International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

Applications of Depth First Search: A Survey

Gaurav Rathi, Dr. Shivani Goel
Thapar University, Patiala (Punjab)

1JERTV 21570557

Abstract

In this paper, various applications of depth first serach
algorithms (DFS) are surveyed. The value of DFS or
“Backtracking” as a technique for solving problem is illustrated
by many applications such as cycle detection, strongly
connected components, topological sort, find articulation point
in a graph. The time complexity in different applications of
DFS are also summarized.

Keywords

Depth first search, articulation point, strongly connected
component, detecting cycle, graph, topological sort, railway
rescheduling.

Introduction

There are many techniques for searching a graph. The DFS
algorithm extends the current path as far as possible
before backtracking to the last choice point and trying the next
alternative path. Given a graph G = (V, E) where V stand for set
of vertices and E stands for set of edges. A vertex u € V,where
we want to explore each vertex in graph. Let n = |V| and m =
|E|. Basically a graph can be of two types: directed and
undirected. Graph can be represented by two techniques : 1) by
matrix, 2) by linked list. Now we assume graph is represented
by a linked list. The advantages of such representation are:

)It requires ©O(n+m) space to store the vertices and there
corresponding list, as opposed to ©(n?) for the adjacency matrix

ii)It makes it possible to go through the neighbours of a vertex
u in O(|adj[u]|) time, linear in the number of neighbours.

Graphs form a suitable abstraction for problems in many areas
like chemistry, electrical engineering, sociology and many
more. Thus it is important to have the most economical
algorithmsfor answering graph-theoretical questions.

DFS will process the vertices first deep and then wide. After
processing a vertex, it recursively processes all of its
descendants. Backtracking and depth first search is a technique
which has been widely used to finding a solution of
combinatorial theory and artificial intelligence [6].

Suppose G is a graph and we want to explore it. Initially all the
vertices are unexplored than we start from a random vertex of
graph G and now follow adjacent edge, traversing edge and
visit new vertex we select single adjacent vertex and we
continue in this way. At each step, we select an unexplored
edge leading from a vertex already visited and we traverse this
edge. The edge leads to some vertex, either new or already

visited. Whenever we run out of edges leading from old
vertices, we choose some unvisited vertex, if any exists, and
begin a new exploration from this point. Eventually we will
traverse all the edges of G, each exactly once[7].

Overall Strategy of DFS Algorithm

Depth-first search selects a source vertex sin the graph and
paint it as "visited." Now the vertex s becomes our current
vertex. Then, we traverse the graph by considering an arbitrary
edge (u, v) from the current vertex u. If the edge (u, v) takes us
to a painted vertex v, then we back down to the vertex u. On the
other hand, if edge (u, v) takes us to an unpainted vertex, then
we paint the vertex v and make it our current vertex, and repeat
the above computation. Sooner or later, we will get to a “dead
end,” meaning all the edges from our current vertex u takes us
to painted vertices. This is a deadlock. To get out of this, we
back down along the edge that brought us here to vertex u and
go back to a previously painted vertex v. We again make the
vertex v our current vertex and start repeating the above
computation for any edge that we missed earlier. If all of v's
edges take us to painted vertices, then we again back down to
the vertex we came from to get to vertex v, and repeat the
computation at that vertex. Thus, we continue to back down the
path that we have traced so far until we find a vertex that has
yet unexplored edges, at which point we take one such edge and
continue the traversal. When the depth-first search has
backtracked all the way back to the original source vertex, s, it
has built a DFS tree of all vertices reachable from that source. If
there still undiscovered vertices in the graph, then it selects one
of them as the source for another DFS tree. The result is a forest
of DFS-trees. Note that the edges lead to new vertices are called
discovery or tree edges and the edges lead to already visited
(painted) vertices are called back edges[9].

In order to keep track of progress, depth-first-search colours
each vertex. Each vertex of the graph is in one of three states:

1. Undiscovered,
2. Discovered but not finished (not done exploring from it), and
3. Finished (have found everything reachable from it) i.e. fully
explored.

