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Abstract  

 

Communications-Based Train Control System 

(CBTCS)[1] is a railway signaling system that makes 

use of the telecommunications between the train and 

track equipment for the traffic management. By using 

the CBTC system, the exact position of a train is 

known more accurately than with the traditional 

signaling systems. This results in a more efficient and 

safe way to manage the railway traffic. This paper 

attempts to identify the design problems with respect 

to reliability and safety factors in the CBTC system 

and suggests suitable Architectural design patterns [2] 

to solve the problems. 

 

 

1. Introduction  
Communications-Based Train Control System 

(CBTC) is a type of rail signaling system that makes 

use of telecommunications between the train and track 

equipment for traffic management and infrastructure 

control. 

The notion of design of patterns evolved from the 

approach to designing buildings developed by architect 

Christopher Alexander. Architectural design is 

concerned with large-scale strategic decisions that have 

broad and widely-ranging effects. Architectural 

decisions include the placement of software modules 

on different processors, real-time scheduling policies, 

identification of concurrency models, and inter-process 

and inter-thread communication 

 

 

2. Motivation  
Now a days, Due increase of population in 

Metropolitan cities, Metro-Rail-ways are introduced in-

order to manage the traffic congestion. A reliable real 

time design pattern [3] should be implemented in order 

to design ―Communication Based Train Control 

System‖. 

 

 

3. CBTCS DESIGN PROBLEMS 

Problem 1) If the communications link between any of 

the trains is disrupted. 

Description: The primary risk of a CBTC system is 

that if the communications link between any of the 

trains is disrupted then all or part of the system might 

have to enter a fail-safe state until the problem is 

remedied. Depending on the severity of the 

communication loss, this state can range from vehicles 

temporarily reducing speed, coming to a halt or 

operating in a degraded mode until communications are 

re-established. If communication outage is permanent 

some sort of contingency operation must be 

implemented which may consist of manual operation 

using absolute block or, in the worst case, the 

substitution of an alternative form of transportation. As 

a result, high availability of CBTC systems is crucial 

for proper operation, especially if we consider that such 

systems are used to increase transport capacity and 

reduce headway. System redundancy and recovery 

mechanisms must then be thoroughly checked to 

achieve a high robustness in operation. With the 

increased availability of the CBTC system, it must also 

be considered the need for an extensive training and 

periodical refresh of system operators on the recovery 

procedures. In fact, one of the major system hazards in 

CBTC systems is the probability of human error and 

improper application of recovery procedures if the 

system becomes unavailable. 

Problem 2) Communications failures can result from 

equipment malfunction, electromagnetic interference, 

weak signal strength or saturation of the 

communications medium. 

Description: In this case, an interruption can result in a 

service brake or emergency brake application as real 

time situational awareness is a critical safety 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T



requirement for CBTC and if these interruptions are 

frequent enough it could seriously impact service. This 

is the reason why, historically, CBTC systems first 

implemented radio communication systems in 2003, 

when the required technology was mature enough for 

critical applications. 

Problem 3) Intrusion of the communications network 

and tampering with safety critical messages. 

Description: CBTC systems that make use of open 

standards for wireless digital communications link have 

a much larger attack surface and can be subject to 

various types of hacking network and tampering 

messages. In the worst case, could result a safety 

hazard.  

 

4.ARCHITECTURAL DESIGN PATTERNS 

FOR CBTCS 

Architectural design is the identification and definition 

of large-scale design strategies. These strategic 

decisions determine how major architectural pieces of 

the system will be structured, mapped to physical 

devices, and interact with each other. The effect of such 

design decisions is widespread and affects most or all 

components.  

Hardware Patterns 

 Triple Modular Redundancy Pattern. 

 Homogeneous Redundancy Pattern. 

 Heterogeneous Redundancy Pattern.  

 M-Out-Of-N Pattern.  

 Monitor-Actuator Pattern.  

 Sanity Check Pattern.  

 Watchdog Pattern. 

 Safety Executive Pattern.  

Software Patterns [4] 
 N-Version Programming Pattern. 

 Recovery Block Pattern. 

 Acceptance Voting Pattern. 

 N-Self Checking Programming Pattern. 

 Recovery Block with Backup Voting Pattern. 

Hybrid Patterns 

 The Secure Reliability (SecRel)  

 Reliable Security (RelSec)  

 

4.1. Problem 1: In CBTC system, if the 

communications link between any of the trains is 

disrupted. 
Suggested Pattern(s): Triple Modular Redundancy 

Pattern (TMR), Homogeneous Redundancy Pattern, 

Heterogeneous Redundancy Pattern. 

