Approximation of function belonging to $W(L p, \xi(t))$ class by $(E, q)\left(\bar{N}, p_{n}\right)$ means of its conjugate Fourier series

Aditya Kumar Raghuvanshi, B.K. Singh \& Ripendra Kumar,
Department of Mathematics
IFTM University, Moradabad - 244001, (U.P.) India

Abstract

In this paper a theorem on degree of approximation of a function $f \in W(L p, \xi(t))$ by product summability $(E, q)\left(\bar{N}, p_{n}\right)$ of conjugate series of fourier series associated with f has been proved. Keywords: Degree of approximation, $W(L p, \xi(t))$ class (E, q) mean $\left(\bar{N}, p_{n}\right)$ mean, conjugate of Fourier series and Lebesgue integral.

1 Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty(p-i=p-i=0, i \geq 0) \tag{1.1}
\end{equation*}
$$

The sequence to sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{p_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left(\bar{N}, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficient $\left\{p_{n}\right\}$ if

$$
\begin{equation*}
t_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

Then the series $\sum a_{n}$ is said to be $\left(\bar{N}, p_{n}\right)$ summable to s. It is clear that $\left(\bar{N}, p_{n}\right)$ method is regular (Hardy [1]).

The sequence to sequence transformation, (Hardy [1])

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} \cdot s_{v} \tag{1.4}
\end{equation*}
$$

defines the sequences $\left\{T_{n}\right\}$ of the (E, q) means of the sequence $\left\{s_{n}\right\}$ if

$$
\begin{equation*}
T_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

Then the series $\sum a_{n}$ is said to be (E, q) summable to s. Clearly (E, q) method is regular (Hardy [1]).

Further, the (E, q) transformation of the $\left(\bar{N}, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{align*}
\tau_{n} & =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} T_{k} \\
& =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \cdot s_{v}\right\} \tag{1.6}
\end{align*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

then $\sum a_{n}$ is said to be $(E, q)\left(\bar{N}, p_{n}\right)$-summable to s.
Let $f(t)$ be a periodic function with period 2π and L-integrable over $(-\pi, \pi)$. The Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{1.8}
\end{equation*}
$$

And the conjugate series of the Fourier series (1.8) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} B_{n}(x) \tag{1.9}
\end{equation*}
$$

let $s_{n}(f: x)$ be the n-th partial sum of (1.9) L_{∞}-norm of a function f : $R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|=\sup \{|f(x)|: x \in R\} \tag{1.10}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{1.11}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|\cdot\|_{\infty}$ is defined by (Zygmund [4]).

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \in R\right\} \tag{1.12}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.13}
\end{equation*}
$$

A function $f \in \operatorname{Lip}(\alpha)$ if

$$
\begin{equation*}
|f(x+1)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, t>0 \tag{1.14}
\end{equation*}
$$

A function $f(x) \in \operatorname{Lip}(\alpha, r)$ if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{1 / r}=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, r \geq 1 \tag{1.15}
\end{equation*}
$$

A function $f(x) \in L i(\xi|t|, r)$ if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{1 / r}=O(\xi|t|), r \geq 1, t>0 \tag{1.16}
\end{equation*}
$$

But $f \in W(L p, \xi(t))$ if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}\left|[f(x+t)-f(x)] \sin ^{\beta} x\right|^{p} d x\right)^{1 / p}=O(\xi|t|), \beta \geq 0 \tag{1.17}
\end{equation*}
$$

we use following Notation through out this paper

$$
\Psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\}
$$

and

$$
\phi(t)=\frac{1}{2}\{f(x+t)-f(x-t)-2 f(x)\}
$$

and

$$
\bar{k}_{n}(t)=\frac{1}{\pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{1}{2}-\cos \left(f+\frac{1}{2}\right) t}{\sin t / 2}\right\}
$$

Further, the method $(E, q)\left(\bar{N}, p_{n}\right)$ is assumed to be regular.
Here we generalize the theorem of Mishra [2].

