
Applications of Depth First Search: A Survey

Gaurav Rathi, Dr. Shivani Goel

Thapar University, Patiala (Punjab)

Abstract

In this paper, various applications of depth first serach

algorithms (DFS) are surveyed. The value of DFS or

“Backtracking” as a technique for solving problem is illustrated

by many applications such as cycle detection, strongly

connected components, topological sort, find articulation point

in a graph. The time complexity in different applications of

DFS are also summarized.

Keywords

Depth first search, articulation point, strongly connected

component, detecting cycle, graph, topological sort, railway

rescheduling.

Introduction

There are many techniques for searching a graph. The DFS

algorithm extends the current path as far as possible

before backtracking to the last choice point and trying the next

alternative path. Given a graph G = (V, E) where V stand for set

of vertices and E stands for set of edges. A vertex u ϵ V,where

we want to explore each vertex in graph. Let n = |V| and m =

|E|. Basically a graph can be of two types: directed and

undirected. Graph can be represented by two techniques : 1) by

matrix, 2) by linked list. Now we assume graph is represented

by a linked list. The advantages of such representation are:

i)It requires Ө(n+m) space to store the vertices and there

corresponding list, as opposed to Ө(n2) for the adjacency matrix

ii)It makes it possible to go through the neighbours of a vertex

u in О(|adj[u]|) time, linear in the number of neighbours.

Graphs form a suitable abstraction for problems in many areas

like chemistry, electrical engineering, sociology and many

more. Thus it is important to have the most economical

algorithmsfor answering graph-theoretical questions.

DFS will process the vertices first deep and then wide. After

processing a vertex, it recursively processes all of its

descendants. Backtracking and depth first search is a technique

which has been widely used to finding a solution of

combinatorial theory and artificial intelligence [6].

Suppose G is a graph and we want to explore it. Initially all the

vertices are unexplored than we start from a random vertex of

graph G and now follow adjacent edge, traversing edge and

visit new vertex we select single adjacent vertex and we

continue in this way. At each step, we select an unexplored

edge leading from a vertex already visited and we traverse this

edge. The edge leads to some vertex, either new or already

visited. Whenever we run out of edges leading from old

vertices, we choose some unvisited vertex, if any exists, and

begin a new exploration from this point. Eventually we will

traverse all the edges of G, each exactly once[7].

Overall Strategy of DFS Algorithm

Depth-first search selects a source vertex s in the graph and

paint it as "visited." Now the vertex s becomes our current

vertex. Then, we traverse the graph by considering an arbitrary

edge (u, v) from the current vertex u. If the edge (u, v) takes us

to a painted vertex v, then we back down to the vertex u. On the

other hand, if edge (u, v) takes us to an unpainted vertex, then

we paint the vertex v and make it our current vertex, and repeat

the above computation. Sooner or later, we will get to a “dead

end,” meaning all the edges from our current vertex u takes us

to painted vertices. This is a deadlock. To get out of this, we

back down along the edge that brought us here to vertex u and

go back to a previously painted vertex v. We again make the

vertex v our current vertex and start repeating the above

computation for any edge that we missed earlier. If all of v's

edges take us to painted vertices, then we again back down to

the vertex we came from to get to vertex v, and repeat the

computation at that vertex. Thus, we continue to back down the

path that we have traced so far until we find a vertex that has

yet unexplored edges, at which point we take one such edge and

continue the traversal. When the depth-first search has

backtracked all the way back to the original source vertex, s, it

has built a DFS tree of all vertices reachable from that source. If

there still undiscovered vertices in the graph, then it selects one

of them as the source for another DFS tree. The result is a forest

of DFS-trees. Note that the edges lead to new vertices are called

discovery or tree edges and the edges lead to already visited
(painted) vertices are called back edges[9].