Let’s consider TMR Pattern for the above said problem 

4.1.1 Triple Modular Redundancy Pattern (TMR) 

Other Name:  2-oo-3 Redundancy Pattern, 

Homogeneous Triplex Pattern. 

Type: Hardware 

 Abstract:   

The TMR pattern operates three channels in parallel 

rather than operating a single channel and switching 

over to an alternative when a fault is detected. By 

operating the channels in parallel, the TMR pattern 

detects random faults.  

The TMR pattern runs the channels in parallel and at 

the end compares the results of the computational 

channels together. As long as two channels agree on the 

output, then any deviating computation of the third 

channel is discarded. This allows the system to operate 

in the presence of a fault and continue to provide 

functionality.  

Context: 
The Triple Modular Redundancy Pattern is a pattern 

used to enhance reliability and safety in situations 

where there is no fail-safe state. The TMR pattern 

offers an odd number of channels (three) operating in 

parallel. 

Problem:  To provide protection against random faults 

(failures) with the additional constraint that when a 

fault is detected, neither the input data should be lost, 

nor should additional time be required to provide a 

correct output response. 

Implication: To enhance reliability and safety. 

Implementation: The development of the TMR pattern 

is common to replicate the hardware and software to 

avoid common mode faults so that each channel uses 

its own memory, CPU and so on. 

Consequences: The TMR Pattern can only detect 

random faults. It involves high recurring cost because 

the hardware and software in the channels must be 

replicated. The TMR pattern is a common one in 

applications where reliability needs are very high and 

worth the additional cost to replicate the channels.  

Related Patterns: Heterogeneous redundancy 

(protection against systematic faults is desired).  A 

Homogeneous Redundancy Pattern (can be used if the 

data can be lost when a failure occurs or when it is 

okay to re-execute the failed computational step).  

Example: With reference to the use of TMR pattern in 

CBTC System, The TMR Pattern will be operated on 

three channels, if the communication link between any 

of the trains is disrupted then very immediately one of 

active channel will take over the substitution of an 

alternative form of transportation. Hence, the 

communication link is active until the error is repaired 

or required component is substituted. As a result, high 

availability of CBTC system is achieved. 

4.1.2 Homogeneous Redundancy Pattern 
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Other Names: Switch to Backup Pattern, 

Homogeneous Redundancy Pattern, Standby-Spare 

Pattern, Dynamic Redundancy Pattern, Two-Channel 

Redundancy Pattern 

Type: Hardware Pattern 

Abstract:   

An obvious approach to solving the problem of things 

breaking is to provide multiple copies of that thing. In 

safety and reliability architectures, the fundamental unit 

is called a channel. A channel is a kind of subsystem, 

or run-time organizational unit, which is end-to-end in 

its scope, from the monitoring of real world signals to 

the control of actuators that do the work of the system. 

The Homogeneous Redundancy Pattern replicates 

channels with a switch-to-backup policy in the case of 

an error. 

Context: 

Homogeneous Redundancy Pattern is primarily a 

pattern to improve reliability by offering multiple 

channels. These channels can operate in sequence, as in 

the Switch To Backup Pattern (another name for this 

pattern), or in parallel, as in the Triple Modular 

Redundancy Pattern, described later. The pattern 

improves reliability by addressing random faults 

(failures). Since the redundancy is homogeneous, by 

definition any systematic fault in one copy of the 

system is replicated in its clones, so it provides no 

protection against systematic faults (errors). 

Problem: 

The problem addressed by the Homogenous 

Redundancy Pattern is to provide protection against 

random faults that is, failures in the system execution 

and to be able to continue to provide functionality in 

the presence of a failure. The primary channel should 

continue to run as long as there are no problems. In the 

case of failure within the channel, the system must be 

able to detect the fault and switch to the backup 

channel. 

Structure: 

The checking components implement a switch-to-

backup policy by invoking the other channel when an 

error is detected in the currently operating channel. 

Implication: safety and reliability in the presence of 

either systematic or random faults 

Implementation: 

The implementation of this pattern is only a bit more 

work than the implementation of a non-redundant 

system. To remove common fault modes, the 

computing hardware (CPU, memory, etc.) as well as 

mechanical systems should be replicated. The only 

special work is the logic to identify the faults and 

switch to the alternative channel when a fault is 

detected. 

