
Architectural Design Pattern Representation For Communications-Based Train

Control System (CBTCS)
Sahith Rampelli*,Sri Datta Virivinti**

*Assistant. Professor, Department of CSE, CVR College of Engineering, Hyderabad, AP, India-501 510

**Department of Information Technology, CVR College of Engineering, Hyderabad, AP, India- 501 510

Abstract

Communications-Based Train Control System

(CBTCS)[1] is a railway signaling system that makes

use of the telecommunications between the train and

track equipment for the traffic management. By using

the CBTC system, the exact position of a train is

known more accurately than with the traditional

signaling systems. This results in a more efficient and

safe way to manage the railway traffic. This paper

attempts to identify the design problems with respect

to reliability and safety factors in the CBTC system

and suggests suitable Architectural design patterns [2]

to solve the problems.

1. Introduction
Communications-Based Train Control System

(CBTC) is a type of rail signaling system that makes

use of telecommunications between the train and track

equipment for traffic management and infrastructure

control.

The notion of design of patterns evolved from the

approach to designing buildings developed by architect

Christopher Alexander. Architectural design is

concerned with large-scale strategic decisions that have

broad and widely-ranging effects. Architectural

decisions include the placement of software modules

on different processors, real-time scheduling policies,

identification of concurrency models, and inter-process

and inter-thread communication

2. Motivation
Now a days, Due increase of population in

Metropolitan cities, Metro-Rail-ways are introduced in-

order to manage the traffic congestion. A reliable real

time design pattern [3] should be implemented in order

to design ―Communication Based Train Control

System‖.

3. CBTCS DESIGN PROBLEMS

Problem 1) If the communications link between any of

the trains is disrupted.

Description: The primary risk of a CBTC system is

that if the communications link between any of the

trains is disrupted then all or part of the system might

have to enter a fail-safe state until the problem is

remedied. Depending on the severity of the

communication loss, this state can range from vehicles

temporarily reducing speed, coming to a halt or

operating in a degraded mode until communications are

re-established. If communication outage is permanent

some sort of contingency operation must be

implemented which may consist of manual operation

using absolute block or, in the worst case, the

substitution of an alternative form of transportation. As

a result, high availability of CBTC systems is crucial

for proper operation, especially if we consider that such

systems are used to increase transport capacity and

reduce headway. System redundancy and recovery

mechanisms must then be thoroughly checked to

achieve a high robustness in operation. With the

increased availability of the CBTC system, it must also

be considered the need for an extensive training and

periodical refresh of system operators on the recovery

procedures. In fact, one of the major system hazards in

CBTC systems is the probability of human error and

improper application of recovery procedures if the

system becomes unavailable.

Problem 2) Communications failures can result from

equipment malfunction, electromagnetic interference,

weak signal strength or saturation of the

communications medium.

Description: In this case, an interruption can result in a

service brake or emergency brake application as real

time situational awareness is a critical safety

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

IJ
E
R
T

requirement for CBTC and if these interruptions are

frequent enough it could seriously impact service. This

is the reason why, historically, CBTC systems first

implemented radio communication systems in 2003,

when the required technology was mature enough for

critical applications.

Problem 3) Intrusion of the communications network

and tampering with safety critical messages.

Description: CBTC systems that make use of open

standards for wireless digital communications link have

a much larger attack surface and can be subject to

various types of hacking network and tampering

messages. In the worst case, could result a safety

hazard.

4.ARCHITECTURAL DESIGN PATTERNS

FOR CBTCS

Architectural design is the identification and definition

of large-scale design strategies. These strategic

decisions determine how major architectural pieces of

the system will be structured, mapped to physical

devices, and interact with each other. The effect of such

design decisions is widespread and affects most or all

components.

Hardware Patterns

 Triple Modular Redundancy Pattern.

 Homogeneous Redundancy Pattern.

 Heterogeneous Redundancy Pattern.

 M-Out-Of-N Pattern.