In order to keep track of progress, depth-first-search colours

each vertex. Each vertex of the graph is in one of three states:

1. Undiscovered,

2. Discovered but not finished (not done exploring from it), and

3. Finished (have found everything reachable from it) i.e. fully
explored.

The state of a vertex, u, is stored in a color variable as follows:

1. color[u] = White - for the "undiscovered"

state,

2. color[u] = Grey - for the "discovered but

not finished" state, and

3. color[u] = Black - for the "finished" state.

1341

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70557

Like BFS, depth-first search uses π[v] to record the parent of

vertex v. We have π[v] = NIL if and only if vertex v is the root
of a depth-first tree.

DFS time-stamps each vertex when its color is changed.

1. When vertex v is changed from white to grey the

time is recorded in d[v].

2. When vertex v is changed from grey to black the
time is recorded in f[v].

The discovery and the finish times are unique integers, where

for each vertex the finish time is always after the discovery

time. That is, each time-stamp is anunique integer in the range

of 1 to 2|V| and for each vertex v, d[v] < f[v]. In other words,
the following inequalities hold:

Algorithm Depth-First Search

The DFS forms a depth-first forest comprised of more than one

depth-first trees. Each tree is made of edges (u, v) such that u is

gray and v is white when edge (u, v) is explored. The following
pseudo code for DFS uses a global timestamp time[8].

DFS (V, E)

1. for each vertex u in V[G]

2. do color[u] ← WHITE

3. π[u] ← NIL

4. time ← 0

5. for each vertex u in V[G]

6. do if color[u] ← WHITE

7. then DFS-Visit(u) ▷ build a new

DFS-tree from u

DFS-Visit(u)

1. color[u] ← GRAY ▷ discover u

2. time ← time + 1

3. d[u] ← time

4. for each vertex v adjacent to u ▷ explore

(u, v)

5. do if color[v] ← WHITE

6. then π[v] ← u

7. DFS-Visit(v)

8. color[u] ← BLACK

9. time ← time + 1

10. f[u] ← time ▷ we are

done with u

Applications of DFS

There are a large number of applications which use depth first

search algorithm. Some of these are discussed here:

1342

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70557

1)Detecting cycles

For this application first we should know about the types of

edges in DFS algorithm. In DFS algorithm edges classify in
four types .

 Tree Edges edge (u; v) is a tree edge if v was first

discovered by exploring edge (u; v). The tree edges

form a spanning forest of G (no cycles) .

 Back Edge: an edge (u; v) is a back edge if it

connects vertex u to an ancestor v in a DFS tree.

 Forward edge: an edge (u; v) is a forward edge if it

connects a vertex u to a descendant v in a DFS tree.

 Cross edges: all other edges.

We already know that all edges of G will be classified as either

tree edges or back edges. In addition, if G is acyclic, then only

tree edges will occur. This is because if G is acyclic, then it is a

forest (disconnected trees). Therefore, we have the following

result: An undirected graph is acyclic if DFS yields no back

edges. Detecting cycle can be done in O(n + m) time by running

DFS. We use a stack s to keep track of the path between the

start vertex and current vertex. As soon as a back edge is

encountered, we return the cycle as the portion of the stack

from the top to vertex w[7] .

Algorithm

1. CycleDFS(G, v, z)

2. SetLabel(v, VISITED)

3. S.push(v)

4.for all e ϵ incidentEdges(v)

5. ifgetLabel(e) = UNEXPLORED

6. W ← opposite(v,e)

7. S.push(e)

8. IfgetLabel(w) = UNEXPLORED

9. setLabel(e, DISCOVERY)

10. pathDFS(G, w, z)

11.S.pop()

12. else

13. C ← new empty stack

14.repeat

15.o←S.pop()

16.C.push(o)

17. until o = w

18. returnc.elements()

19. S.pop()

2)Topological Sorting

A topological sort (sometimes abbreviated topsort or

toposort) or topological ordering of a directed graph is a

linear ordering of its verticessuch that for every directed

edge uv from vertex u to vertex v, u comes before v in the

ordering. For instance, the vertices of the graph may represent

tasks to be performed, and the edges may represent constraints

that one task must be performed before another. In this

application, a topological ordering is just a valid sequence for

the tasks. A topological ordering is possible if and only if the

graph has no directed cycles, that is, if it is a directed acyclic

graph(DAG). Any DAG has at least one topological ordering.

