
Approaches to Optimize Bit Compression

Algorithm

Prof. Swati Ringe,

Fr. C.R.C.E. Bandra,

University of Mumbai

Mr. Hardik Agrawal
Department of Computer Engineering

Fr. Conceicao Rodrigues College of Engineering

University of Mumbai

Mumbai, India

Mr. Dylan Andrades

Department of Computer Engineering

Fr. Conceicao Rodrigues College of Engineering

University of Mumbai

Mumbai, India

Abstract— Data compression involves reducing the statistical

redundancies in data by using an alternative representation.

This alternative representation usually involves substituting the

original representation by using symbols to reduce the size

required to represent the original information. In this article we

propose certain techniques to optimize the performance of an

already defined compression algorithm based on bit

representation of data using inverted index notations, also

known as Bit Compression Algorithm. There is found to be an

improvement in compression percentage up to approximately

85.47% and 87.30% over the earlier 85.15% after two proposed

improvements are applied to the technique.

Keywords— Bit-representation technique, data compression,

inverted index

I. INTRODUCTION

Full text compression need an excellent data structure and
an efficient algorithm to compress and decompress source
data [1], [8]. Bit level principle has been used popularly for
large scale data compression. Certain algorithms which
provide efficient compression using bit level representation
are [5], [6] and [7].

This research article involves study of a previously
presented compression technique using bit representation [2].
It then proposes certain optimizations to improve the
efficiency of the base approach. The logical implementation of
the proposed optimizations and pseudo code for the same are
provided. The statistics proving the improved performance are
also presented.

The original technique proposed by Chovalit Khancome
[2] proposes a new data structure and an algorithms for
compression and decompression. Bits are used to store the
positions of characters in the data. The given file is divided
into documents and all characters in a documents have
positions represented by bit form. It is found to give
compressions ratios of 11.5% to 76.5% based on symbol set of
1 to 26 and 160,000 characters.

The first proposed improvement is called the
‘Interpretation based reduction’ where we reduce the number
of bits required to represent the data based on bits required for
previous positions. Next approach for optimizing called as
‘reduction by subtraction’ where we store the difference

between the positions instead of the original positions to
reduce the number of bits required for representation. The
third approach called ‘reduction by derivation’ involves
standardizing the number of positions mentioned in the
compressed file and using derivation to remove the most
redundant character. The three approaches are explained with
an example in the further sections.

II. DESCRIPTION

First, we consider the compression algorithm proposed by

Chovalit Khancome in [2].

Example 1. If the source data is

T = { aabaabcccaabbbaaabbbcccaaaababcccaaaabab } then

T can be divided into four documents and given the occurring

positions as follows.

TABLE I. DOCUMENTING THE DATA

 1 2 3 4 5 6 7 8 9 10

D1 a a b a a b c c c a

D2 a b b b a a a b b b

D3 c c c a a a a b a b

D4 c c c a a a a b a b

As mentioned in [2], all positions of each character in each

document are considered and then they are represented in the

form of “character : <inverted lists form>” .This form is

derived from the inverted index data-structure concept for

files [3] and [4]. For the “inverted lists form” representation,

it can be rewritten by the form of “<position : { documents

}>”.

Example 2. The inverted lists representation for example 1

is shown below:

TABLE II. INVERTED LIST REPRESENTATION

Characters Inverted Lists Form

a
<1,{1,2}>, <2:{1}>, <4:{1,3,4}>, <5:{1,2,3,4}>,

<6:{2,3,4}>, <7:{2,3,4}>, <9:{3,4}>, <10:{1}>

b
<2:{1}>, <3:{1,2}>, <4:{2}>, <6:{1}>, <8:{2,3,4}>,

<9:{2}>, <10:{2,3,4}>

c <1:{3,4}>, <2:{3,4}>, <3:{3,4}>, <7:{1}>, <8:{1}>, <9:{1}>

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030800

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

903

A. Original Approach by Chovalit Khancome

The bit-form representation is the form of “character :

position : { D1 D2 … Dn }”. For instance, if the character ‘a’

is considered (a:<1:{1,2}>), then it can be represented as

a:<0001:110>. The bit-form of 0001 represents 1 in decimal

and the bit-form of 110 represents the document numbers 1

and 2.