Consequences: 

The Homogenous Redundancy Pattern has a number of 

advantages. It is conceptually simple and easy to 

design. It provides good coverage for random (that is, 

hardware and transient) faults, although only if the 

hardware is itself replicated. It is usually a simple 

matter to get good isolation of faults and to eliminate 

common mode faults. The pattern applies when random 

faults occur at a significantly higher rate than 

systematic faults, such as in rough or arduous physical 

environments. It also is useful for safety-critical or 

high-reliability systems that must continue to operate in 

the presence of faults. 

An advantage of this pattern is the low R&D cost – 

since there is only a single channel to design. Its 

primary disadvantage is the lack of coverage for 

systematic faults and increased deployment costs over 

non-redundant systems. 

The disadvantages of the pattern are primarily the 

higher recurring cost and a lack of coverage for 

systematic faults. Because the electronic and 

mechanical hardware must be duplicated for maximal 

coverage, each shipping system must bear the cost of 

additional hardware components. Furthermore, since 

the channels are clones, any systematic fault in one 

channel must, by definition, appear in the other. The 

pattern runs a single channel and switches over to a 

backup channel only when a fault is detected. This 

means that the computation step is lost when a fault is 

detected and either the data is lost or recovery time to 

redo the computation must be taken into account in 

time-critical situations. 

 

4.1.3 Heterogeneous Redundancy Pattern 

Other Names: Diverse Redundancy and N-way 

Programming. 

Type: Hardware 

Abstract: 

For high-safety and reliability systems, it is common to 

provide redundant channels to enable the system to 

identify faults and to continue safe and reliable 

operation in the presence of faults. Similar to its 

homogeneous cousin, the Heterogeneous Redundancy 

Pattern provides redundant channels as an architectural 

means to improve safety and reliability. What sets the 

Heterogeneous Redundancy Pattern apart is that the 

channels are not mere replicas but are constructed from 

independent designs. This means that identical design 

errors are unlikely to appear in multiple channels. The 

primary downside of this pattern is its high design 

development cost that comes on top of the high 

recurring cost typical of heavyweight redundant 

channels.  

There are a number of useful variants of the 

Heterogeneous Redundancy Pattern that provide the 
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detection of both kinds of faults but are lower cost and 

may not provide continued operation in the presence of 

faults. See, for example, the Monitor-Actuator and 

Sanity Check Patterns. 

Context: Protection against random and systematic 

faults without a fail-safe state 

Problem: 

The Heterogeneous Redundancy Pattern provides 

protection against both kinds of faults—systematic 

errors as well as random failures. Assuming that the 

design includes independence of faults, the pattern 

provides single fault safety in the same way as the 

Homogeneous Redundancy Pattern—that is, when the 

primary channel detects a fault, the secondary channel 

takes over.  

Structure: 

Indeed, the pattern is almost identical, with the primary 

difference being that the components of the two 

channels are the result of independent design efforts. 

The independent design effort may use the same 

algorithm with different teams or— even better—

different algorithms with different teams.  

Implementation: 

The implementation of this pattern requires fault 

independence. That means that the hardware 

components must be replicated in both channels (CPU, 

memory, and so on). It is common to replicate the 

computing hardware rather than use different CPUs, 

but different computing hardware does give a slightly 

increased level of safety. The sensors and actuators are, 

however, usually different hardware implementations, 

often using different technologies. It is best if the 

software is not only designed by different teams but 

also uses different algorithms. Simply using 

independent teams doesn't provide total independence 

of systematic faults, since the teams will tend to make 

mistakes in the same portions of the application (such 

as the hard parts). 

Consequences: 

This pattern has two "heavyweight" channels. This 

means both are relatively expensive to design and 

construct, and either can perform the actuation 

processing with similar levels of fidelity. Similar to the 

Homogeneous Redundancy Pattern, this pattern has a 

high recurring cost due to the inclusion of additional 

hardware support for the redundancy. However, in 

addition to this, the Heterogeneous Redundancy Pattern 

also has a high development cost because multiple 

independent designs must be performed, usually with 

different teams to provide independence of systematic 

faults. This is generally considered the safest 

architectural pattern and the most expensive as well. 

With only two channels, however, it may have lower 

availability than with the Triple Modular Redundancy 

Pattern. To enhance availability, a Triple Modular 

Redundancy Pattern may be used with heterogeneous 

channels to get the best (and the worst) of both worlds. 

