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Abstract 

 

In this paper, various applications of depth first serach 

algorithms (DFS) are surveyed. The value of  DFS or 

“Backtracking” as a technique for solving problem is illustrated 

by many applications such as cycle detection, strongly 

connected components, topological sort, find articulation point 

in a graph. The time complexity in different applications of 

DFS are also summarized. 
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Introduction   

 

There are many techniques for searching a graph. The DFS 

algorithm extends the current path as far as possible 

before backtracking to the last choice point and trying the next 

alternative path. Given a graph G = (V, E) where V stand for set 

of vertices and E stands for set of edges. A vertex u ϵ V,where 

we want to explore each vertex in graph. Let n = |V| and m = 

|E|. Basically a graph can be of two types: directed and 

undirected. Graph can be represented by two techniques : 1) by 

matrix, 2) by linked list. Now we assume graph is represented 

by a linked list. The advantages of such representation are: 

i)It requires  Ө(n+m) space  to store the vertices and there 

corresponding list, as opposed to Ө(n2) for the adjacency matrix 

 

ii)It makes it possible to go through the neighbours of a vertex 

u in О(|adj[u]|) time, linear in the number of neighbours. 

Graphs form a suitable abstraction for problems in many areas 

like chemistry, electrical engineering, sociology and many 

more. Thus it is important to have the most economical 

algorithmsfor answering graph-theoretical questions. 

DFS will process the vertices first deep and then wide. After 

processing a vertex, it recursively processes all of its 

descendants. Backtracking and depth first search is a technique 

which has been widely used to finding a solution of 

combinatorial theory and artificial intelligence [6]. 

Suppose G is a graph and we want to explore it. Initially all the 

vertices are unexplored than we start from a random vertex of 

graph G and now follow adjacent edge, traversing edge and 

visit new vertex we select single adjacent vertex and we 

continue in this way. At each step, we select an unexplored 

edge leading from a vertex already visited and we traverse this 

edge. The edge leads to some vertex, either new or already  

 

 

visited. Whenever we run out of edges leading from old 

vertices, we choose some unvisited vertex, if any exists, and 

begin a new exploration from this point. Eventually we will 

traverse all the edges of G, each exactly once[7]. 

 

Overall Strategy of DFS Algorithm 

Depth-first search selects a source vertex s in the graph and 

paint it as "visited." Now the vertex s becomes our current 

vertex. Then, we traverse the graph by considering an arbitrary 

edge (u, v) from the current vertex u. If the edge (u, v) takes us 

to a painted vertex v, then we back down to the vertex u. On the 

other hand, if edge (u, v) takes us to an unpainted vertex, then 

we paint the vertex v and make it our current vertex, and repeat 

the above computation. Sooner or later, we will get to a “dead 

end,” meaning all the edges from our current vertex u takes us 

to painted vertices. This is a deadlock. To get out of this, we 

back down along the edge that brought us here to vertex u and 

go back to a previously painted vertex v. We again make the 

vertex v our current vertex and start repeating the above 

computation for any edge that we missed earlier. If all of v's 

edges take us to painted vertices, then we again back down to 

the vertex we came from to get to vertex v, and repeat the 

computation at that vertex. Thus, we continue to back down the 

path that we have traced so far until we find a vertex that has 

yet unexplored edges, at which point we take one such edge and 

continue the traversal. When the depth-first search has 

backtracked all the way back to the original source vertex, s, it 

has built a DFS tree of all vertices reachable from that source. If 

there still undiscovered vertices in the graph, then it selects one 

of them as the source for another DFS tree. The result is a forest 

of DFS-trees. Note that the edges lead to new vertices are called 

discovery or tree edges and the edges lead to already visited 
(painted) vertices are called back edges[9]. 