The state of a vertex, u, is stored in a color variable as follows:

1. color[u] = White - for the "undiscovered"
state,

2. color[u] = Grey - for the "discovered but
not finished" state, and

3. color[u] = Black - for the "finished" state.

www.ijert.org

1341

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

Like BFS, depth-first search uses n[v] to record the parent of
vertex v. We have x[v] = NIL if and only if vertex v is the root

of a depth-first tree. ° 0
DFS time-stamps each vertex when its color is changed. \) |
I
1. When vertex v is changed from white to grey the o o |

time is recorded in d[v].
2. When vertex v is changed from grey to black the
time is recorded in fv].

The discovery and the finish times are unique integers, where
for each vertex the finish time is always after the discovery

time. That is, each time-stamp is anunique integer in the range
of 1 to 2|V| and for each vertex v, d[v] < f[v]. In other words, \
the following inequalities hold:
Algorithm Depth-First Search °
4

The DFS forms a depth-first forest comprised of more than one
depth-first trees. Each tree is made of edges (u, v) such that u is f
gray and v is white when edge (u, V) is explored. The following 7 d

pseudo code for DFS uses a global timestamp time[8]. %

DFS (V, E)

1. for each vertex u in V[G]

2 do color[u] « WHITE

3 [u] < NIL

4. time<—0

5. for each vertex u in V[G]

6 do if color[u] «— WHITE

7 then DFS-Visit(u) > build a new
DFS-tree from u

DFS-Visit(u)

1. color[u] < GRAY > discover u

2. time « time + 1

3. d[u] < time

4. for each vertex v adjacent to u > explore

(u,v) Applications of DFS

5. do if color[v] « WHITE

6. then n[v] < u —_— . .

7 DFS-Visit(v) There are a large number of applications which use depth first

search algorithm. Some of these are discussed here:
8. color[u] « BLACK g

9. time « time + 1
10. f[u] « time > we are
done with u

IJERTV2IS70557 www.ijert.org 1342

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

1JERTV 21570557

1)Detecting cycles

For this application first we should know about the types of
edges in DFS algorithm. In DFS algorithm edges classify in
four types .

e Tree Edges edge (u; v) is a tree edge if v was first
discovered by exploring edge (u; v). The tree edges
form a spanning forest of G (no cycles) .

e Back Edge: an edge (u; v) is a back edge if it
connects vertex u to an ancestor v in a DFS tree.

e Forward edge: an edge (u; v) is a forward edge if it
connects a vertex u to a descendant v in a DFS tree.

e Cross edges: all other edges.

\:\\T\'
L ",
Bagg B 4 °

| 0 °

| N\
) K A
° (rossEdge 6 o

We already know that all edges of G will be classified as either
tree edges or back edges. In addition, if G is acyclic, then only
tree edges will occur. This is because if G is acyclic, then itis a
forest (disconnected trees). Therefore, we have the following
result: An undirected graph is acyclic if DFS yields no back
edges. Detecting cycle can be done in O(n + m) time by running
DFS. We use a stack s to keep track of the path between the
start vertex and current vertex. As soon as a back edge is
encountered, we return the cycle as the portion of the stack
from the top to vertex w[7] .

Algorithm

1. CycleDFS(G,v, z)

2. SetLabel(v, VISITED)

3. S.push(v)

4.for all e € incidentEdges(v)

5. ifgetLabel(e) = UNEXPLORED

2)Topological Sorting

A topological sort (sometimes abbreviated topsort or
toposort) or topological ordering of adirected graphis a
linear ordering of its verticessuch that for every directed
edge uv from vertexuto vertexv, ucomes beforevin the
ordering. For instance, the vertices of the graph may represent
tasks to be performed, and the edges may represent constraints
that one task must be performed before another. In this
application, a topological ordering is just a valid sequence for
the tasks. A topological ordering is possible if and only if the
graph has no directed cycles, that is, if it is a directed acyclic
graph(DAG). Any DAG has at least one topological ordering.
The algorithms are known for constructing a topological

ordering of any DAG in linear time[10].

o O
o0
o o ©

Before we can carry out the tasks we have to arrange them in an
order that respects all the dependencies. This is what we call a
topological order of the dependency graph.