The algorithms are known for constructing a topological

ordering of any DAG in linear time[10].

Before we can carry out the tasks we have to arrange them in an

order that respects all the dependencies. This is what we call a

topological order of the dependency graph.

Let G = (V, E) be a directed graph. A topological order of G is

a total order ‹ of the vertex set V such that for all edges (v ,w) ϵ

E we have v ‹ w.

Topological order of the graph may be different or more than

one. For example, in this graph is

7 ‹ 5‹ 3 ‹ 11 ‹ 8 ‹ 2 ‹ 9 ‹ 10

7 ‹ 5 ‹ 3 ‹ 8 ‹ 11 ‹ 10 ‹ 2 ‹ 9

7 ‹ 5 ‹ 3 ‹ 11 ‹ 8 ‹ 9 ‹ 10 ‹ 2 etc.

A directed graph has a topological order if, and only if, it is a

DAG. Our algorithm is based on DFS. Let G be a directed

graph. Consider the execution of dfs(G). We define an order ‹

of the vertices of G by saying that v ‹ w if w becomes black

before v (i.e., vertices that finish later are smaller in the

order).If we find, during the execution of dfsFromVertex(G , v)

for some vertex v, an edge from v to a grey vertex w, then we

know that G contains a cycle.

We can now modify our basic DFS algorithm in order to get an

algorithm for computing the order ‹ and printing the vertices in

this order. If the input graph G is not a DAG, our algorithm will

simply print .G has a cycle. The algorithm adds all vertices to

the front of a linked list when they become black. Thus vertices

becoming black earlier appear later in the list, which means that

the list is in order ‹ . If during the execution of

sortFromVertex(G , v) for some vertex v, an edge from v to a

1343

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70557

grey vertex w is found, then there must be a cycle, and the

algorithm reports this and stops.

Algorithm

topSort(G)
1. Initialise array state by setting all entries to white.

2. Initialise linked list L

3. for all v ϵV do

4. ifstate[v] = white then

5. sortFromVertex(G , v)

6. print all vertices in L in the order in which they appear

sortFromVertex(G , v)
1. state[v] ←grey

2. for all w adjacent to v do

3. ifstate[w] = white then

4. sortFromVertex(G , w)

5. else if state[w] = grey then

6. print.Ghas a cycle.

7. halt

8. state[v] ←black

9. L.insertFirst(v)

3)Strongly Connected Component

Decomposing a directed graph into its strongly connected

components is a classic application of depth-first search. The

problem of finding connected components is at the heart of

many graph application. Generally speaking, the connected

components of the graph correspond to different classes of

objects. The first linear-time algorithm for strongly connected

components is due to Tarjan (1972).

Given a digraph or directed graph G = (V, E), a strongly

connected component (SCC) of G is a maximal set of vertices C

subset of V, such that for all u, v in C, both u → v and v → u ,

that is, both u and v are reachable from each other. In other

words, two vertices of directed graph are in the same

component if and only if they are reachable from each other.

Now, as per the algorithm, perform DFS on this graph G

produce below diagram. The dotted line From C to A indicates

a Back edge

Now, performing post order traversal on this tree gives: D , C ,

B , and A.