In order to keep track of progress, depth-first-search colours 

each vertex. Each vertex of the graph is in one of three states: 

1. Undiscovered, 

2. Discovered but not finished (not done exploring from it), and 

3. Finished (have found everything reachable from it) i.e. fully 
explored. 

The state of a vertex, u, is stored in a color variable as follows: 

1. color[u] = White - for the "undiscovered" 

state, 

2. color[u] = Grey - for the "discovered but 

not finished" state, and 

3. color[u] = Black - for the "finished" state. 
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Like BFS, depth-first search uses π[v] to record the parent of 

vertex v. We have π[v] = NIL if and only if vertex v is the root 
of a depth-first tree. 

DFS time-stamps each vertex when its color is changed. 

1. When vertex v is changed from white to grey the 

time is recorded in d[v].  

2. When vertex v is changed from grey to black the 
time is recorded in f[v]. 

The discovery and the finish times are unique integers, where 

for each vertex the finish time is always after the discovery 

time. That is, each time-stamp is anunique integer in the range 

of 1 to 2|V| and for each vertex v, d[v] < f[v]. In other words, 
the following inequalities hold: 

 

Algorithm Depth-First Search 

The DFS forms a depth-first forest comprised of more than one 

depth-first trees. Each tree is made of edges (u, v) such that u is 

gray and v is white when edge (u, v) is explored. The following 
pseudo code for DFS uses a global timestamp time[8]. 

DFS (V, E) 

1.     for each vertex u in V[G] 

2.        do color[u] ← WHITE 

3.              π[u] ← NIL 

4.     time ← 0 

5.     for each vertex u in V[G] 

6.        do if color[u] ← WHITE 

7.                then DFS-Visit(u)  ▷ build a new 

DFS-tree from u 

 

DFS-Visit(u) 

1.     color[u] ← GRAY               ▷ discover u 

2.     time ← time + 1 

3.     d[u] ← time 

4.     for each vertex v adjacent to u   ▷ explore 

(u, v) 

5.        do if color[v] ← WHITE 

6.                then π[v] ← u 

7.                        DFS-Visit(v) 

8.     color[u] ← BLACK 

9.     time ← time + 1 

10.   f[u] ← time                                 ▷ we are 

done with u 

 

 

Applications of DFS 

There are a large number of applications which use depth first 

search algorithm. Some of these are discussed here: 
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1)Detecting cycles 

For this application first we should know about the types of 

edges in DFS algorithm. In DFS algorithm edges classify in 
four types . 

 Tree Edges   edge (u; v) is a tree edge if v was first 

discovered by exploring edge (u; v). The tree edges 

form a spanning forest of G (no cycles) . 

 Back Edge: an edge (u; v) is a back edge if it 

connects vertex u to an ancestor v in a DFS tree. 

 Forward edge: an edge (u; v) is a forward edge if it 

connects a vertex u to a descendant v in a DFS tree. 

 Cross edges: all other edges.  

 
 

We already know that all edges of G will be classified as either 

tree edges or back edges. In addition, if G is acyclic, then only 

tree edges will occur. This is because if G is acyclic, then it is a 

forest (disconnected trees). Therefore, we have the following 

result: An undirected graph is acyclic if DFS yields no back 

edges. Detecting cycle can be done in O(n + m) time by running 

DFS. We use a stack s to keep track of the path between the 

start vertex and current vertex. As soon as a back edge is 

encountered, we return the cycle as the portion of the stack 

from the  top to vertex w[7] . 