Let G = (V, E) be a directed graph. A topological order of G is
a total order ¢ of the vertex set V such that for all edges (v ,w) €
E we have v «w.

Topological order of the graph may be different or more than
one. For example, in this graph is

T<¢5¢3¢11¢8¢2<¢9«10
T¢5¢3¢8<«11<¢10<2«9
T<¢5¢3¢11<8<9«10<¢2 etc.

A directed graph has a topological order if, and only if, it is a
DAG. Our algorithm is based on DFS. Let G be a directed

6. W« opposite(v,¢) graph. Consider the execution of dfs(G). We define an order <
7. S.push(e) of the vertices of G by saying that v « w if w becomes black
8. IfgetLabel(w) = UNEXPLORED before v (i.e., vertices that finish later are smaller in the
9. setLabel(e, DISCOVERY) order).If we find, during the execution of dfsFromVertex(G , v)
10. pathDFS(G, w, 2) for some vertex v, an edge from v to a grey vertex w, then we
11.8.pop() know that G contains a cycle.

12. else

izsl'repeat C < new empty stack We can now modify our basic DFS algorithm in order to get an
15'04_ S pop() algorithm for corpputing the orfier < and printing the V@rtices _in
16'C puéh(o) tr_us order._ If the input graph G is not a DAG, our algorlth_m will
17: : until 0 = w simply print G has a_cycle. The algorithm adds all vertices to
18, returnc.elements() the fro_nt of a linked _Ilst when they t_)ecome_ black._ Thus vertices
19. S.pop() becoming black earlier appear later in the list, which means that

the list is in order « If during the execution of
sortFromVertex(G , v) for some vertex v, an edge from v to a

www.ijert.org

1343

1JERTV 21570557

grey vertex w is found, then there must be a cycle, and the
algorithm reports this and stops.

Algorithm

topSort(G)

. Initialise array state by setting all entries to white.

. Initialise linked list L

.for allveVdo

. ifstate[v] = white then

. sortFromVertex(G , v)

. print all vertices in L in the order in which they appear

o Ol WN B

sortFromVertex(G , v)

. state[v] «qgrey

. for all w adjacent to v do

. ifstate[w] = white then
sortFromVertex(G , w)

. else if state[w] = grey then
print.Ghas a cycle.

halt

. state[v] «black

. L.insertFirst(v)

© O NOUAWNE

3)Strongly Connected Component

Decomposing a directed graph into its strongly connected
components is a classic application of depth-first search. The
problem of finding connected components is at the heart of
many graph application. Generally speaking, the connected
components of the graph correspond to different classes of
objects. The first linear-time algorithm for strongly connected
components is due to Tarjan (1972).

Given a digraph or directed graph G = (V, E), a strongly
connected component (SCC) of G is a maximal set of vertices C
subset of V, such that for all u, vin C, bothu —vandv —u,
that is, both uand v are reachable from each other. In other
words, two vertices of directed graph are in the same
component if and only if they are reachable from each other.

O

Now, as per the algorithm, perform DFS on this graph G
produce below diagram. The dotted line From C to A indicates
a Back edge

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

Now, performing post order traversal on this tree gives: D, C,
B, and A.

Now reverse the given graph, G and call it as G,and at the same
time assign post order numbers to the vertices. The reverse
graph G, will look like:

Let step is, perform DFS on this reversed graph G,. While doing
DFS we need to consider the vertex which has largest DFS
number. So, first start at A and with DFS we go to C and then
B. At B, we cannot move further. This says that (A, B, C) is
strongly connected component. Now the only remaining
element is D and we end our second DFS at D itself. So the
connected component are (A, B, C) and (D).

implementation based on this discussion can be given as:

Vertex Post Order Number
A 3
B
C
D

—ho |

Algorithm

intadjMatrix[256][256], table[256]
Vector <int>st
int counter =0
intdfsnum[256], num = 0, low[256]
Void stronglyConnectedComponent(int u)

low[u] = dfsnum[u] = num++

Push(st, u);
for(intv=0; v<256 ; ++Vv)
if(dfsnum[v] ==-1)

10. stronglyConnectedComponent(v)
11. low[u] = min(low[u],low[V]);
12. if(low[u]==dfsnum[u])
13. while(table[u]=counter)

Co~NOOR~wWNE

www.ijert.org

1344

1JERTV 21570557

14. table[st.back()]=counter
15. Push(st)
16. ++counter

4)Cut Vertex or Articulation Point

In an undirected graph, a cut vertex is a vertex and if we
remove it, then the graph splits into two disconnected
components. As an example, consider the following figure.
Removal of “D” vertex divides the graph into two connected
components {E , F}and {A, B, C, G }. Similarly, removal C
vertex divides the graph into {G} and {A, B, C, D, E, F}. For
this graph, A and C are the cut vertices.

0,
o o

Note: A connected, undirected graph is called bi-connected if
the graph is still connected after removing any vertex.

DFS provides a linear-time algorithm (O(n)) to find all cut
vertices in a connected graph. Starting at any vertex, call a DFS
and number the nodes as they are visited. For each vertex, we
call this DFS number dfsnum(v).

The tree generated with DFS traversal is called DFS spanning
tree. Then, for every vertex v in the DFS spanning tree, we
compute the lowest-numbered vertex, which we call low(v),
that is reachable from v by taking zero or more tree edges and
then possibly one back edge.

Based on the above discussion, we need the following
information for this algorithm. The dfsnum of each vertex in the
DFS tree (once it gets visited), and for each vertex v, the lowest
depth of neighbours of all descendants of v in the DFS tree,
called the low. The dfsnum can be computed during DFS. The
low of v can be computed after visiting all descendants of v (i.e.
just before v gets popped off the DFS stack) as the minimum of
the dfsnum of all neighbours of v (other than the parents of v in
the DFS tree) and the low of all children of v in the DFS tree.
The root vertex is a cut vertex if and only if it has at least two
children. A non-root vertex u is a cut vertex if and only if there
is a son v of u such that low (v) > dfsnum(u). This property can
be tested once the DFS return from every child of u (that
means, just before u gets popped off the DFS stack), and if true,
u separates the graph into differentbi-connected Component

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

This can be represented by computing one bi-connected
component out of every such v (a component which contains v
will contain the sub-tree of v, plus u), and then erasing the sub-
tree of v from the tree.

Algorithm

For the above graph, the DFS tree with dfsnum / low can be
given as show in above figure.
adjMatrix [256][256]
dfsnum[256], num = 0, low[256]
void cutVertices(int u)
low[u] = dfsnum[u] = num++
For(intv=0;v< 256 ; ++V)
If(adjMatrix[u][v] &&dfsnum[v]= = -1)
CutVertices(v)
If(low[v] >dfsnum[u])
Print “u”
low[u] = min (low[u] , low [V])
else // (u,v) is a back edge
low[u] = min(low[u], dfsnum[v])

NGk wh R

©

10.
11.
12.

5)Train Rescheduling During Traffic Disturbances

Railways are an important part of the infrastructure in most
countries. The railway network consists of station and line
sections, tracks, blocks, and events. Each station and line
section can have one or more parallel tracks. All tracks are
bidirectional, i.e. the track can be used for traffic in both
directions depending on the schedule. A train uses exactly one
track on a station or line section, but which specific track to use
is often not predefined and therefore part of the re-scheduling
problem. Each track is composed of one or several blocks
connected serially and separated by signals. Each block can
only be used by at most one train at a time due to the safety
restriction imposed by line blocking[4]. A track with two

1345

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

1JERTV 21570557

blocks can in theory hold two trains in the same direction, but
not two trains in opposite direction due to the lack of a meeting

point.