Now reverse the given graph, G and call it as Gr and at the same

time assign post order numbers to the vertices. The reverse

graph Gr will look like:

Let step is, perform DFS on this reversed graph Gr. While doing

DFS we need to consider the vertex which has largest DFS

number. So, first start at A and with DFS we go to C and then

B. At B, we cannot move further. This says that (A, B, C) is

strongly connected component. Now the only remaining

element is D and we end our second DFS at D itself. So the

connected component are (A, B, C) and (D).

implementation based on this discussion can be given as:

Algorithm

1. intadjMatrix[256][256], table[256]

2. Vector <int>st

3. int counter = 0

4. intdfsnum[256], num = 0, low[256]

5. Void stronglyConnectedComponent(int u)

6. low[u] = dfsnum[u] = num++

7. Push(st, u);

8. for(int v = 0 ; v<256 ; ++v)

9. if(dfsnum[v] == -1)

10. stronglyConnectedComponent(v)

11. low[u] = min(low[u],low[v]);

12. if(low[u]==dfsnum[u])

13. while(table[u]=counter)

1344

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70557

14. table[st.back()]=counter

15. Push(st)

16. ++counter

4)Cut Vertex or Articulation Point

In an undirected graph, a cut vertex is a vertex and if we

remove it, then the graph splits into two disconnected

components. As an example, consider the following figure.

Removal of “D” vertex divides the graph into two connected

components {E , F}and {A , B , C , G }. Similarly, removal C

vertex divides the graph into {G} and {A, B, C, D, E, F} . For

this graph, A and C are the cut vertices.

Note: A connected, undirected graph is called bi-connected if

the graph is still connected after removing any vertex.

DFS provides a linear-time algorithm (O(n)) to find all cut

vertices in a connected graph. Starting at any vertex, call a DFS

and number the nodes as they are visited. For each vertex, we

call this DFS number dfsnum(v).

The tree generated with DFS traversal is called DFS spanning

tree. Then, for every vertex v in the DFS spanning tree, we

compute the lowest-numbered vertex, which we call low(v),

that is reachable from v by taking zero or more tree edges and

then possibly one back edge.

Based on the above discussion, we need the following

information for this algorithm. The dfsnum of each vertex in the

DFS tree (once it gets visited), and for each vertex v, the lowest

depth of neighbours of all descendants of v in the DFS tree,

called the low. The dfsnum can be computed during DFS. The

low of v can be computed after visiting all descendants of v (i.e.

just before v gets popped off the DFS stack) as the minimum of

the dfsnum of all neighbours of v (other than the parents of v in

the DFS tree) and the low of all children of v in the DFS tree.

The root vertex is a cut vertex if and only if it has at least two

children. A non-root vertex u is a cut vertex if and only if there

is a son v of u such that low (v) ≥ dfsnum(u). This property can

be tested once the DFS return from every child of u (that

means, just before u gets popped off the DFS stack), and if true,

u separates the graph into differentbi-connected Component

.

 This can be represented by computing one bi-connected

component out of every such v (a component which contains v

will contain the sub-tree of v, plus u), and then erasing the sub-

tree of v from the tree.

Algorithm

For the above graph, the DFS tree with dfsnum / low can be

given as show in above figure.

1. adjMatrix [256][256]

2. dfsnum[256], num = 0, low[256]

3. void cutVertices(int u)

4. low[u] = dfsnum[u] = num++

5. For(int v = 0 ; v < 256 ; ++v)

6. If(adjMatrix[u][v] &&dfsnum[v]= = -1)

7. CutVertices(v)

8. If(low[v] >dfsnum[u])

9. Print “u”

10. low[u] = min (low[u] , low [v])

11. else // (u,v) is a back edge

12. low[u] = min(low[u], dfsnum[v])

5)Train Rescheduling During Traffic Disturbances

Railways are an important part of the infrastructure in most

countries. The railway network consists of station and line

sections, tracks, blocks, and events. Each station and line

section can have one or more parallel tracks. All tracks are

bidirectional, i.e. the track can be used for traffic in both

directions depending on the schedule. A train uses exactly one

track on a station or line section, but which specific track to use

is often not predefined and therefore part of the re-scheduling

problem. Each track is composed of one or several blocks

connected serially and separated by signals. Each block can

only be used by at most one train at a time due to the safety

restriction imposed by line blocking[4]. A track with two

1345

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70557

blocks can in theory hold two trains in the same direction, but

not two trains in opposite direction due to the lack of a meeting

point.