 

Algorithm  

 

1. CycleDFS( G, v, z) 

2.  SetLabel(v, VISITED) 

3.  S.push(v) 

4.for all e ϵ incidentEdges(v) 

5.      ifgetLabel(e) = UNEXPLORED  

6.          W ← opposite(v,e) 

7.           S.push(e) 

8.            IfgetLabel(w) = UNEXPLORED 

9.                  setLabel(e, DISCOVERY) 

10.                  pathDFS(G, w, z) 

11.S.pop() 

12.            else 

13.               C ← new empty stack 

14.repeat 

15.o←S.pop() 

16.C.push(o) 

17.                    until o = w 

18.                     returnc.elements() 

19.  S.pop() 

 

 

 

2)Topological Sorting 

 

A topological sort (sometimes abbreviated topsort  or  

toposort) or topological ordering of a directed graph is a 

linear ordering of its verticessuch that for every directed 

edge uv from vertex u to vertex v, u comes before v in the 

ordering. For instance, the vertices of the graph may represent 

tasks to be performed, and the edges may represent constraints 

that one task must be performed before another. In this 

application, a topological ordering is just a valid sequence for 

the tasks. A topological ordering is possible if and only if the 

graph has no directed cycles, that is, if it is a directed acyclic 

graph(DAG). Any DAG has at least one topological ordering. 

The algorithms are known for constructing a topological 

ordering of any DAG in linear time[10]. 

 

 
 

Before we can carry out the tasks we have to arrange them in an 

order that respects all the dependencies. This is what we call a 

topological order of the dependency graph. 

Let G = (V, E) be a directed graph. A topological order of G is 

a total order ‹ of the vertex set V such that for all edges (v ,w) ϵ 

E we have v ‹ w. 

Topological order of the graph may be different or more than 

one. For example, in this graph is 

 

7 ‹ 5‹ 3 ‹ 11 ‹ 8 ‹ 2 ‹ 9 ‹ 10 

7 ‹ 5 ‹ 3 ‹ 8 ‹ 11 ‹ 10 ‹ 2 ‹ 9 

7 ‹ 5 ‹ 3 ‹ 11 ‹ 8 ‹ 9 ‹ 10 ‹ 2   etc. 

 

A directed graph has a topological order if, and only if, it is a 

DAG. Our algorithm is based on DFS. Let G be a directed 

graph. Consider the execution of dfs(G). We define an order ‹ 

of the vertices of G by saying that v ‹ w if w becomes black 

before v (i.e., vertices that finish later are smaller in the 

order).If we find, during the execution of dfsFromVertex(G , v) 

for some vertex v, an edge from v to a grey vertex w, then we 

know that G contains a cycle. 

We can now modify our basic DFS algorithm in order to get an 

algorithm for computing the order ‹ and printing the vertices in 

this order. If the input graph G is not a DAG, our algorithm will 

simply print .G has a cycle.  The algorithm adds all vertices to 

the front of a linked list when they become black. Thus vertices 

becoming black earlier appear later in the list, which means that 

the list is in order ‹ . If during the execution of 

sortFromVertex(G , v) for some vertex v, an edge from v to a 
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grey vertex w is found, then there must be a cycle, and the 

algorithm reports this and stops. 

 

 

Algorithm 

 

topSort(G) 
1. Initialise array state by setting all entries to white. 

2. Initialise linked list L 

3. for all v ϵV do 

4. ifstate[v] = white then 

5. sortFromVertex(G , v) 

6. print all vertices in L in the order in which they appear 

 
 
sortFromVertex(G , v) 
1. state[v] ←grey 

2. for all w adjacent to v do 

3. ifstate[w] = white then 

4.  sortFromVertex(G , w) 

5.  else if state[w] = grey then 

6.  print.Ghas a cycle. 

7.  halt 

8. state[v] ←black 

9. L.insertFirst(v) 

 

 

3)Strongly Connected Component 

Decomposing a directed graph into its strongly connected 

components is a classic application of depth-first search. The 

problem of finding connected components is at the heart of 

many graph application. Generally speaking, the connected 

components of the graph correspond to different classes of 

objects. The first linear-time algorithm for strongly connected 

components is due to Tarjan (1972).  

Given a digraph or directed graph G = (V, E), a strongly 

connected component (SCC) of G is a maximal set of vertices C 

subset of  V, such that for all u, v in C, both u → v and v → u ,  

that is, both u and v are reachable from each other. In other 

words, two vertices of directed graph are in the same 

component if and only if they are reachable from each other. 

