Approximation of function belonging to $W(Lp, \xi(t))$ class by $(E, q)(\bar{N}, p_n)$ means of its conjugate Fourier series

Aditya Kumar Raghuvanshi, B.K. Singh & Ripendra Kumar,

Department of Mathematics IFTM University, Moradabad - 244001, (U.P.) India

Abstract

In this paper a theorem on degree of approximation of a function $f \in W(Lp,\xi(t))$ by product summability $(E,q)(\bar{N},p_n)$ of conjugate series of fourier series associated with f has been proved. **Keywords:** Degree of approximation, $W(Lp,\xi(t))$ class (E,q) mean (\bar{N},p_n) mean, conjugate of Fourier series and Lebesgue integral.

1 Introduction

Let $\sum a_n$ be a given infinite series with the sequence of partial sums $\{s_n\}$. Let $\{p_n\}$ be a sequence of positive real numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \text{ as } n \to \infty \ (p-i=p-i=0, i \ge 0)$$
 (1.1)

The sequence to sequence transformation

$$t_n = \frac{1}{p_n} \sum_{v=0}^n p_v \ s_v \tag{1.2}$$

defines the sequence $\{t_n\}$ of the (\bar{N}, p_n) -mean of the sequence $\{s_n\}$ generated by the sequence of coefficient $\{p_n\}$ if

$$t_n \to s \text{ as } n \to \infty$$
 (1.3)

Then the series $\sum a_n$ is said to be (\bar{N}, p_n) summable to s. It is clear that (\bar{N}, p_n) method is regular (Hardy [1]).

The sequence to sequence transformation, (Hardy [1])

$$T_{n} = \frac{1}{(1+q)^{n}} \sum_{v=0}^{n} \binom{n}{v} q^{n-v} \cdot s_{v}$$
(1.4)

defines the sequences $\{T_n\}$ of the (E,q) means of the sequence $\{s_n\}$ if

$$T_n \to s \text{ as } n \to \infty$$
 (1.5)

Then the series $\sum a_n$ is said to be (E,q) summable to s. Clearly (E,q) method is regular (Hardy [1]).

Further, the (E,q) transformation of the (\bar{N}, p_n) transform of $\{s_n\}$ is defined by

$$\tau_n = \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} T_k$$
$$= \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{v=0}^k p_v \cdot s_v \right\}$$
(1.6)

If

$$\tau_n \to s \text{ as } n \to \infty$$
 (1.7)

then $\sum a_n$ is said to be (E,q) (\bar{N}, p_n) -summable to s.

Let f(t) be a periodic function with period 2π and L-integrable over $(-\pi, \pi)$. The Fourier series associated with f at any point x is defined by

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x)$$
 (1.8)

And the conjugate series of the Fourier series (1.8) is

$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) \equiv \sum_{n=0}^{\infty} B_n(x)$$
(1.9)

let $s_n(f:x)$ be the n-th partial sum of $(1.9)L_{\infty}$ -norm of a function $f: R \to R$ is defined by

$$||f|| = \sup\{|f(x)| : x \in R\}$$
(1.10)

and the L_v -norm is defined by

$$||f||_{v} = \left(\int_{0}^{2\pi} |f(x)|^{v}\right)^{\frac{1}{v}}, \ v \ge 1$$
(1.11)

The degree of approximation of a function $f : R \to R$ by a trigonometric polynomial $P_n(x)$ of degree n under norm $|| \cdot ||_{\infty}$ is defined by (Zygmund [4]).

$$||P_n - f||_{\infty} = \sup\{|p_n(x) - f(x)| : x \in R\}$$
(1.12)

and the degree of approximation $E_n(f)$ a function $f \in L_v$ is given by

$$E_n(f) = \min_{P_n} ||P_n - f||_v.$$
(1.13)

A function $f \in Lip(\alpha)$ if

$$f(x+1) - f(x)| = O(|t|^{\alpha}), \ 0 < \alpha \le 1, \ t > 0$$
(1.14)

A function $f(x) \in Lip(\alpha, r)$ if

$$\left(\int_0^{2\pi} |f(x+t) - f(x)|^r dx\right)^{1/r} = O(|t|^{\alpha}), \ 0 < \alpha \le 1, \ r \ge 1.$$
(1.15)

A function $f(x) \in Li(\xi|t|, r)$ if

$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{r} dx\right)^{1/r} = O(\xi|t|), \ r \ge 1, \ t > 0 \tag{1.16}$$