2 Main Theorem

If $f: R \rightarrow R$ is 2π-periodic, Lebesgue integrable $[-\pi, \pi]$ and belonging to the class $W(L p, \xi(t)), p \geq 1$ by $\tau_{n}(x)$ on its conjugate Fourier series (1.9) is given by

$$
\begin{equation*}
\left\|\tau_{n}-f\right\|_{P}=O\left((n+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right) \tag{2.1}
\end{equation*}
$$

Provided $\xi(t)$ satisfies the following conditions

$$
\begin{equation*}
\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{t|\phi(t)|}{\xi(t)}\right)^{P} \sin ^{\beta P} t d t\right\}^{1 / p}=O\left(\frac{1}{n+1}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\int_{0}^{\frac{1}{n+1}}\left(\frac{t^{-\delta}|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right)^{p} d t\right\}^{1 / p}=O\left\{(n+1)^{\delta}\right\} \tag{2.3}
\end{equation*}
$$

where δ is an arbitrary number such that $q(1-\delta)-1>0,(2.2)$, (2.3) hold uniformly in x and where $\frac{1}{p}+\frac{1}{q}=1$ such that $1 \leq p \leq \infty$.

3 Lemma

In order to prove it, we shall required the following lemma (Misra [2]).

$$
\left|\bar{k}_{n}(t)\right|=\left\{\begin{array}{l}
O(n) \text { for } 0 \leq t \leq \frac{1}{n+1} \\
O\left(\frac{1}{t}\right) \text { for } \frac{1}{n+1} \leq t \leq \pi
\end{array}\right.
$$

4 Proof the Theorem

Using Riemann-Lebesgue theorem, we have for the n-th partial sum $\bar{s}_{n}(f: x)$ of the Conjugate Fourier series (1.9) of $f(x)$ following (Titchmarch [3])

$$
\bar{s}_{n}(f: x)-f(x)=\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \bar{k}_{n} d t
$$

the $\left(\bar{N}, p_{n}\right)$ transform of $\bar{s}_{n}(f: x)$ using 1.2 is given by

$$
t_{n}-f(x)=\frac{2}{\pi P_{n}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} p_{k} \frac{\cos \frac{t}{2}-\sin \left(n+\frac{1}{2}\right) t}{2 \sin (t / 2)} d t
$$

denoting the $(E, q)\left(\bar{N}, p_{n}\right)$ transform of $\bar{s}_{n}(f: x)$ by τ_{n}, where

$$
\begin{align*}
\left\|\tau_{n}-f\right\| & =\frac{1}{\pi(1+1)^{n}} \int_{0}^{\pi} \phi(t) \bar{k}_{n}(t) d t \\
& =\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{0}\right\} \phi(t) \bar{k}_{n}(t) d t \\
& =I_{1}+I_{2} \tag{4.1}
\end{align*}
$$

Now

$$
I_{1}=\int_{0}^{\frac{1}{n+1}} \phi(t) \bar{k}_{n}(t) d t
$$

Applying Hölder inequality

$$
\begin{align*}
\left|I_{1}\right| & \leq\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{t|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{p} d t\right]^{1 / p} \cdot\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)\left|\bar{k}_{n}(t)\right|}{t \sin ^{\beta} t}\right\}^{q} d t\right]^{1 / q} \\
& =O\left(\frac{1}{n+1}\right)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{n \xi(t)}{t^{1+\beta}}\right\}^{q} d t\right]^{1 / q} \\
& =O\left(\frac{1}{n+1}\right) O(n)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)}{t^{1+\beta}}\right\}^{q} d t\right]^{1 / q} \\
& \leq O\left(\frac{1}{n+1}\right) O(n+1)\left[\int_{0}^{\frac{1}{n+1}}\left\{\frac{\xi(t)}{t^{1+\beta}}\right\}^{q} d t\right]^{1 / q} \\
& =O\left(\xi\left(\frac{1}{n+1}\right)\right)\left[\int_{0}^{\frac{1}{n+1}} t^{-(\beta+1) q} d t\right]^{1 / q} \\
& =O\left(\xi\left(\frac{1}{n+1}\right) \cdot(n+1)^{\beta+1-\frac{1}{q}}\right. \\
& =O\left(\xi\left(\frac{1}{n+1}\right) \cdot(n+1)^{\beta+\frac{1}{p}}\right. \\
& =O\left((n+1)^{\beta+\frac{1}{p}} \cdot \xi\left(\frac{1}{n+1}\right)\right) . \tag{4.2}
\end{align*}
$$