Each train has an individual, fixed route (i.e., the sequence of

sections to occupy) which is represented as a sequence of train

events to execute. A train event is when a certain train occupies

a certain section. A train event has certain static properties such

as minimum running time but also some dynamic properties,

e.g., track allocation and start and end times on the section.

The railway traffic delay management and re-scheduling

problem has been considered an important and difficult

problem since quite some time[4]. It has been studied from

different perspectives such as capacity, robustness, as well as

passenger delay and dissatisfaction.

The capacitated delay management problem is a special case of

the job shop scheduling (JSS) problem, where train trips are

jobs which are scheduled on tracks that are considered as

resources. A branch and bound (B&B) procedure is proposed

for resource constrained project scheduling formulation by

incorporating an exact lower bound rule and a beam search

heuristic is used for tight upper bound.

In the train re-scheduling problem we have a disturbance in the

railway traffic network forcing us to modify the predefined

timetable in line with certain objective(s) and constraints. We

have a set of n trains, T = {t1, t2, . . . ,tn} on a set of m sections,

S = {s1, s2, . . . , sm} where each section sjϵ {station, line} have

a number of tracks p ϵ {1, . . . , pj}. A station is called

symmetric if the choice of track to occupy has no, or negligible,

effect on the result.

Each train i has a set of events, Ki, and the set of all train events

is denoted as K = {K1,K2, . . . ,Kn} and its cardinality is: C

=P|T| i=1 |Ki|. Each train event k has a predefined start time t

start k and end time tend k in line with the timetable and which

needs to be modified based on the minimum running time dk. It

also belongs to a specific section skϵ {s1, s2, . . . ,sm}. Each

event is executed on exactly one track of its section.

The objective is to minimize the sum of the final delay suffered

by each train at its final destination within the problem instance.

The quality of the solution is thus given by this objective value,

where a lower value indicates an improvement.

The main objective of the sequential greedy algorithm is to

quickly find a feasible and good-enough solution, and therefore

it performs a depth-first search (DFS)[5]. It uses an evaluation

function to prioritize when conflicts arise and branches

according to a set of criteria.

Notation used when describing the parallel DFS algorithm .

The search tree is built iteratively by selecting the earliest event

of each train, collecting them into a candidate list and executing

the best event in this list and adding it to the tree[4]. An event

represents a train movement, i.e., a train running on a certain

section with a start time, a minimum running time, a preferred

track to occupy, and an end time. Each node in the search tree

represents either an active event (i.e. a track has been allocated

and a new start time has been set), or a terminated event (i.e.,

the train has left the assigned track and the corresponding event

has been assigned an end time)[3]. In each node, an optimistic

cost estimation is made of the solution which this branch at its

best could generate.

processing, (ii)depth-first search, and (iii)solution improvement

using backtracking and branching on potential nodes. In the

pre-processing phase, all events which were active at the

disturbance time T0 (see Figure 2) are executed by allocating a

start time and a track. A candidate list which holds the next

event of each train is created and sorted w.r.t the earliest

starting time of the events.

In the second phase, feasible (i.e., deadlock free, without

conflicts, etc.) candidate events are executed. The candidate list

is updated accordingly with the next event of the train that just

executed an event (if it has any events left to execute). This is

repeated until a feasible solution is found, i.e., all events are

executed.

The third phase starts as soon as the first feasible solution has

been found and it aims to improve the best solution found so far

by backtracking to a potential node. A potential node is a node

that has an estimated cost that is lower than the currently best

solution, and another branch from this node is then explored.

The improvement process continues until the time limit is

reached or a feasible solution with an objective value as low as

the lower bound is found.