Symbol Defimition
Each train has an individual, fixed route (i.e., the sequence of C C1C2 _ Cn where NC is the candidate st
sections to occupy) which is represented as a sequence of train - — — -
events to execute. A train event is when a certain train occupies Ps partial solution branch
a certain section. A train event has certain static properties such , y i
as minimum running time but also some dynamic properties, T the time when the disturbance ocaurs
e.g., track allocation and start and end times on the section. E Ttk execution time limit (30 sec in our experiments)
The railway traffic delay management and re-scheduling G candidate ndex b start with
problem has been considered an important and difficult T. total mmber of candidates
problem since quite some time[4]. It has been studied from '
different perspectives such as capacity, robustness, as well as BVy branching value

assenger delay and dissatisfaction.

P g y GBV global best value communicated via the white board
The capacitated delay management problem is a special case of CVy cost estimation vaue of the current node
the job shop scheduling (JSS) problem, where train trips are) '
jobs which are scheduled on tracks that are considered as L. total umber of workers
resources. A branch and bound (B&B) procedure is proposed W worker index

for resource constrained project scheduling formulation by
incorporating an exact lower bound rule and a beam search
heuristic is used for tight upper bound.

In the train re-scheduling problem we have a disturbance in the
railway traffic network forcing us to modify the predefined
timetable in line with certain objective(s) and constraints. We
have a set of n trains, T = {ty, t,, . . . ,t,} on a set of m sections,
S={s1, S ..., Sm} Where each section s {station, line} have
a number of tracks p € {1, . . ., pj}. A station is called
symmetric if the choice of track to occupy has no, or negligible,
effect on the result.

Each train i has a set of events, K;, and the set of all train events
is denoted as K = {K,K,, . . . K.} and its cardinality is: C
=P|T| i=1 |K||. Each train event k has a predefined start time t
start k and end time tend Kk in line with the timetable and which
needs to be modified based on the minimum running time dk. It
also belongs to a specific section sge {si, S, . . . ,Sm}. Each
event is executed on exactly one track of its section.

The objective is to minimize the sum of the final delay suffered
by each train at its final destination within the problem instance.
The quality of the solution is thus given by this objective value,
where a lower value indicates an improvement.

The main objective of the sequential greedy algorithm is to
quickly find a feasible and good-enough solution, and therefore
it performs a depth-first search (DFS)[5]. It uses an evaluation
function to prioritize when conflicts arise and branches
according to a set of criteria.

Notation used when describing the parallel DFS algorithm .

The search tree is built iteratively by selecting the earliest event
of each train, collecting them into a candidate list and executing

the best event in this list and adding it to the tree[4]. An event
represents a train movement, i.e., a train running on a certain
section with a start time, a minimum running time, a preferred
track to occupy, and an end time. Each node in the search tree
represents either an active event (i.e. a track has been allocated
and a new start time has been set), or a terminated event (i.e.,
the train has left the assigned track and the corresponding event
has been assigned an end time)[3]. In each node, an optimistic
cost estimation is made of the solution which this branch at its
best could generate.

processing, (ii)depth-first search, and (iii)solution improvement
using backtracking and branching on potential nodes. In the
pre-processing phase, all events which were active at the
disturbance time TO (see Figure 2) are executed by allocating a
start time and a track. A candidate list which holds the next
event of each train is created and sorted w.r.t the earliest
starting time of the events.

In the second phase, feasible (i.e., deadlock free, without
conflicts, etc.) candidate events are executed. The candidate list
is updated accordingly with the next event of the train that just
executed an event (if it has any events left to execute). This is
repeated until a feasible solution is found, i.e., all events are
executed.

The third phase starts as soon as the first feasible solution has
been found and it aims to improve the best solution found so far
by backtracking to a potential node. A potential node is a node
that has an estimated cost that is lower than the currently best
solution, and another branch from this node is then explored.
The improvement process continues until the time limit is
reached or a feasible solution with an objective value as low as
the lower bound is found.

