + \beta}{4}\right) \left(\frac{1 + t_2^2}{t_2}\right) m. \quad (1.4)$$

where

$$e^{-i \frac{\pi}{2} \left(\frac{\alpha - \beta}{\alpha + \beta}\right) (p(z_1)) \left(\frac{2}{\alpha + \beta}\right)} = -it_1$$

and

$$e^{-i \frac{\pi}{2} \left(\frac{\alpha - \beta}{\alpha + \beta}\right) (p(z_2)) \left(\frac{2}{\alpha + \beta}\right)} = it_2, \quad t_1, t_2 > 0. \quad (1.5)$$

and

$$m \geq \frac{1 - |\delta|}{1 + |\delta|} \quad (1.6)$$

Let us put $z = z_2$. Then from (1.4),(1.5)and (1.6), we have

\[
\arg \left\{ \left(\frac{f'(z_2)}{g'(z_2)} \right)^a \left(\frac{f(z_2)}{g(z_2)} \right)^b \right\} = (a + b)\arg p(z_2) + a\arg \left\{ 1 + \frac{1}{q(z_2)} \frac{z_2 p'(z_2)}{p(z_2)} \right\}
\]

\[
= (a + b)\frac{\pi}{2} \alpha + a \arg \left(1 + \frac{e^{-\frac{i \pi}{2} \phi}}{\rho} \left(\frac{\alpha + \beta}{4}\right) \left(\frac{1 + t_2}{t_2}\right) m \right)
\]

\[
= \frac{\pi}{2} \alpha (a + b) + a \arg \left(\rho + me^{i \frac{\pi}{4}(1 - \phi)} \left(\frac{\alpha + \beta}{4}\right) \left(\frac{t_2 + 1}{t_2}\right) \cos \frac{\pi}{2} (1 - \phi) + isi \frac{\pi}{2} (1 - \phi) \right)
\]

\[
\geq \frac{\pi}{2} \alpha (a + b) + a \tan^{-1} \left\{ \frac{m \left(\frac{\alpha + \beta}{4}\right) \left(\frac{t_2 + 1}{t_2}\right) \sin \frac{\pi}{4} (1 - \phi)}{\rho + m \left(\frac{\alpha + \beta}{4}\right) \left(\frac{t_2 + 1}{t_2}\right) \cos \frac{\pi}{4} (1 - \phi)} \right\}
\]
Let us take \(g(x) = x + \frac{1}{x}, \ x > 0 \). Then attains the minimum value at \(x = 1 \). Therefore, we have

\[
\arg \left\{ \left(\frac{f'(z_2)}{g'(z_2)} \right)^a \left(\frac{f(z_2)}{g(z_2)} \right)^b \right\} \geq \frac{\pi}{2} \alpha(a + b) + \frac{2}{\pi} \alpha(b - b) + \frac{2}{\pi} \alpha(a + b) + \frac{2}{\pi} \alpha(b - b) - \alpha \tan^{-1} \left\{ \frac{m(\alpha + \beta)}{\pi(1 - \alpha)} \right\}
\]

where

\[
\delta = \frac{1}{\alpha + \beta}, \ \text{and} \ \tan \left(\frac{\alpha + \beta}{\alpha + \beta} \right)
\]

This contradicts the assumption of the theorem. For the case \(z = z_1 \), applying the same method as above, we have

\[
\arg \left\{ \left(\frac{f'(z_1)}{g'(z_1)} \right)^a \left(\frac{f(z_1)}{g(z_1)} \right)^b \right\} \leq -\frac{\pi}{2} \beta(a + b) - \beta \tan^{-1} \left\{ \frac{m(\alpha + \beta)}{\pi(1 - \alpha)} \right\}
\]

This contradiction completes the proof of the theorem. \(\square \)

Taking \(\alpha = \beta = 1 \) in theorem (1.1), we have the result obtained by NAK Euncho and Shigeyoshi owa [2]

By setting \(a = 1, b = 0, \delta = 1, A = 1 \) and \(B = -1 \) in theorem (1.1), we have

Corollary 1.1. Every close-to-convex function is close-to-star in \(U \). ie,

\[
\left| \arg \left(\frac{f'(z)}{g'(z)} \right) \right| < \frac{\pi}{2}
\]

ie,

\[
Re \left(\frac{f'(z)}{g'(z)} \right) \geq 0 \quad \text{or} \quad Re \left(\frac{f'(z)}{g'(z)} \right) \leq \frac{1 + z}{1 - z}.
\]

If we put \(g(z) = z \) in theorem (1.1), then by letting \(B \rightarrow A(A < 1) \), we obtain

Corollary 1.2. If \(f \in A \) and

\[
\left| \arg \left(\left(\frac{f'(z)}{z} \right)^a \left(\frac{f(z)}{z} \right)^b \right) \right| < \frac{\pi}{2} \delta \ (a > 0, b \in \mathbb{R}, 0 < \delta \leq 1)
\]

then

\[
|\arg f'(z)| < \frac{\pi}{2} \delta
\]
where $\alpha(0 < \alpha \leq 1)$ is the solution of the equation:

$$\delta = (a + b)\alpha + \frac{2}{\pi}a \tan^{-1}(\alpha).$$

References