Considering the position, it depends on the length of

document D. For instance, if the bit representation uses 4-bits

(e.g. 0001), then it covers all positions from 1 to 15. For the

{corresponding documents}, the document numbers need to

be prepared by keeping the bit which equals all numbers of

documents. For example, 0000 represents the document

numbers from 1 to 4 respectively.

The positions of the character in the above example are

represented in bit-form below:

TABLE III. INVERTED LIST REPRESENTATION

Inverted Lists Form Bit-Form

a: <1:{1,2}> < 0001 : { 1100 } >

 <2:{1}> < 0010 : { 1000 } >

 <4:{1,3,4}> < 0100 : { 1011 } >

 <5:{1,2,3,4}> < 0101 : { 1111 } >

 <6:{2,3,4}> < 0110 : { 0111 } >

 <7:{2,3,4}> < 0111 : { 0111 } >

 <9:{3,4}> < 1001 : { 0011 } >

 <10:{1}> < 1010 : { 1000 } >

b: <2:{1}> < 0011 : { 1100 } >

 <3:{1,2}> < 0100 : { 0100 } >

 <4:{2}> < 0110 : { 1000 } >

 <6:{1}> < 1000 : { 0111 } >

 <8:{2,3,4}> < 1001 : { 0100 } >

 <9:{2}> < 1010 : { 0111 } >

 <10:{2,3,4}> < 0001 : { 0011 } >

c: <1:{3,4}> < 0010 : { 0011 } >

 <2:{3,4}> < 0011 : { 0011 } >

 <3:{3,4}> < 0111 : { 1000 } >

 <7:{1}> < 1000 : { 1000 } >

 <8:{1}> < 1001 : { 1000 } >

 <9:{1}> < 0001 : { 1100 } >

Theoretically, the bit representation in the above table can

be shown as a = 64 bits (8 bytes), b = 56 bits (7 bytes) and c

= 48 bits (6 bytes). The total size is 168 bits (21 bytes) from a

source data of 40 bytes (in ASCII).

B. Proposed Approach 1 – Interpretation Based

Representation

The bit-form representation is the form of “character :

position : { D1 D2 … Dn }”. However we sort the positions

for a particular character in the descending order. We first

start with the highest position number which is represented

by maximum bits required for it. For e.g. consider character

a, the highest position is 10 which is represented as 1010.

Next we read this position and determine the amount of bits

required for representing the next position. E.g. consider for

character a if we have just used 0111 to represent position 7

now when we move to next position we already know that all

positions below 7 can be represented by just 3 bits. Thus the

from position 6 onwards we use only 3 bits and so on reduce

the number of bits as the position decreases, whenever

possible. Also when we come across the last position number

represented using a particular number of bits we can decrease

the bits next position onwards e.g. once we represent 2 using

10 we know that all positions below it can be represented by

a single bit.

Using this approach, the bit representation obtained

corresponding to given example will be as follows:

TABLE IV. PROPOSED APPROACH 1 (INTERPRETATION BASED

REDUCTION OF BITS)