 
 

 

Now, as per the algorithm, perform DFS on this graph G 

produce below diagram. The dotted line From C to A indicates 

a Back edge  

 
 

Now, performing post order traversal on this tree gives: D , C , 

B , and A. 

Now reverse the given graph, G and call it as Gr and at the same 

time assign post order numbers to the vertices. The reverse 

graph Gr will look like: 

 
 

Let step is, perform DFS on this reversed graph Gr. While doing 

DFS we need to consider the vertex which has largest DFS 

number. So, first start at A and with DFS we go to C and then 

B. At B, we cannot move further. This says that (A, B, C) is 

strongly connected component. Now the only remaining 

element is D and we end our second DFS at D itself. So the 

connected component are (A, B, C) and (D). 

 

implementation based on this discussion can be given as: 

 
Algorithm 

 

1. intadjMatrix[256][256], table[256] 

2. Vector <int>st 

3. int counter = 0 

4. intdfsnum[256], num = 0, low[256] 

5. Void stronglyConnectedComponent(int u) 

6.  low[u] = dfsnum[u] = num++  

7.            Push(st, u); 

8.  for(int v = 0 ; v<256 ; ++v) 

9.   if(dfsnum[v] == -1) 

10.    stronglyConnectedComponent(v) 

11.   low[u] = min(low[u],low[v]); 

12.  if(low[u]==dfsnum[u]) 

13.   while(table[u]=counter) 
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14.    table[st.back()]=counter 

15.    Push(st) 

16.   ++counter  

4)Cut Vertex or Articulation Point 

 

In an undirected graph, a cut vertex is a vertex and if we 

remove it, then the graph splits into two disconnected 

components. As an example, consider the following figure. 

Removal of “D” vertex divides the graph into two connected 

components {E , F}and {A , B , C , G }. Similarly, removal C 

vertex divides the graph into {G} and {A, B, C,  D, E, F} . For 

this graph, A and C are the cut vertices. 

 

 
 

 

Note: A connected, undirected graph is called bi-connected if 

the graph is still connected after removing any vertex.  

DFS provides a linear-time algorithm (O(n)) to find all cut 

vertices in a connected graph. Starting at any vertex, call a DFS 

and number the nodes as they are visited.  For each vertex, we 

call this DFS number dfsnum(v). 

The tree generated with DFS traversal is called DFS spanning 

tree. Then, for every vertex v in the DFS spanning tree, we 

compute the lowest-numbered vertex, which we call low(v), 

that is reachable from v by taking zero or more tree edges and 

then possibly one back edge. 

Based on the above discussion, we need the following 

information for this algorithm. The dfsnum of each vertex in the 

DFS tree (once it gets visited), and for each vertex v, the lowest 

depth of neighbours of all descendants of v in the DFS tree, 

called the low. The dfsnum can be computed during DFS. The 

low of v can be computed after visiting all descendants of v (i.e. 

just before v gets popped off the DFS stack) as the minimum of 

the dfsnum of all neighbours of v (other than the parents of v in 

the DFS tree) and the low of all children of v in the DFS tree.  

The root vertex is a cut vertex if and only if it has at least two 

children. A non-root vertex u is a cut vertex if and only if there 

is a son v of u such that  low (v) ≥ dfsnum(u). This property can 

be tested once the DFS return from every child of u (that 

means, just before u gets popped off the DFS stack), and if true, 

u separates the graph into differentbi-connected Component  

 

.  

 

 

 

 This can be represented by computing one bi-connected 

component out of every such v (a component which contains v 

will contain the sub-tree of v, plus u), and then erasing the sub-

tree of v from the tree. 

 

Algorithm 

 

For the above graph, the DFS tree with dfsnum / low can be 

given as show in above figure.  