Related Patterns: 

As mentioned earlier, this is a very expensive pattern to 

implement. Reduced cost can be had at the expense of 

reducing safety coverage as well. A Homogeneous 

Redundancy Pattern can be used with the effect of 

lowering the ability to detect systematic faults and 

lowering development cost. A Triple Modular 

Redundancy Pattern implemented with heterogeneous 

channels improves availability over the Heterogeneous 

Redundancy Pattern but at the cost of increasing both 

the development and recurring cost by one third. When 

protection should be provided but the system does not 

need to continue operation in the presence of a fault, 

then a lower-weight solution, such as the Monitor-

Actuator or Sanity Check Pattern may be used. 

 

4.2. Problem 2: Communications failures can result 

from equipment malfunction, electromagnetic 

interference, weak signal strength or saturation of the 

communications medium. 
Suggested Patterns:  

Safety-Executive pattern,  

Monitor Actuator and Watchdog pattern. 

Let’s consider the Safety-Executive pattern for the 

above said problem, 

4.2.1 Safety-Executive Pattern 

Let’s consider the Safety-Executive pattern for the 

above said problem, 

Other Name: Safety Kernel Pattern 

Type: Hardware and Software 

Abstract: Systems often cannot merely be shut down 

in the event of a fault. Sometimes this is because they 

are in the middle of handling some dangerous materials 

or a high-energy state of the system (such as high speed 

or high voltage potential). Simply shutting the system 

off in such a state is potentially very hazardous. In the 

presence of a fault, the system must be guided through 

a potentially complicated series of steps to reach a 

condition known to be a fail-safe state. The Safety 

Executive Pattern models exactly this situation in 

which a Safety Executive component coordinates the 

activities of potentially many actuation channels and 

safety measures to reach a fail-safe state. 

Problem: The problem addressed by the Safety 

Executive Pattern is to provide a means to coordinate 

and control the execution of safety measures when the 

safety measures are complex. Ex: The shutdown of the 

channel or system is a complex process, where several 

safety-related actions have to be controlled 

simultaneously. 
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Context: The problem addressed by the Safety 

Executive Pattern is to provide a means to coordinate 

and control the execution of safety measures when the 

safety measures are complex. Ex: The shutdown of the 

channel or system is a complex process, where several 

safety-related actions have to be controlled 

simultaneously. 

Implication: Provides Safety and reliability for highly 

safety-critical real-time systems. 

Implementation: Any single component, whether 

hardware or software, should be allowed to fail without 

creating a hazard. In the systems for which this pattern 

is appropriate, this means that the channels will each 

run on their own CPUs with their own memory; safety-

critical information must be protected with CRCs or 

other means to detect data corruption. 

Consequences: It can provide excellent fault protection 

in highly complex systems and environments.  

Related Patterns: The Safety Executive Pattern is used 

for complex safety-critical applications and it covers a 

large set of features such as sequence monitoring 

provided by watchdog and switch-to-backup as in the 

fail-safe channel. 

Example: The Safety Executive pattern is used in 

highly complex systems, so CBTC system can be 

implemented with this pattern and also, it has been used 

in high-speed train control systems. 

4.2.2 Monitor Actuator  

Pattern Name: Monitor Actuator 

Abstract: Many safety-critical systems have what is 

called a fail-safe state. This is a condition of the system 

known to be always safe. When this is true, and when 

the system doesn't have extraordinarily high availability 

requirements (that is, in the case of a fault detection it 

is appropriate to enter the fail-safe state), then the 

safety of the system can be maintained at a lower cost 

than some of the other patterns. The Monitor-Actuator 

Pattern is a specialized form of the Heterogeneous 

Redundancy Pattern because the redundancy provided 

is different from the primary actuation channel: It 

provides monitoring, typically of the commanded 

actuation itself (although it may also monitor the 

internal operation of the actuation channel as well). 

Assuming fault independence and a single point fault 

protection requirement, the basic principle of the 

Monitor-Actuator Pattern may be summed up this way: 

If the actuation channel has a fault, the monitoring 

channel detects it. If the monitoring channel breaks, 

then the actuation channel continues to operate 

properly. 

Context: Protection against random and systematic 

faults with a fail-safe state. All safety-critical and 

reliable architectures have redundancy in some form or 

another. In some of these patterns, the entire channel, 

from original data sensing to final output actuation, is 

replicated in some form or another. In the Monitor-

Actuator Pattern, an independent sensor maintains a 

watch on the actuation channel looking for an 

indication that the system should be commended into 

its fail-safe state. 

Problem: The Monitor-Actuator Pattern addresses the 

problem of improving safety in a system with moderate 

to low availability requirements at a low cost. 

