
Area Optimized Architecture for AES

Mix Column Operation

Neenu Shaji

Department of Electronics & Communication Engineering

Rajagiri School of Engineering and Technology
Kochi, Kerala

Bonifus P. L,
Asst.Professor

Department of Electronics & Communication Engineering

Rajagiri School of Engineering and Technology
Kochi, Kerala

Abstract—Advanced Encryption Standard (AES), is one of the

most popular cryptographic algorithm used for data protection.

The cost and power consumption of the AES can be reduced

considerably by optimizing the architecture of AES. This paper

proposes an implementation of the AES mix columns operation

which presents a compact architecture for the AES mix columns

operation and its inverse. It also proposes the method of

resource sharing in case of mix column and its inverse. The

delay and area consumption of the hardware implementation is

compared with previous work done in this area. The proposed

architecture have been implemented on the most recent Xilinx

Spartan FPGA, their area and delay are compared with the

previous works and it is proved that proposed technique has

lower area coverage and delay.

Index Terms—Security, Cryptography, AES, Encryption,

Decryption, Field Programmable Gate Array (FPGA),Galois

Field, RTL.

I. INTRODUCTION

The Advanced Encryption Standard is a symmetric-

key algorithm used for the encryption of electronic data.

Symmetric key algorithm means the same key is used for

both encrypting and decrypting the data. Due to the security it

offers against attacks it has become the default choice in

numerous applications.

The AES algorithm is an iterative algorithm

composed of 10,12 or 14 rounds. It has a fixed block size of

128 bits, and variant key sizes of 128, 192, or 256 bits on

which the number of rounds depends. The AES algorithm

basically consists of four byte oriented transformation and a

key expansion function.[1]

In case of 10 round process, after the initial secret

key addition (roundkey (0)), the first 9 rounds are identical,

with different the final round [10]. Each of the first 9 rounds

consists of 4 transformations: SubBytes, ShiftRows,

MixColumns and AddRoundKey. The final round excludes

the MixColumns transformation. The above encryption

scheme can be inverted to get a decryption structure. The

SubBytes transformation is a non-linear byte substitution that

operates independently on each byte of the State using a

substitution table (S-box). This S-box is constructed by

composing two transformations: multiplicative inverse in the

finite field GF(28) and affine transformation[6][1].

Subbyte transformation is a nonlinear substitution

that operates on individual bytes using a substitution

table(sbox). Shiftrows() Is a cyclic shift of the bytes of the

state with Different offsets. Add round key,a self inverting

transformation transforms the input data by xoring 128-bits of

the plain text with 128 bits of the expanded cipher key in the

rest iteration Of the algorithm and in the subsequent

iterations, the partially Processed data is xored with the

expanded cipher key .In the Mix column operation, each

column of the state is multiplied by the known matrix. Its a

process which takes in 32 bits of Data and outputs 32 bits of

data.

Fig. 1. Iterative Architecture of AES Encryption

By optimizing the architecture of AES we can

considerably reduce the cost and power consumption of the

hardware implementing AES. Among the four

transformations, the sub byte and mix column operations are

most computationally expensive processes.

This work addresses a method to optimize the area

consumed by the mix column operation. The hardware for

mix column works with 8 bit data at a time and producing

128 bit output in 16 clock cycles.This efficient architecture

fits will for the embedded applications. The design is

implemented in Verilog HDL and synthesized for Xilinx

Spartan 3 device.The design is synthesized using Xilinx ISE

tool.

II. PRELIMINARIES

The MixColumn function operates by taking four

bytes as input and it outputs four bytes. Here each of the

input byte affects all the four bytes of the output. A fixed

matrix is used to transform the state. Each column is

considered here as a four term polynomial.The columns are

considered as polynomials over GF (28) and multiplied

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090602

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

663

modulo (x4)+ 1 with a fixed polynomial A(x) =

{03}x3+{01}x2+{01}x+{02}

Fig. 2. Mix column Operation

InvMixColumns() is the inverse of the

MixColumns() transformation.The columns are considered as

polynomials over GF (28) and multiplied modulo (x4)+ 1 with

a fixed polynomial A-1(x) = {0B}x3+{0D}x2+{0E}x+{09}

Fig. 3. Mix column Fixed matrix

Fig. 4. Inverse Mix column Fixed matrix

II. PROPOSED MIX COLUMN AND INVERSE MIX

COLUMN ARCHITECTURE

The mixcolumn operation takes place in 32 bits

considering one column of the state at a time. All the

operations are performed in the Galois field. In galois field

the addition process is performed as a XOR operation. The

multiplcation by {02} in byte level is a left shift operation

followed by a subsequent conditional bitwise XOR with

{1B} . By repeated addition multiplication by any constant

can be implemented[1].