 Monitor-Actuator Pattern.

 Sanity Check Pattern.

 Watchdog Pattern.

 Safety Executive Pattern.

Software Patterns [4]
 N-Version Programming Pattern.

 Recovery Block Pattern.

 Acceptance Voting Pattern.

 N-Self Checking Programming Pattern.

 Recovery Block with Backup Voting Pattern.

Hybrid Patterns

 The Secure Reliability (SecRel)

 Reliable Security (RelSec)

4.1. Problem 1: In CBTC system, if the

communications link between any of the trains is

disrupted.
Suggested Pattern(s): Triple Modular Redundancy

Pattern (TMR), Homogeneous Redundancy Pattern,

Heterogeneous Redundancy Pattern.

Let’s consider TMR Pattern for the above said problem

4.1.1 Triple Modular Redundancy Pattern (TMR)

Other Name: 2-oo-3 Redundancy Pattern,

Homogeneous Triplex Pattern.

Type: Hardware

 Abstract:

The TMR pattern operates three channels in parallel

rather than operating a single channel and switching

over to an alternative when a fault is detected. By

operating the channels in parallel, the TMR pattern

detects random faults.

The TMR pattern runs the channels in parallel and at

the end compares the results of the computational

channels together. As long as two channels agree on the

output, then any deviating computation of the third

channel is discarded. This allows the system to operate

in the presence of a fault and continue to provide

functionality.

Context:
The Triple Modular Redundancy Pattern is a pattern

used to enhance reliability and safety in situations

where there is no fail-safe state. The TMR pattern

offers an odd number of channels (three) operating in

parallel.

Problem: To provide protection against random faults

(failures) with the additional constraint that when a

fault is detected, neither the input data should be lost,

nor should additional time be required to provide a

correct output response.

Implication: To enhance reliability and safety.

Implementation: The development of the TMR pattern

is common to replicate the hardware and software to

avoid common mode faults so that each channel uses

its own memory, CPU and so on.

Consequences: The TMR Pattern can only detect

random faults. It involves high recurring cost because

the hardware and software in the channels must be

replicated. The TMR pattern is a common one in

applications where reliability needs are very high and

worth the additional cost to replicate the channels.

Related Patterns: Heterogeneous redundancy

(protection against systematic faults is desired). A

Homogeneous Redundancy Pattern (can be used if the

data can be lost when a failure occurs or when it is

okay to re-execute the failed computational step).

Example: With reference to the use of TMR pattern in

CBTC System, The TMR Pattern will be operated on

three channels, if the communication link between any

of the trains is disrupted then very immediately one of

active channel will take over the substitution of an

alternative form of transportation. Hence, the

communication link is active until the error is repaired

or required component is substituted. As a result, high

availability of CBTC system is achieved.

4.1.2 Homogeneous Redundancy Pattern

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

IJ
E
R
T

Other Names: Switch to Backup Pattern,

Homogeneous Redundancy Pattern, Standby-Spare

Pattern, Dynamic Redundancy Pattern, Two-Channel

Redundancy Pattern

Type: Hardware Pattern

Abstract:

An obvious approach to solving the problem of things

breaking is to provide multiple copies of that thing. In

safety and reliability architectures, the fundamental unit

is called a channel. A channel is a kind of subsystem,

or run-time organizational unit, which is end-to-end in

its scope, from the monitoring of real world signals to

the control of actuators that do the work of the system.

The Homogeneous Redundancy Pattern replicates

channels with a switch-to-backup policy in the case of

an error.

Context:

Homogeneous Redundancy Pattern is primarily a

pattern to improve reliability by offering multiple

channels. These channels can operate in sequence, as in

the Switch To Backup Pattern (another name for this

pattern), or in parallel, as in the Triple Modular

Redundancy Pattern, described later. The pattern

improves reliability by addressing random faults

(failures). Since the redundancy is homogeneous, by

definition any systematic fault in one copy of the

system is replicated in its clones, so it provides no

protection against systematic faults (errors).