1. adjMatrix [256][256] 

2. dfsnum[256], num = 0, low[256] 

3. void cutVertices(int u) 

4.  low[u] = dfsnum[u] = num++ 

5.  For(int v = 0 ; v <  256 ; ++v) 

6.   If(adjMatrix[u][v] &&dfsnum[v]= = -1) 

7.    CutVertices(v) 

8.    If(low[v] >dfsnum[u]) 

9.     Print  “u” 

10.    low[u] = min (low[u] , low [v] ) 

11.   else     // (u,v) is a back edge   

12.    low[u] = min(low[u], dfsnum[v]) 

 

 

5)Train Rescheduling During Traffic Disturbances 

 

Railways are an important part of the infrastructure in most 

countries. The railway network consists of station and line 

sections, tracks, blocks, and events. Each station and line 

section can have one or more parallel tracks. All tracks are 

bidirectional, i.e. the track can be used for traffic in both 

directions depending on the schedule. A train uses exactly one 

track on a station or line section, but which specific track to use 

is often not predefined and therefore part of the re-scheduling 

problem. Each track is composed of one or several blocks 

connected serially and separated by signals. Each block can 

only be used by at most one train at a time due to the safety 

restriction imposed by line blocking[4]. A track with two 
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blocks can in theory hold two trains in the same direction, but 

not two trains in opposite direction due to the lack of a meeting 

point.  

Each train has an individual, fixed route (i.e., the sequence of 

sections to occupy) which is represented as a sequence of train 

events to execute. A train event is when a certain train occupies 

a certain section. A train event has certain static properties such 

as minimum running time but also some dynamic properties, 

e.g., track allocation and start and end times on the section. 

The railway traffic delay management and re-scheduling 

problem has been considered an important and difficult 

problem since quite some time[4]. It has been studied from 

different perspectives such as capacity, robustness, as well as 

passenger delay and dissatisfaction. 

The capacitated delay management problem is a special case of 

the job shop scheduling (JSS) problem, where train trips are 

jobs which are scheduled on tracks that are considered as 

resources. A branch and bound (B&B) procedure is proposed 

for resource constrained project scheduling formulation by 

incorporating an exact lower bound rule and a beam search 

heuristic is used for tight upper bound.  

In the train re-scheduling problem we have a disturbance in the 

railway traffic network forcing us to modify the predefined 

timetable in line with certain objective(s) and constraints. We 

have a set of n trains, T = {t1, t2, . . . ,tn} on a set of m sections, 

S = {s1, s2, . . . , sm} where each section sjϵ {station, line} have 

a number of tracks p ϵ {1, . . . , pj}. A station is called 

symmetric if the choice of track to occupy has no, or negligible, 

effect on the result. 

Each train i has a set of events, Ki, and the set of all train events 

is denoted as K = {K1,K2, . . . ,Kn} and its cardinality is: C 

=P|T|  i=1 |Ki|. Each train event k has a predefined start time t 

start k and end time tend k in line with the timetable and which 

needs to be modified based on the minimum running time dk. It 

also belongs to a specific section skϵ {s1, s2, . . . ,sm}. Each 

event is executed on exactly one track of its section.  

The objective is to minimize the sum of the final delay suffered 

by each train at its final destination within the problem instance. 

The quality of the solution is thus given by this objective value, 

where a lower value indicates an improvement. 

 

The main objective of the sequential greedy algorithm is to 

quickly find a feasible and good-enough solution, and therefore 

it performs a depth-first search (DFS)[5]. It uses an evaluation 

function to prioritize when conflicts arise and branches 

according to a set of criteria. 

Notation used when describing the parallel DFS algorithm . 