Our parallel algorithm is based on the sequential greedy
algorithm. The B&B procedure is improved by sharing
improved solutions among workers using a synchronized white
board. We use a master-slave parallelization strategy. Initially,
only the master is active and the workers (slaves) are waiting to
get the initial unexplored subspaces. Using the notations in

www.ijert.org

1346

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

1JERTV 21570557

Table, we outline the parallel algorithm starting with the master
thread.

Let NC and PS be empty, and the disturbance occurs at time
TO. As in the sequential algorithm, identify the events that are
active at TO, execute them, and put them into PS. Populate the
NC with the next event to execute of each train[2], sorted w.r.t
the earliest starting time, and compute the theoretical lower
bound. Determine the values of T.and W where W = T in these
experiments. A unique copy of the problem along with ET iy
C; and PS are sent to each worker.

The outline of the worker threads is as follows:

Candidate selection: First execute the candidate C;, determine
the new NC and get a suitable candidate based on the depth-
first search node selection rule.

Stopping criteria: If the bounds in term of execution time limit
ETLimit IS exceeded or the lower bound is reached, then
terminate and output the best result. If the candidate to execute,
i.e., C;, is not suitable then stop execution and return.

Read white board: Read the white board for availability of
improved solutions found by any other worker; if available,
then update BV,, in line with GBV.

B&B process: When CV,is greater than or equal to BV,,
discard the node, backtrack and try other alternatives, and
discard new branches from symmetric stations.

Feasible solution: If all of the train events are terminated and
an improved solution is found, then update GBV on the white
board with the improved solution. With an updated value of
BV,,, backtrack and start branching from the node with a value
less than BV,,.

Deadlock handling: In case of no track is available due. to
deadlock, backtrack and start branching where the wrong
decision was made.

Results: After termination, send back the solution' S(w). to
master.

Conclusion

VLSI, web applications, network, and data mining are
represented by using a massive graph. These applications need
graph search, checking all nodes in a graph with the goal of
finding a specific node with a given property. DFS is a
technique which helps to search a specific node in a huge graph
and with some modification we can convert the DFS algorithm
in a memory efficient or time efficient algorithm for i.e. DFS_h
, Iterative deepening , parallel DFS etc. we can use DFS in
different Projects where graph is used i.e. Road Networks |,
SPIHT, Railways Re-scheduling etc.

The idea of systematically exploring a graph lets us learn the
structure of a graph and thereby solve a wide variety of graph
problems. One particular powerful variant of graph exploration
is Depth first search.

References

[1]. Broder, A., R. Kumar, F. Maghoul, P. Raghavan, S.
Rajagopalan, R. Stata and A. Tomkins, J. Wiener, ‘Graph

Structure in the Web,” Computer
309-320, June 2000.

Networks, Vol. 33, pp.

[2]. Aggarwal, A., R.J. Anderson, ‘A Random NC Algorithm
for Depth First Search,” Cominatorica, 8(1), pp. 1-12,1988.

[3]. F. Corman. Real-time Railway Traffic Management,
Dispatching in complex, large and busy railway networks.
Ph.D. thesis, TechnischeUniversiteitDelft,The Netherlands,
December 2010. 90-5584-133-1.

[4]. A. Grama and V. Kumar. State of the art in parallel search
techniques for discrete optimization problems. IEEE Trans. on
Knowledge and Data Engineering, 11(1):28-35, 2002.

[5]- X. Zhou and M. Zhong. Single-track train timetabling with
guaranteed optimality: Branch-and-bound algorithms with
enhanced lower bounds. Transportation Research Part B:
Methodological, 41(3):320 — 341, 2007.

[6]. International journal on Artificial Intelligence Tools, vol .6,
no. 2 (1997) 255-271world scientific comapany

[7]. Jon Kleinberg and EvaTardos, Algorithm Design. Pearson
Education, 2006.

[8]. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Second Edition.The MIT Press,
September 2001.

[9]. M. Goodrich and R. Tamassia, Algorithm Design. John-
Wiley and Sons. 2002.

[10]. CS2 Algorithm and data structure note 10 CS2BH 31
January 2005

www.ijert.org

1347