Problem:

The problem addressed by the Homogenous

Redundancy Pattern is to provide protection against

random faults that is, failures in the system execution

and to be able to continue to provide functionality in

the presence of a failure. The primary channel should

continue to run as long as there are no problems. In the

case of failure within the channel, the system must be

able to detect the fault and switch to the backup

channel.

Structure:

The checking components implement a switch-to-

backup policy by invoking the other channel when an

error is detected in the currently operating channel.

Implication: safety and reliability in the presence of

either systematic or random faults

Implementation:

The implementation of this pattern is only a bit more

work than the implementation of a non-redundant

system. To remove common fault modes, the

computing hardware (CPU, memory, etc.) as well as

mechanical systems should be replicated. The only

special work is the logic to identify the faults and

switch to the alternative channel when a fault is

detected.

Consequences:

The Homogenous Redundancy Pattern has a number of

advantages. It is conceptually simple and easy to

design. It provides good coverage for random (that is,

hardware and transient) faults, although only if the

hardware is itself replicated. It is usually a simple

matter to get good isolation of faults and to eliminate

common mode faults. The pattern applies when random

faults occur at a significantly higher rate than

systematic faults, such as in rough or arduous physical

environments. It also is useful for safety-critical or

high-reliability systems that must continue to operate in

the presence of faults.

An advantage of this pattern is the low R&D cost –

since there is only a single channel to design. Its

primary disadvantage is the lack of coverage for

systematic faults and increased deployment costs over

non-redundant systems.

The disadvantages of the pattern are primarily the

higher recurring cost and a lack of coverage for

systematic faults. Because the electronic and

mechanical hardware must be duplicated for maximal

coverage, each shipping system must bear the cost of

additional hardware components. Furthermore, since

the channels are clones, any systematic fault in one

channel must, by definition, appear in the other. The

pattern runs a single channel and switches over to a

backup channel only when a fault is detected. This

means that the computation step is lost when a fault is

detected and either the data is lost or recovery time to

redo the computation must be taken into account in

time-critical situations.

4.1.3 Heterogeneous Redundancy Pattern

Other Names: Diverse Redundancy and N-way

Programming.

Type: Hardware

Abstract:

For high-safety and reliability systems, it is common to

provide redundant channels to enable the system to

identify faults and to continue safe and reliable

operation in the presence of faults. Similar to its

homogeneous cousin, the Heterogeneous Redundancy

Pattern provides redundant channels as an architectural

means to improve safety and reliability. What sets the

Heterogeneous Redundancy Pattern apart is that the

channels are not mere replicas but are constructed from

independent designs. This means that identical design

errors are unlikely to appear in multiple channels. The

primary downside of this pattern is its high design

development cost that comes on top of the high

recurring cost typical of heavyweight redundant

channels.

There are a number of useful variants of the

Heterogeneous Redundancy Pattern that provide the

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

IJ
E
R
T

detection of both kinds of faults but are lower cost and

may not provide continued operation in the presence of

faults. See, for example, the Monitor-Actuator and

Sanity Check Patterns.

Context: Protection against random and systematic

faults without a fail-safe state

Problem:

The Heterogeneous Redundancy Pattern provides

protection against both kinds of faults—systematic

errors as well as random failures. Assuming that the

design includes independence of faults, the pattern

provides single fault safety in the same way as the

Homogeneous Redundancy Pattern—that is, when the

primary channel detects a fault, the secondary channel

takes over.

Structure:

Indeed, the pattern is almost identical, with the primary

difference being that the components of the two

channels are the result of independent design efforts.

The independent design effort may use the same

algorithm with different teams or— even better—

different algorithms with different teams.