The search tree is built iteratively by selecting the earliest event 

of each train, collecting them into a candidate list and executing 

 

the best event in this list and adding it to the tree[4]. An event 

represents a train movement, i.e., a train running on a certain 

section with a start time, a minimum running time, a preferred 

track to occupy, and an end time. Each node in the search tree 

represents either an active event (i.e. a track has been allocated 

and a new start time has been set), or a terminated event (i.e., 

the train has left the assigned track and the corresponding event 

has been assigned an end time)[3]. In each node, an optimistic 

cost estimation is made of the solution which this branch at its 

best could generate. 

 

processing, (ii)depth-first search, and (iii)solution improvement 

using backtracking and branching on potential nodes. In the 

pre-processing phase, all events which were active at the 

disturbance time T0 (see Figure 2) are executed by allocating a 

start time and a track. A candidate list which holds the next 

event of each train is created and sorted w.r.t the earliest 

starting time of the events. 

In the second phase, feasible (i.e., deadlock free, without 

conflicts, etc.) candidate events are executed. The candidate list 

is updated accordingly with the next event of the train that just 

executed an event (if it has any events left to execute). This is 

repeated until a feasible solution is found, i.e., all events are 

executed. 

The third phase starts as soon as the first feasible solution has 

been found and it aims to improve the best solution found so far 

by backtracking to a potential node. A potential node is a node 

that has an estimated cost that is lower than the currently best 

solution, and another branch from this node is then explored. 

The improvement process continues until the time limit is 

reached or a feasible solution with an objective value as low as 

the lower bound is found. 

Our parallel algorithm is based on the sequential greedy 

algorithm. The B&B procedure is improved by sharing 

improved solutions among workers using a synchronized white 

board. We use a master-slave parallelization strategy. Initially, 

only the master is active and the workers (slaves) are waiting to 

get the initial unexplored subspaces. Using the notations in 
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Table, we outline the parallel algorithm starting with the master 

thread. 

Let NC and PS be empty, and the disturbance occurs at time 

T0. As in the sequential algorithm, identify the events that are 

active at T0, execute them, and put them into PS. Populate the 

NC with the next event to execute of each train[2], sorted w.r.t 

the earliest starting time, and compute the theoretical lower 

bound. Determine the values of Tcand W where W = Tc in these 

experiments. A unique copy of the problem along with ETLimit, 

Ci and PS are sent to each worker.  

The outline of the worker threads is as follows: 

Candidate selection: First execute the candidate Ci, determine 

the new NC and get a suitable candidate based on the depth-

first search node selection rule.  

Stopping criteria: If the bounds in term of execution time limit 

ETLimit is exceeded or the lower bound is reached, then 

terminate and output the best result. If the candidate to execute, 

i.e., Ci, is not suitable then stop execution and return. 

Read white board: Read the white board for availability of 

improved solutions found by any other worker; if available, 

then update BVw in line with GBV.  

B&B process: When CVwis greater than or equal to BVw, 

discard the node, backtrack and try other alternatives, and 

discard new branches from symmetric stations. 

Feasible solution: If all of the train events are terminated and 

an improved solution is found, then update GBV on the white 

board with the improved solution. With an updated value of 

BVw, backtrack and start branching from the node with a value 

less than BVw.  

Deadlock handling: In case of no track is available due to 

deadlock, backtrack and start branching where the wrong 

decision was made.  

Results: After termination, send back the solution S(w) to 

master. 

 

Conclusion 

 

VLSI, web applications, network, and data mining are 

represented by using a massive graph. These applications need 

graph search, checking all nodes in a graph with the goal of 

finding a specific node with a given property. DFS is a 

technique which helps to search a specific node in a huge graph 

and with some modification we can convert the DFS algorithm 

in a memory efficient or time efficient algorithm for i.e. DFS_h 

, Iterative deepening , parallel DFS etc. we can use  DFS in 

different Projects where graph is used i.e. Road Networks , 

SPIHT, Railways Re-scheduling  etc. 

The idea of systematically exploring a graph lets us learn the 

structure of a graph and thereby solve a wide variety of graph 

problems.  One particular powerful variant of graph exploration 

is Depth first search. 
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