And

$$
I_{2}=\int_{\frac{1}{n+1}}^{0} \phi(t) \bar{k}_{n}(t) d t
$$

Using Hölder inequality.

$$
\begin{aligned}
\left|I_{2}\right| & \leq\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{t^{-\delta}|\phi(t)| \sin ^{\beta} t}{\xi(t)}\right\}^{p} d t\right]^{1 / p} \cdot\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\bar{k}_{n}(t) \cdot \xi(t)}{t^{-\delta} \sin ^{\beta} t}\right\}^{1 / q} d t\right]^{1 / q} \\
& =O(n+1)^{\delta}\left[\int_{\frac{1}{n+1}}^{\pi}\left\{\frac{\xi(t)}{t^{-\delta+\beta+1}}\right\}^{q} d t\right]^{1 / q} \\
& =O(n+1)^{\delta}\left[\int_{1 / \pi}^{\frac{1}{n+1}}\left\{\frac{\xi(1 / y)}{\bar{y}^{(\beta+1)+\delta}}\right\}^{q} \frac{d y}{y^{2}}\right]^{1 / q} \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)\left[\left(y^{\beta-\delta+1) q-1}\right]^{1 / q}\right\}_{1 / \pi}^{n+1}\right. \\
& =O\left\{(n+1)^{\delta} \xi\left(\frac{1}{n+1}\right)(n+1)^{\beta-\delta+1-\frac{1}{q}}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =O\left\{\xi\left(\frac{1}{n+1}\right)(n+1)^{\beta+\frac{1}{p}}\right\} \\
& =O\left\{(n+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right\} \tag{4.3}
\end{align*}
$$

Now combining (4.1), (4.2), (4.3)

$$
\left\|\tau_{n}-f\right\|=O\left\{(n+1)^{\beta+\frac{1}{p}} \xi\left(\frac{1}{n+1}\right)\right\}
$$

This completes the proof of main theorem.

5 Corollary

Following corollaries can be derived from our main results.
Corollary 5.1. If $\beta=0$ then the function $f \in W(L p, \xi(t))$ becomes $f \in$ $\operatorname{Lip}(\xi(t), p)$ and degree of approximation is given by

$$
\left\|T_{n}-f\right\|=O\left((n+1) \frac{1}{p} \xi\left(\frac{1}{n+1}\right)\right), p>0
$$

Corollary 5.2. If $\beta=0$ and $\xi(t)=t^{\alpha}$ then $f \in W(L p, \xi(t))$ becomes $f \in$ $\operatorname{Lip}(\xi(t), p)$ and degree of approximation is given by

$$
\left\|T_{n}-f\right\|=O\left(\frac{1}{(n+1)^{\alpha-\frac{1}{p}}}\right), p>0
$$

Corollary 5.3. If $\beta=0, \xi(t)=t^{\alpha}$ and $p \rightarrow \infty$ then $f \in W(L p, \xi(t))$ becomes Lipo and degree of approximation is given by

$$
\left\|T_{n}-f\right\|=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1
$$

References

[1] Hardy, G.H.; Divergent Series, First Ed. Oxford Uni. Press, 1949.
[2] Mishra, U.K., Misra, M., Pandey, B.P. and Buxi, S.K.; On degree of Approximation by product means of conjugate Fourier series Malaya J. of Mathematics 2(1), 2013, 37-42.
[3] Titchmarch, E.C.; The theory of function, Oxford Uni. Press.
[4] Zygmund, A.; Trigonometric Series, Second Edition, Cambridge Uni. Press Cambridge, 1959.