Implementation:

The implementation of this pattern requires fault

independence. That means that the hardware

components must be replicated in both channels (CPU,

memory, and so on). It is common to replicate the

computing hardware rather than use different CPUs,

but different computing hardware does give a slightly

increased level of safety. The sensors and actuators are,

however, usually different hardware implementations,

often using different technologies. It is best if the

software is not only designed by different teams but

also uses different algorithms. Simply using

independent teams doesn't provide total independence

of systematic faults, since the teams will tend to make

mistakes in the same portions of the application (such

as the hard parts).

Consequences:

This pattern has two "heavyweight" channels. This

means both are relatively expensive to design and

construct, and either can perform the actuation

processing with similar levels of fidelity. Similar to the

Homogeneous Redundancy Pattern, this pattern has a

high recurring cost due to the inclusion of additional

hardware support for the redundancy. However, in

addition to this, the Heterogeneous Redundancy Pattern

also has a high development cost because multiple

independent designs must be performed, usually with

different teams to provide independence of systematic

faults. This is generally considered the safest

architectural pattern and the most expensive as well.

With only two channels, however, it may have lower

availability than with the Triple Modular Redundancy

Pattern. To enhance availability, a Triple Modular

Redundancy Pattern may be used with heterogeneous

channels to get the best (and the worst) of both worlds.

Related Patterns:

As mentioned earlier, this is a very expensive pattern to

implement. Reduced cost can be had at the expense of

reducing safety coverage as well. A Homogeneous

Redundancy Pattern can be used with the effect of

lowering the ability to detect systematic faults and

lowering development cost. A Triple Modular

Redundancy Pattern implemented with heterogeneous

channels improves availability over the Heterogeneous

Redundancy Pattern but at the cost of increasing both

the development and recurring cost by one third. When

protection should be provided but the system does not

need to continue operation in the presence of a fault,

then a lower-weight solution, such as the Monitor-

Actuator or Sanity Check Pattern may be used.

4.2. Problem 2: Communications failures can result

from equipment malfunction, electromagnetic

interference, weak signal strength or saturation of the

communications medium.
Suggested Patterns:

Safety-Executive pattern,

Monitor Actuator and Watchdog pattern.

Let’s consider the Safety-Executive pattern for the

above said problem,

4.2.1 Safety-Executive Pattern

Let’s consider the Safety-Executive pattern for the

above said problem,

Other Name: Safety Kernel Pattern

Type: Hardware and Software

Abstract: Systems often cannot merely be shut down

in the event of a fault. Sometimes this is because they

are in the middle of handling some dangerous materials

or a high-energy state of the system (such as high speed

or high voltage potential). Simply shutting the system

off in such a state is potentially very hazardous. In the

presence of a fault, the system must be guided through

a potentially complicated series of steps to reach a

condition known to be a fail-safe state. The Safety

Executive Pattern models exactly this situation in

which a Safety Executive component coordinates the

activities of potentially many actuation channels and

safety measures to reach a fail-safe state.

Problem: The problem addressed by the Safety

Executive Pattern is to provide a means to coordinate

and control the execution of safety measures when the

safety measures are complex. Ex: The shutdown of the

channel or system is a complex process, where several

safety-related actions have to be controlled

simultaneously.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

IJ
E
R
T

Context: The problem addressed by the Safety

Executive Pattern is to provide a means to coordinate

and control the execution of safety measures when the

safety measures are complex. Ex: The shutdown of the

channel or system is a complex process, where several

safety-related actions have to be controlled

simultaneously.

Implication: Provides Safety and reliability for highly

safety-critical real-time systems.

Implementation: Any single component, whether

hardware or software, should be allowed to fail without

creating a hazard. In the systems for which this pattern

is appropriate, this means that the channels will each

run on their own CPUs with their own memory; safety-

critical information must be protected with CRCs or

other means to detect data corruption.

Consequences: It can provide excellent fault protection

in highly complex systems and environments.

Related Patterns: The Safety Executive Pattern is used

for complex safety-critical applications and it covers a

large set of features such as sequence monitoring

provided by watchdog and switch-to-backup as in the

fail-safe channel.