But $f \in W(Lp,\xi(t))$ if

$$\left(\int_{0}^{2\pi} \left| \left[f(x+t) - f(x) \right] \sin^{\beta} x \right|^{p} dx \right)^{1/p} = O(\xi|t|), \ \beta \ge 0$$
(1.17)

we use following Notation through out this paper

$$\Psi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) \}$$

and

$$\phi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) - 2f(x) \}$$

and

$$\bar{k}_n(t) = \frac{1}{\pi (1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{v=0}^k p_v \frac{\cos\frac{1}{2} - \cos(f + \frac{1}{2})t}{\sin t/2} \right\}$$

Further, the method $(E,q)(\bar{N},p_n)$ is assumed to be regular. Here we generalize the theorem of Mishra [2].

2 Main Theorem

If $f: R \to R$ is 2π -periodic, Lebesgue integrable $[-\pi, \pi]$ and belonging to the class $W(Lp, \xi(t)), p \ge 1$ by $\tau_n(x)$ on its conjugate Fourier series (1.9) is given by

$$||\tau_n - f||_P = O\left((n+1)^{\beta + \frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right)$$
(2.1)

www.ijert.org

Provided $\xi(t)$ satisfies the following conditions

$$\left\{\int_{0}^{\frac{1}{n+1}} \left(\frac{t|\phi(t)|}{\xi(t)}\right)^{P} \sin^{\beta P} t dt\right\}^{1/p} = O\left(\frac{1}{n+1}\right)$$
(2.2)

and

$$\left\{ \int_{0}^{\frac{1}{n+1}} \left(\frac{t^{-\delta} |\phi(t)| \sin^{\beta} t}{\xi(t)} \right)^{p} dt \right\}^{1/p} = O\{(n+1)^{\delta}\}$$
(2.3)

where δ is an arbitrary number such that $q(1-\delta) - 1 > 0$, (2.2), (2.3) hold uniformly in x and where $\frac{1}{p} + \frac{1}{q} = 1$ such that $1 \le p \le \infty$.

3 Lemma

In order to prove it, we shall required the following lemma (Misra [2]).

$$\bar{k}_n(t)| = \begin{cases} O(n) \text{ for } 0 \le t \le \frac{1}{n+1} \\ O\left(\frac{1}{t}\right) \text{ for } \frac{1}{n+1} \le t \le \pi \end{cases}$$

4 Proof the Theorem

Using Riemann-Lebesgue theorem, we have for the n-th partial sum $\bar{s}_n(f:x)$ of the Conjugate Fourier series (1.9) of f(x) following (Titchmarch [3])

$$\bar{s}_n(f:x) - f(x) = \frac{2}{\pi} \int_0^\pi \phi(t) \bar{k}_n dt$$

the (\overline{N}, p_n) transform of $\overline{s}_n(f:x)$ using 1.2 is given by

$$t_n - f(x) = \frac{2}{\pi P_n} \int_0^\pi \phi(t) \sum_{k=0}^n p_k \frac{\cos\frac{t}{2} - \sin(n + \frac{1}{2})t}{2\sin(t/2)} dt$$

denoting the $(E,q)(\bar{N},p_n)$ transform of $\bar{s}_n(f:x)$ by τ_n , where

$$\begin{aligned} ||\tau_n - f|| &= \frac{1}{\pi (1+1)^n} \int_0^\pi \phi(t) \bar{k}_n(t) dt \\ &= \left\{ \int_0^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^0 \right\} \phi(t) \bar{k}_n(t) dt \\ &= I_1 + I_2 \end{aligned}$$
(4.1)