Structure: 

Both channels run independently and simultaneously. 

Consequences: 

This pattern is a relatively inexpensive safety solution 

that is applicable when the system does not have high 

availability requirements and when there is a fail-safe 

state. Assuming that its implementation correctly 

isolates faults, a fault in the Actuation Channel will be 

identified by the Monitoring Channel. A fault in the 

Monitoring Channel will not affect the proper 

execution of the Actuation Channel. Because there is 

minimal redundancy, the system cannot continue to 

function when a fault is identified. 

Implication:  Safety 

Implementation: The Monitoring Channel must take 

into account lag, measurement jitter, control system 

jitter, computational accuracies (specifically the 

propagation and compounding of computational 

numeric error), and other forms of error in determining 

whether the actuation channel is acting properly. 

Another issue with the Monitoring Channel is the 

handling of transient faults. In some situations, a single 

transient fault may not be harmful at all, but persistent 

faults must be identified. In such cases, it may be 

necessary for the Monitoring Channel to maintain a 

recent history of its monitored values to determine 

whether an unexpected value indicates a transient or 

persistent fault. 

The system can operate with a fault in the Monitor 

Channel, but if it does so, this is called a latent fault. A 

latent fault is one that by itself does not present a 

hazard but with the addition of a second fault does 

present a hazard. For this reason, the Monitor Channel 

must be periodically checked. The timeframe for this 

check must be significantly less than the mean-time 

between failures (MTBF) of the Monitor Channel. 

In practice, this check is usually done daily or on every 

startup, whichever is less. It may, at times, be 

performed during scheduled maintenance of the system 

but must be done much more frequently than the 

MTBF of the channel and any of its components. 

Often, systems using this pattern use a pair set of life 

ticks sent between the channels to indicate the health of 

the other system. If one channel does not receive a life 
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tick from the other within a specified time frame, then 

this indicates a fault, and the fail-safe state is entered. 

Related Patterns: Sometimes the control signal does 

not provide the desired end-result to the Monitoring 

Channel. When this is the case, the Monitoring 

Channel must in some sense simulate the processing 

done in the Actuation Channel. When this is done in a 

lightweight way to get a check on the reasonableness of 

the resulting actuation output, this is called the Sanity 

Check Pattern. A very lightweight means of providing 

monitoring is the Watchdog Pattern. This pattern 

monitors what the Actuator Pattern thinks is the right 

thing to do and not the actual output of the actuation. If 

it is necessary to continue actuation in the face of a 

fault, then a heavier-weight pattern, such as the 

Homogeneous Redundancy or the Heterogeneous 

Redundancy Pattern, must be used. 

4.2.3 Watchdog Pattern  

Pattern Name:  Watchdog Pattern 

Abstract 

A watchdog, used in common computing parlance, is a 

component that watches out over processing of another 

component. Its job is to make sure that nothing is 

obviously wrong, just as a real watchdog protects the 

entrance to the henhouse without bothering to check if 

in fact the chickens inside are plotting nefarious deeds. 

The most common purpose of a watchdog is to check a 

computation time base or to ensure that computation 

steps are proceeding in a predefined order. Watchdogs 

are often used in real-time systems to ensure that time-

dependent processing is proceeding appropriately. 

Problem 

Real-time systems are those that are predictably timely. 

In the most common (albeit simplified) view, the 

computations have a deadline by which they must be 

applied. If the computation occurs after that deadline, 

the result may either be erroneous or irrelevant—so-

called hard real-time systems. Systems implementing 

PID control loops, for example, are notoriously 

sensitive to the time lag between the occurrence of the 

input signal and the output of the control signal. If the 

output comes too late, then the system cannot be 

controlled; then the system is said to be in an unstable 

region.  

Context: 

The Watchdog Pattern is similar to the Sanity Check 

Pattern in the sense that it is lightweight and 

inexpensive. It differs in what it monitors. While the 

Sanity Check Pattern monitors the actual output of the 

system using an external environmental sensor, the 

Watchdog Pattern merely checks that the internal 

computational processing is proceeding as expected. 

This means that its coverage is minimal, and a broad 

set of faults will not be detected. On the other hand, it 

is a pattern that can add additional safety when 

combined with other heavier-weight patterns. 

Structure 

The Actuator Channel operates pretty much 

independently of the watchdog, sending a liveness 

message every so often to the watchdog. This is called 

stroking the watchdog. The watchdog uses the 

timeliness of the stroking to determine whether a fault 

has occurred. Most watchdogs check only that a stroke 

occurs by some elapse of time and don't concern 

themselves with what happens if the stroke comes too 

quickly. Some watchdogs check that the stroke comes 

neither too quickly nor too slowly.  