Example: The Safety Executive pattern is used in

highly complex systems, so CBTC system can be

implemented with this pattern and also, it has been used

in high-speed train control systems.

4.2.2 Monitor Actuator

Pattern Name: Monitor Actuator

Abstract: Many safety-critical systems have what is

called a fail-safe state. This is a condition of the system

known to be always safe. When this is true, and when

the system doesn't have extraordinarily high availability

requirements (that is, in the case of a fault detection it

is appropriate to enter the fail-safe state), then the

safety of the system can be maintained at a lower cost

than some of the other patterns. The Monitor-Actuator

Pattern is a specialized form of the Heterogeneous

Redundancy Pattern because the redundancy provided

is different from the primary actuation channel: It

provides monitoring, typically of the commanded

actuation itself (although it may also monitor the

internal operation of the actuation channel as well).

Assuming fault independence and a single point fault

protection requirement, the basic principle of the

Monitor-Actuator Pattern may be summed up this way:

If the actuation channel has a fault, the monitoring

channel detects it. If the monitoring channel breaks,

then the actuation channel continues to operate

properly.

Context: Protection against random and systematic

faults with a fail-safe state. All safety-critical and

reliable architectures have redundancy in some form or

another. In some of these patterns, the entire channel,

from original data sensing to final output actuation, is

replicated in some form or another. In the Monitor-

Actuator Pattern, an independent sensor maintains a

watch on the actuation channel looking for an

indication that the system should be commended into

its fail-safe state.

Problem: The Monitor-Actuator Pattern addresses the

problem of improving safety in a system with moderate

to low availability requirements at a low cost.

Structure:

Both channels run independently and simultaneously.

Consequences:

This pattern is a relatively inexpensive safety solution

that is applicable when the system does not have high

availability requirements and when there is a fail-safe

state. Assuming that its implementation correctly

isolates faults, a fault in the Actuation Channel will be

identified by the Monitoring Channel. A fault in the

Monitoring Channel will not affect the proper

execution of the Actuation Channel. Because there is

minimal redundancy, the system cannot continue to

function when a fault is identified.

Implication: Safety

Implementation: The Monitoring Channel must take

into account lag, measurement jitter, control system

jitter, computational accuracies (specifically the

propagation and compounding of computational

numeric error), and other forms of error in determining

whether the actuation channel is acting properly.

Another issue with the Monitoring Channel is the

handling of transient faults. In some situations, a single

transient fault may not be harmful at all, but persistent

faults must be identified. In such cases, it may be

necessary for the Monitoring Channel to maintain a

recent history of its monitored values to determine

whether an unexpected value indicates a transient or

persistent fault.

The system can operate with a fault in the Monitor

Channel, but if it does so, this is called a latent fault. A

latent fault is one that by itself does not present a

hazard but with the addition of a second fault does

present a hazard. For this reason, the Monitor Channel

must be periodically checked. The timeframe for this

check must be significantly less than the mean-time

between failures (MTBF) of the Monitor Channel.

In practice, this check is usually done daily or on every

startup, whichever is less. It may, at times, be

performed during scheduled maintenance of the system

but must be done much more frequently than the

MTBF of the channel and any of its components.

Often, systems using this pattern use a pair set of life

ticks sent between the channels to indicate the health of

the other system. If one channel does not receive a life

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

IJ
E
R
T

tick from the other within a specified time frame, then

this indicates a fault, and the fail-safe state is entered.

Related Patterns: Sometimes the control signal does

not provide the desired end-result to the Monitoring

Channel. When this is the case, the Monitoring

Channel must in some sense simulate the processing

done in the Actuation Channel. When this is done in a

lightweight way to get a check on the reasonableness of

the resulting actuation output, this is called the Sanity

Check Pattern. A very lightweight means of providing

monitoring is the Watchdog Pattern. This pattern

monitors what the Actuator Pattern thinks is the right

thing to do and not the actual output of the actuation. If

it is necessary to continue actuation in the face of a

fault, then a heavier-weight pattern, such as the

Homogeneous Redundancy or the Heterogeneous

Redundancy Pattern, must be used.