Our parallel algorithm is based on the sequential greedy

algorithm. The B&B procedure is improved by sharing

improved solutions among workers using a synchronized white

board. We use a master-slave parallelization strategy. Initially,

only the master is active and the workers (slaves) are waiting to

get the initial unexplored subspaces. Using the notations in

1346

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70557

Table, we outline the parallel algorithm starting with the master

thread.

Let NC and PS be empty, and the disturbance occurs at time

T0. As in the sequential algorithm, identify the events that are

active at T0, execute them, and put them into PS. Populate the

NC with the next event to execute of each train[2], sorted w.r.t

the earliest starting time, and compute the theoretical lower

bound. Determine the values of Tcand W where W = Tc in these

experiments. A unique copy of the problem along with ETLimit,

Ci and PS are sent to each worker.

The outline of the worker threads is as follows:

Candidate selection: First execute the candidate Ci, determine

the new NC and get a suitable candidate based on the depth-

first search node selection rule.

Stopping criteria: If the bounds in term of execution time limit

ETLimit is exceeded or the lower bound is reached, then

terminate and output the best result. If the candidate to execute,

i.e., Ci, is not suitable then stop execution and return.

Read white board: Read the white board for availability of

improved solutions found by any other worker; if available,

then update BVw in line with GBV.

B&B process: When CVwis greater than or equal to BVw,

discard the node, backtrack and try other alternatives, and

discard new branches from symmetric stations.

Feasible solution: If all of the train events are terminated and

an improved solution is found, then update GBV on the white

board with the improved solution. With an updated value of

BVw, backtrack and start branching from the node with a value

less than BVw.

Deadlock handling: In case of no track is available due to

deadlock, backtrack and start branching where the wrong

decision was made.

Results: After termination, send back the solution S(w) to

master.

Conclusion

VLSI, web applications, network, and data mining are

represented by using a massive graph. These applications need

graph search, checking all nodes in a graph with the goal of

finding a specific node with a given property. DFS is a

technique which helps to search a specific node in a huge graph

and with some modification we can convert the DFS algorithm

in a memory efficient or time efficient algorithm for i.e. DFS_h

, Iterative deepening , parallel DFS etc. we can use DFS in

different Projects where graph is used i.e. Road Networks ,

SPIHT, Railways Re-scheduling etc.

The idea of systematically exploring a graph lets us learn the

structure of a graph and thereby solve a wide variety of graph

problems. One particular powerful variant of graph exploration

is Depth first search.

References

[1]. Broder, A., R. Kumar, F. Maghoul, P. Raghavan, S.

Rajagopalan, R. Stata and A. Tomkins, J. Wiener, „Graph

Structure in the Web,‟ Computer Networks, Vol. 33, pp.

309–320, June 2000.

[2]. Aggarwal, A., R.J. Anderson, „A Random NC Algorithm

for Depth First Search,‟ Cominatorica, 8(1), pp. 1–12,1988.

[3]. F. Corman. Real-time Railway Traffic Management,

Dispatching in complex, large and busy railway networks.

Ph.D. thesis, TechnischeUniversiteitDelft,The Netherlands,

December 2010. 90-5584-133-1.

[4]. A. Grama and V. Kumar. State of the art in parallel search

techniques for discrete optimization problems. IEEE Trans. on

Knowledge and Data Engineering, 11(1):28–35, 2002.

[5]. X. Zhou and M. Zhong. Single-track train timetabling with

guaranteed optimality: Branch-and-bound algorithms with

enhanced lower bounds. Transportation Research Part B:

Methodological, 41(3):320 – 341, 2007.

[6]. International journal on Artificial Intelligence Tools, vol .6,

no. 2 (1997) 255-271world scientific comapany

[7]. Jon Kleinberg and ÉvaTardos, Algorithm Design. Pearson

Education, 2006.

[8]. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, Second Edition.The MIT Press,

September 2001.

[9]. M. Goodrich and R. Tamassia, Algorithm Design. John-

Wiley and Sons. 2002.

[10]. CS2 Algorithm and data structure note 10 CS2BH 31

January 2005

1347

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70557