A. Mix column

In this module,one byte of a column is treated at a

time. In four clock cycles as shown in Fig.4. the result of mix

column is availabale. In each clock cycle a new byte is fed to

the unit, the four registers store the intermediate results of the

MixColumn calculation. Every four cycles, upon the

completion, the 32bit output is fed to the output registers. The

architecture takes complete 16 clock cycles to complete the

operation of mix column on a state[13].

Fig. 5. Repeated addition technique

Fig. 6. Mix Column architecture

B. Inverse Mix column

InvMixColumns() is the inverse of the

MixColumns() transformation. InvMixColumns() operates on

the State column by column, treating each column as a four

term polynomial. Here the constants in polynomial can be

created similarly as in Mix column operation. The arae of it

can again be considerably reduced by substrate sharing with

in the units as shown in Fig.6. The unit also produces the

putput in 16 clock cycles[3][4].

The area can further be reduced by sharing the units

in Mix column and inverse mix column with the use of

multiplexers which selects the appropriate polynomials as per

the select signals[5].

C. Control unit

Since the mix column operation takes data as a column

we require a control unit to provide data to the architecture as

each byte and produce the output only after 4 clock cycles.
The purpose of control unit is to provide enable signals to the
register and mix column unit. The activity is controlled using

a 3 bit counter. The values in the register R1,R2,R3,R4 in

Fig.4.
is provided to the 32 bit output register at the completion of 4

cycles with the help of counter. Upon completion of the 4th

cycle the values in the registers are reset to zero using the

enable signal provided to the mix column unit. At the 16th

clock cycle the mix column operation a complete state will be

available. In case of 8 and 32 bit systems these operations can

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090602

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

664

take place in parallel with the other transformations of AES

hence saving area and time[6].

Fig. 7. Inverse Mix column Operation

Fig. 8. Control Unit

III. IMPLEMENTATION RESULTS

The proposed Mix column and its control is implemented
using Verilog Hardware Description Language in Xilinx ISE
14.6.The device utilization summary of the complete design

is shown with the selected device xc3s100e-5vq100.

 No. of slices No. of LUTs No. of IOBs

OUR DESIGN 32 53 14

WITH
EQUATION

134 2 251

Table:Device Utilization Summary

The simulation result of mix column with control unit is

shown in Fig. 8.The output is verified for all combinations of

the input signals.

IV. CONCLUSION

This work addresses the area optimization of the mix column

architecture. The result show that the use of hardware reduces

the device utilization from when mix column is implemented

with equation with only delay of 16 clock cycles. The whole

design is performed with the help of Xilinx and synthesized

with Xilinx tools. The simulation is done in the Xilinx

spartan 3 device.

Fig. 9. Mix column Simulation result

REFERENCES

[1] P. Hmlinen, T. Alho, M. Hnnikinen, and D. Hmlinen, Design and
Implementation of Low-area and Low-power AES Encryption

Hardware Core.,Proceedings of the 9th EUROMICRO Conference on

Digital System Design 2006
[2] National Institute of Standard and Technology., NIST FIPS PUB

197Advanced Encryption Standard, 2001.

[3] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh A
Compact Rijndael Hardware Architecture with S-Box

Optimization,SpringerVerlag Berlin Heidelberg 2001

[4] X. Zhang and K. Parhi, High-Speed VLSI Architectures for the AES
Algorithm,IEEE Transactions on, vol. 12, no. 9, september 2004

[5] K. Gaj and P. Chodowiec. Very Compact FPGA Implementation of the

AES Algorithm. In the proceedings of CHES 2003, Lecture Notes in
Computer Science, vol 2779, pp. 319-333, Springer-Verlag.

[6] B. Liu and B M. Baas Parallel AES Encryption Engines for Many-Core

Processor ArraysIEEE TRANSACTIONS ON COMPUTERS, VOL.
62, NO. 3, MARCH 2013

[7] S. Morioka and A. Satoh, An Optimized S-Box Circuit Architecture for

Low Power AES Design” ,in Proc. ASIACRYPT , 2003,pp. 172186,.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS090602

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 09, September-2015

665