4.2.3 Watchdog Pattern

Pattern Name: Watchdog Pattern

Abstract

A watchdog, used in common computing parlance, is a

component that watches out over processing of another

component. Its job is to make sure that nothing is

obviously wrong, just as a real watchdog protects the

entrance to the henhouse without bothering to check if

in fact the chickens inside are plotting nefarious deeds.

The most common purpose of a watchdog is to check a

computation time base or to ensure that computation

steps are proceeding in a predefined order. Watchdogs

are often used in real-time systems to ensure that time-

dependent processing is proceeding appropriately.

Problem

Real-time systems are those that are predictably timely.

In the most common (albeit simplified) view, the

computations have a deadline by which they must be

applied. If the computation occurs after that deadline,

the result may either be erroneous or irrelevant—so-

called hard real-time systems. Systems implementing

PID control loops, for example, are notoriously

sensitive to the time lag between the occurrence of the

input signal and the output of the control signal. If the

output comes too late, then the system cannot be

controlled; then the system is said to be in an unstable

region.

Context:

The Watchdog Pattern is similar to the Sanity Check

Pattern in the sense that it is lightweight and

inexpensive. It differs in what it monitors. While the

Sanity Check Pattern monitors the actual output of the

system using an external environmental sensor, the

Watchdog Pattern merely checks that the internal

computational processing is proceeding as expected.

This means that its coverage is minimal, and a broad

set of faults will not be detected. On the other hand, it

is a pattern that can add additional safety when

combined with other heavier-weight patterns.

Structure

The Actuator Channel operates pretty much

independently of the watchdog, sending a liveness

message every so often to the watchdog. This is called

stroking the watchdog. The watchdog uses the

timeliness of the stroking to determine whether a fault

has occurred. Most watchdogs check only that a stroke

occurs by some elapse of time and don't concern

themselves with what happens if the stroke comes too

quickly. Some watchdogs check that the stroke comes

neither too quickly nor too slowly.

For some systems, protection against a time base fault

is safety-critical. In such cases, it is preferable to have

an independent time base. This is normally a timing

circuit separate and independent from the one used to

drive the CPU executing the Actuation Channel. It

should be noted that all safety-critical systems are real-

time systems because they must respond to a fault by

the Fault Tolerance Time

Implication: Safety

Implementation

If the watchdog is to provide protection from time base

faults, a separate electronic circuit must supply an

independent measure of the flow of time. This means

an independent timing circuit used to capture the timing

and the watchdog detects a mismatch between the two

timing sources but cannot detect whether the fault is the

primary actuation channel or the watchdog time base.

To prevent a fault where the primary actuation channel

gets stuck in a loop (so called live-lock) that strokes the

watchdog but doesn't actually perform the appropriate

computation and actuation, the watchdog may require

data with the strokes that must occur in a specific

pattern. To implement a keyed watchdog, the best

approach is to not store the keys in memory but to have

them dynamically computed as a result of the proper

execution of the actuation process. This diminishes the

likelihood of a live-lock situation not being detected.

When the watchdog is stroked, it is common to invoke

a BIT (Built In Test) of some kind to ensure the proper

execution of other aspects of the system. These actions

can either return a Boolean value indicating their

success or failure, or may directly cause the system to

shut down in the case of their failure. For example, the

watchdog may execute an action on the evStroke

transition that checks for stack overflow and performs

CRC checks on the executing application software. If it

does a similar check on the application data, it must

lock the data resources during this computation, which

can adversely affect performance if you're not careful.

Stack overflow may be checked for by writing a known

pattern into the stack of each task beyond the expected

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

IJ
E
R
T

stack size. If this pattern is disrupted, then a stack

overflow (or something equally bad) has occurred.