Inverted Lists Form Bit-Form

a: <10:{1}> < 1010 : { 1000 } >

 <9:{3,4}> < 1001 : { 0011 } >

 <7:{2,3,4}> < 0111 : { 0111 } >

 <6:{2,3,4}> < 110 : { 0111 } >

 <5:{1,2,3,4}> < 101 : { 1111 } >

 <4:{1,3,4}> < 100 : { 1011 } >

 <2:{1}> < 10 : { 1000 } >

 <1:{1,2}> < 1 : { 1100 } >

b: <10:{2,3,4}> < 1010 : { 0111 } >

 <9:{2}> < 1001 : { 0100 } >

 <8:{2,3,4}> < 1000 : { 0111 } >

 <6:{1}> < 110 : { 1000 } >

 <4:{2}> < 100 : { 0100 } >

 <3:{1,2}> < 11 : { 1100 } >

 <2:{1}> < 10 : { 1000 } >

c: <9:{1}> < 1001 : { 1000 } >

 <8:{1}> < 1000 : { 1000 } >

 <7:{1}> < 111 : { 1000 } >

 <3:{3,4}> < 011 : { 0011 } >

 <2:{3,4}> < 10 : { 0011 } >

 <1:{3,4}> < 1 : { 0011 } >

Theoretically, the bit representation in the above table can

be shown as a = 56 bits, b = 50 bits and c = 41 bits. The total

size is 147 bits from a source data of 40 bytes (ASCII).

C. Proposed Approach 2 – Reduction by Subtraction

In this approach we reduce the number of bits used for

representation of the positions by first sorting the positions in

descending order. Next we use normal method to represent

the highest position and all the rest positions are represented

by bits corresponding to their difference with the immediate

previous position. For e.g. if we consider character a from the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030800

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

904

previous example position 10 will be represented as 1010

however its immediate next position i.e. 9 will be represented

as 01 (since 10-9=1). This procedure is followed to represent

all the following positions. Also notice in the table that for

chars ‘a’ and ‘b’ we use 2 bits to represent differences while

in ‘c’ we use 3 bits. The number of bits used to represent the

difference is determined by the maximum difference present

for a given character.

Using this approach for the given example the table

obtained is as follows:

TABLE V. PROPOSED APPROACH 2 (REDUCTION BY

SUBTRACTION)

Inverted Lists Form Bit-Form

a: <10:{1}> < 1010 : { 1000 } >

 <9:{3,4}>
< 01 : { 0011 } >

(10-9=1)

 <7:{2,3,4}>
< 10 : { 0111 } >

(9-7=2)

 <6:{2,3,4}>
< 01 : { 0111 } >

(7-6=1)

 <5:{1,2,3,4}>
< 01: { 1111 } >

(6-5=1)

 <4:{1,3,4}>
< 01: { 1011 } >

(5-4=1)

 <2:{1}>
< 10 : { 1000 } >

(4-2=2)

 <1:{1,2}>
< 01 : { 1100 } >

(2-1=1)

b: <10:{2,3,4}> < 1010 : { 0111 } >

 <9:{2}>
< 01 : { 0100 } >

(10-9=1)

 <8:{2,3,4}>
< 01 : { 0111 } >

(9-8=1)

 <6:{1}>
< 10 : { 1000 } >

(8-6=2)

 <4:{2}>
< 10 : { 0100 } >

(6-4=2)

 <3:{1,2}>
< 01 : { 1100 } >

(4-3=1)

 <2:{1}>
< 01 : { 1000 } >

(3-2=1)

c: <9:{1}> < 1001 : { 1000 } >

 <8:{1}>
< 001 : { 1000 } >

(9-8=1)

 <7:{1}>
< 001 : { 1000 } >

(8-7=1)

 <3:{3,4}>
< 100 : { 0011 } >

(7-3=4)

 <2:{3,4}>
< 001: { 0011 } >

(3-2=1)

 <1:{3,4}>
< 001: { 0011 } >

(2-1=1)

Theoretically, the bit representation in the above table can

be shown as a = 50 bits, b = 44 bits and c = 43 bits. The total

size is 137 bits from a source data of 40 bytes (ASCII).

The following table reflects the optimization in form or

bit-reduction obtained when the proposed techniques are

applied:

TABLE VI. COMPARISON OF PROPOSED APPROACHES TO

ORIGINAL APPROACH

Characters

Bit

Compression

Algorithm

(bits)

Proposed

Approach 1

(bits)

Proposed

Approach 2

(bits)

a 64 62 50

b 56 52 44

c 48 43 43

Total 168 157 137

III. STATISTICS

 The experiments were performed on Lenovo G505S
notebook with AMD A10 Quad-core 2.5 GHz processor and 8
GB DDR3 RAM, running Windows 8.1 Pro (64-bit). The
programs were written in Java in JDK 1.8 Build 20 and
implemented using NetBeans IDE 8.0.1.