For some systems, protection against a time base fault 

is safety-critical. In such cases, it is preferable to have 

an independent time base. This is normally a timing 

circuit separate and independent from the one used to 

drive the CPU executing the Actuation Channel. It 

should be noted that all safety-critical systems are real-

time systems because they must respond to a fault by 

the Fault Tolerance Time 

Implication:   Safety 

Implementation  

If the watchdog is to provide protection from time base 

faults, a separate electronic circuit must supply an 

independent measure of the flow of time. This means 

an independent timing circuit used to capture the timing 

and the watchdog detects a mismatch between the two 

timing sources but cannot detect whether the fault is the 

primary actuation channel or the watchdog time base. 

To prevent a fault where the primary actuation channel 

gets stuck in a loop (so called live-lock) that strokes the 

watchdog but doesn't actually perform the appropriate 

computation and actuation, the watchdog may require 

data with the strokes that must occur in a specific 

pattern. To implement a keyed watchdog, the best 

approach is to not store the keys in memory but to have 

them dynamically computed as a result of the proper 

execution of the actuation process. This diminishes the 

likelihood of a live-lock situation not being detected. 

When the watchdog is stroked, it is common to invoke 

a BIT (Built In Test) of some kind to ensure the proper 

execution of other aspects of the system. These actions 

can either return a Boolean value indicating their 

success or failure, or may directly cause the system to 

shut down in the case of their failure. For example, the 

watchdog may execute an action on the evStroke 

transition that checks for stack overflow and performs 

CRC checks on the executing application software. If it 

does a similar check on the application data, it must 

lock the data resources during this computation, which 

can adversely affect performance if you're not careful. 

Stack overflow may be checked for by writing a known 

pattern into the stack of each task beyond the expected 
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stack size. If this pattern is disrupted, then a stack 

overflow (or something equally bad) has occurred. 

When watchdog fires because it hasn't been stroked 

within the specified timeframe, it invokes some safety 

measure, normally either shutting down the system or 

causing the system to reset. 

Consequences 

The Watchdog Pattern is a very lightweight pattern that 

is rarely used alone in safety-critical systems. It is best 

at identifying time base faults, particularly when an 

independent time base drives the Watchdog. It can also 

be used to detect a deadlock in the actuation channel. 

To improve deadlock detection, the watchdog may 

require the strokes to be keyed—that is, to contain data 

that can be used to identify that strokes from different 

computational steps occur in the proper sequence. Such 

a watchdog is called a Keyed Watchdog or a Sequential 

Watchdog. Because the coverage of the Watchdog 

Pattern is so minimal, it is rarely used alone. It may be 

combined with any of the other safety patterns.  

Related Patterns 

The Watchdog Pattern is about as lightweight (low 

effort as well as low protection) as a safety and 

reliability pattern gets. For this reason, it is normally 

mixed with other patterns as a way to test the time base 

and to drive periodic BITs. 

 

4.3. Problem 3: Intrusion of the communications 

network and tampering with safety critical messages. 
The above problem deals with the security[6] concerns 

of the system. These kinds of problems can be solved 

using ―Hybrid Patterns‖. Hybrid Patterns like 

―SecRel[5] and RelSec[5]‖ can provide a variety of 

reliable mechanisms that can be applied to systems. 

Suggested Patterns: 

Secure Reliability Pattern and Reliable Security Pattern 

4.3.1. Secure Reliability Pattern 

 A critical system must need a high degree of security 

and reliability to work properly. CBTCS needs reliable 

services according to its working, so this pattern is very 

useful. Misuse of some services may lead to serious 

damage of the whole system, so the usage of services to 

users might lead to serious problems. We must have a 

set of reliability mechanisms and a reference monitor is 

required to check the rights associated with the user 

before the service is activated. It should also perform 

authentication before a user is authorized. 

4.3.2. Reliable Security Pattern   

This pattern is intended to implement reliable 

authorization enforcement by applying reliability 

mechanisms to the system.  

 

 

 

5. Conclusion  
In this paper we discussed the problems of designing a 

CBTC system and various design patterns which can be 

applied in order to design a CBTCS. Architectural 

Design Patterns solve the design problems in the real-

time systems in-order to achieve high reliability and 

safety. In CBTCS, we can apply design patterns to 

achieve high reliability and safety.
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