When watchdog fires because it hasn't been stroked

within the specified timeframe, it invokes some safety

measure, normally either shutting down the system or

causing the system to reset.

Consequences

The Watchdog Pattern is a very lightweight pattern that

is rarely used alone in safety-critical systems. It is best

at identifying time base faults, particularly when an

independent time base drives the Watchdog. It can also

be used to detect a deadlock in the actuation channel.

To improve deadlock detection, the watchdog may

require the strokes to be keyed—that is, to contain data

that can be used to identify that strokes from different

computational steps occur in the proper sequence. Such

a watchdog is called a Keyed Watchdog or a Sequential

Watchdog. Because the coverage of the Watchdog

Pattern is so minimal, it is rarely used alone. It may be

combined with any of the other safety patterns.

Related Patterns

The Watchdog Pattern is about as lightweight (low

effort as well as low protection) as a safety and

reliability pattern gets. For this reason, it is normally

mixed with other patterns as a way to test the time base

and to drive periodic BITs.

4.3. Problem 3: Intrusion of the communications

network and tampering with safety critical messages.
The above problem deals with the security[6] concerns

of the system. These kinds of problems can be solved

using ―Hybrid Patterns‖. Hybrid Patterns like

―SecRel[5] and RelSec[5]‖ can provide a variety of

reliable mechanisms that can be applied to systems.

Suggested Patterns:

Secure Reliability Pattern and Reliable Security Pattern

4.3.1. Secure Reliability Pattern

 A critical system must need a high degree of security

and reliability to work properly. CBTCS needs reliable

services according to its working, so this pattern is very

useful. Misuse of some services may lead to serious

damage of the whole system, so the usage of services to

users might lead to serious problems. We must have a

set of reliability mechanisms and a reference monitor is

required to check the rights associated with the user

before the service is activated. It should also perform

authentication before a user is authorized.

4.3.2. Reliable Security Pattern

This pattern is intended to implement reliable

authorization enforcement by applying reliability

mechanisms to the system.

5. Conclusion
In this paper we discussed the problems of designing a

CBTC system and various design patterns which can be

applied in order to design a CBTCS. Architectural

Design Patterns solve the design problems in the real-

time systems in-order to achieve high reliability and

safety. In CBTCS, we can apply design patterns to

achieve high reliability and safety.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

IJ
E
R
T

6. References
[1]http://en.wikipedia.org/wiki/Communications-

based_train_control

 [2] Design Patterns: Element of Reusable Object-

Oriented Software by Erich Gamma, Richard Helm,

Ralph Johnson and John Vlissides. Edition published in

2012.

[3] Douglass, Bruce Powel (2002). Real-Time Design

Patterns: Robust Scalable Architecture for Real-Time

Systems. Addison Wesley.

[4] Real-Time Software Design Patterns, Janusz

Zalewski.

[5] Patterns Combining Reliability and Security

Ingrid A. Buckley, Eduardo B. Fernandez, and Maria M.

Larrondo-Petrie, Published in: IARIA conference, September

25,2011.

[6] N. Yoshioka, H. Washizaki, K. Maruyama, A survey on

security patterns, Progress in Informatics, No. 5 pp. 35-47,

(2008)

7. Authors

Sahith Rampelli is currently working as Assistant.

Professor at CVR College of Engineering,

Hyderabad, A.P, INDIA. He has received his

MCA. Degree from Kakatiya University and

M.Tech. with specialization in Computer Science

& Engineering from JNTUH, Hyderabad, INDIA.

His main research interest includes Architectural

Design Patterns and Real-Time Systems. He has

been involved in the organization of a number of

conferences and workshops.

Sri Datta Virivinti is a B.tech 3rd year Information

Technology student in CVR College of

Engineering, Hyderabad-500062, Andhra Pradesh,

India.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 10, December- 2012

ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

IJ
E
R
T