Now

$$I_1 = \int_0^{\frac{1}{n+1}} \phi(t)\bar{k}_n(t)dt$$

Applying Hölder inequality

$$\begin{split} |I_{1}| &\leq \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{t |\phi(t)| \sin^{\beta} t}{\xi(t)} \right\}^{p} dt \right]^{1/p} \cdot \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{\xi(t)|\bar{k}_{n}(t)|}{t \sin^{\beta} t} \right\}^{q} dt \right]^{1/q} \\ &= O\left(\frac{1}{n+1}\right) \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{n\xi(t)}{t^{1+\beta}} \right\}^{q} dt \right]^{1/q} \\ &= O\left(\frac{1}{n+1}\right) O(n) \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{\xi(t)}{t^{1+\beta}} \right\}^{q} dt \right]^{1/q} \\ &\leq O\left(\frac{1}{n+1}\right) O(n+1) \left[\int_{0}^{\frac{1}{n+1}} \left\{ \frac{\xi(t)}{t^{1+\beta}} \right\}^{q} dt \right]^{1/q} \\ &= O\left(\xi\left(\frac{1}{n+1}\right)\right) \left[\int_{0}^{\frac{1}{n+1}} t^{-(\beta+1)q} dt \right]^{1/q} \\ &= O(\xi\left(\frac{1}{n+1}\right) \cdot (n+1)^{\beta+1-\frac{1}{q}} \\ &= O\left(\xi\left(\frac{1}{n+1}\right) \cdot (n+1)^{\beta+\frac{1}{p}} \\ &= O\left(\left((n+1)^{\beta+\frac{1}{p}} \cdot \xi\left(\frac{1}{n+1}\right)\right)\right). \end{split}$$
(4.2)

And

$$I_2 = \int_{\frac{1}{n+1}}^0 \phi(t) \ \bar{k}_n(t) dt$$

Using Hölder inequality.

$$\begin{aligned} |I_2| &\leq \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{t^{-\delta} |\phi(t)| \sin^{\beta} t}{\xi(t)} \right\}^p dt \right]^{1/p} \cdot \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{\bar{k}_n(t) \cdot \xi(t)}{t^{-\delta} \sin^{\beta} t} \right\}^{1/q} dt \right]^{1/q} \\ &= O(n+1)^{\delta} \left[\int_{\frac{1}{n+1}}^{\pi} \left\{ \frac{\xi(t)}{t^{-\delta+\beta+1}} \right\}^q dt \right]^{1/q} \\ &= O(n+1)^{\delta} \left[\int_{1/\pi}^{\frac{1}{n+1}} \left\{ \frac{\xi(1/y)}{\bar{y}^{(\beta+1)+\delta}} \right\}^q \frac{dy}{y^2} \right]^{1/q} \\ &= O\left\{ (n+1)^{\delta} \xi\left(\frac{1}{n+1}\right) \left[(y^{\beta-\delta+1)q-1} \right]^{1/q} \right\}_{1/\pi}^{n+1} \\ &= O\left\{ (n+1)^{\delta} \xi\left(\frac{1}{n+1}\right) (n+1)^{\beta-\delta+1-\frac{1}{q}} \right\} \end{aligned}$$

$$= O\left\{\xi\left(\frac{1}{n+1}\right)(n+1)^{\beta+\frac{1}{p}}\right\}$$
$$= O\left\{(n+1)^{\beta+\frac{1}{p}}\xi\left(\frac{1}{n+1}\right)\right\}$$
(4.3)

Now combining (4.1), (4.2), (4.3)

$$||\tau_n - f|| = O\left\{ (n+1)^{\beta + \frac{1}{p}} \xi\left(\frac{1}{n+1}\right) \right\}$$

This completes the proof of main theorem.

5 Corollary

Following corollaries can be derived from our main results.

Corollary 5.1. If $\beta = 0$ then the function $f \in W(Lp, \xi(t))$ becomes $f \in Lip(\xi(t), p)$ and degree of approximation is given by

$$||T_n - f|| = O\left((n+1)\frac{1}{p}\xi\left(\frac{1}{n+1}\right)\right), \ p > 0$$

Corollary 5.2. If $\beta = 0$ and $\xi(t) = t^{\alpha}$ then $f \in W(Lp, \xi(t))$ becomes $f \in Lip(\xi(t), p)$ and degree of approximation is given by

$$||T_n - f|| = O\left(\frac{1}{(n+1)^{\alpha - \frac{1}{p}}}\right), \ p > 0$$

Corollary 5.3. If $\beta = 0$, $\xi(t) = t^{\alpha}$ and $p \to \infty$ then $f \in W(Lp, \xi(t))$ becomes $Lip\alpha$ and degree of approximation is given by

$$||T_n - f|| = O\left(\frac{1}{(n+1)^{\alpha}}\right), \ 0 < \alpha < 1$$

References

- [1] Hardy, G.H.; Divergent Series, First Ed. Oxford Uni. Press, 1949.
- [2] Mishra, U.K., Misra, M., Pandey, B.P. and Buxi, S.K.; On degree of Approximation by product means of conjugate Fourier series Malaya J. of Mathematics 2(1), 2013, 37-42.
- [3] Titchmarch, E.C.; The theory of function, Oxford Uni. Press.
- [4] Zygmund, A.; Trigonometric Series, Second Edition, Cambridge Uni. Press Cambridge, 1959.