The test files used for conducting the test is 160,000 bytes
and uses varied character sets ranging from 1 to 26. The
number of documents for the original and proposed
approaches are set to optimum value of 64. The results
obtained are represented by the following table:

TABLE VII. STATISTICAL ANALYSIS ON ORIGINAL AND

PROPOSED APPROACHES

No. of

Characters

Bit

Compression

Algorithm

(%)

Proposed

Approach 1

(%)

Proposed

Approach 2

(%)

1 85.156 85.474 87.303

2 70.305 70.948 74.606

3 55.455 56.421 61.909

4 66.195 66.935 70.108

5 64.199 64.985 67.986

6 63.273 64.088 67.161

7 61.693 62.545 65.686

8 60.647 61.527 64.632

10 59.743 60.650 63.766

12 59.107 60.039 62.933

14 59.004 59.949 62.811

16 58.131 59.106 61.892

20 57.540 58.550 61.356

26 57.056 58.107 60.601

The above table proves that both the proposed approaches
are better than the original approach, hence improving the
compression technique originally developed. Proposed
approach 2 is even better than proposed approach 1 in terms of
compression.

The optimum number of documents may vary according to
data. Hence, these proposed approaches can be further
optimized based on the number of documents.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030800

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

905

IV. CONCLUSION

Based on the statistics we can see that the two proposed

approaches provide means to optimize the basic approach.

The two approaches provide an average compression ratio of

63.52% and 66.62% as compared to the 62.67% average ratio

provided by the basic approach. These statistics prove the

effectiveness of the proposed optimization techniques to

improve the performance of the proposed approach. Since the

proposed approaches provide better efficiency at almost no

extra timing cost, they can be used along with the basic

approach while developing a compression system.

ACKNOWLEDGMENT

Authors Hardik Agrawal and Dylan Andrades express
gratitude to Professor Swati Ringe for encouragement to take
up this research topic and for continued guidance throughout
the course of research. We would also like to thank Fr.
Conceicao Rodrigues College of Engineering for providing
the necessary resources. Many thanks to Mr. George Cherian
for brainstorming ideas with us during lectures. Lastly, we
would like to thank our families for consistent emotional
support.

REFERENCES

[1] M. Crochemore & W. Rytter, "Text Algorithms," (2010) Available:

http://monge.univ-mlv.fr/
[2] “Text Compression Algorithm Using Bits for Character

Representation”, International Journal of Advanced Computer Science,

Vol. 1, Chouvalit Khancome.
[3] C. Monz & M.D. Rijke, "Inverted Index Construction," (2006)

Available:

http://staff.science.uva.nl/~christof/courses/ir/transparencies/clean-w-
05.pdf.

[4] O.R. Zaïane, "CMPUT 391: Inverted Index for Information Retrieval,"

(2001) University of Alberta. Available:
http://www.cs.ualberta.ca/~zaiane/courses /cmput39-03.

[5] H. Al-Bahadili & S.M. Hussain, "An adaptive character wordlength

algorithm for data compression," (2008) Computers & Mathematics
with Applications, vol. 55, no. 6, pp. 1250-1256.

[6] S. Nofal, "Bit-level text compression" (2007) In Proceedings of the

International Conference on Digital Communications and Computer
Applications, Jordan, 1, pp. 486-488.

[7] A. Rababáa, "An Adaptive Bit-Level Text Compression Scheme Based

on the HCDC Algorithm," (2008) M.Sc., dissertation, Amman Arab
University for Graduate Studies, Jordan.

[8] Khalid Sayood, “Introduction to Data Compression” (The Morgan

Kaufmann Series in Multimedia Information and Systems)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030800

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

906

