Application of the Affine Theorem to an Orthotropic Rectangular Reinforced Concrete Slab Having a interior Corner Opening

\author{

1. Dr. J. Vikranth, Associate Professor, Department of Civil Engineering, Anil Neerukonda Institute of Technology and Sciences, (ANITS), Sangivalasa, Bheemunipatnam Mandal, Visakhapatnam- 531162, India.
}

2. PVRK Reddy, Assistant Professor, Department of Civil Engineering, Anil Neerukonda Institute of Technology and Sciences, (ANITS), Sangivalasa, Bheemunipatnam Mandal, Visakhapatnam- 531162, India.

3. Prof. K. Rambabu, Department of Civil Engineering, Andhra University College of Engineering, Visakhapatnam - 530003, India.

Abstract

An attempt has been made to applythe affinity theorem to determine collapse load of two-way orthotropic slab withainterior corner openingwith Onelong side continuous and other three sides simply supported slab (OLC) and One long sidesimply supported and other three sides continuous slab (OLD).Keeping in view the basic principles of yield line theory, all possible admissible yield line patterns are considered for the given configuration of the slab subjected to uniformly distributed load (udl). A computer program has been developed to solve the virtual work equations derived in this paper. Illustration of above methodology has been brought out with numerical examples. Relevant tables and charts for given data and the governing admissible failure patterns of the slab for different sizes of openings are presented using the affine theorem. In this paper, authors also present the transformation of orthotropic slab into an equivalent isotropic slab using the affine theorem. The analysis is carried out with aspect ratio of opening quite different to that the slab.

Key Words:aspect ratio, interior corneropening, configuration, affinity theorem, orthotropic slab, uniformly distributed load, ultimate load, ultimatemoment and virtual work equations.

INTRODUCTION

Openings in slabs are usually required for plumbing, fire protection pipes, heat and ventilation ducts and air conditioning. Larger openings that could amount to the elimination of a large area within a slab panel are sometimes required for stairs and elevators shafts. For newly constructed slabs, the locations and sizes of the required openings are usually predetermined in the early stages of design and are accommodated accordingly. Such two way slabs subjected to uniformly distributed load and supported on various edge conditions are being analyzed by using yield-line method as suggested by Johansen, K.W ${ }^{1}$. Many researchers (Goli,H.B. et al ${ }^{2}$, Rambabu,K. et al ${ }^{3}$,Islam,S. et al^{4}, Zaslavsky.Aron ${ }^{5}$, Siva Rama Prasad et al ${ }^{6}$, Sudhakar,K.J. et al ${ }^{7}$, Veerendra Kumaret al ${ }^{8}$) adopted the yield-line analysis and virtual work method in deriving the virtual work equations of the rectangular reinforced concrete solid slabs subjected to uniformly distributed load and supported on various edge conditions. Johansen, K. W^{1}, also presented the analysis of orthogonal solid slabs implicitly to that of an equivalentisotropic slab by using "Affine Theorem" provided the ratio of negative to positive moments is same in the orthogonal directions. Various design charts are presented byIslam,S. et al^{4} for continuous slab(CS) and simply supported(SS) slabs with equalopenings,i.e. ratio of openings and aspect ratio are same. Whereas in this paper similar charts are presented for twoedge conditions with aspect ratio of slab and opening different.

Methodology

The method of determining collapse loads based on principle of virtual work has proved to be a powerful tool for a structural engineer, despite it gives an upper bound value. The work equations are formed by equating the energy absorbed by yield lines and the work done by the external load of the orthogonal rectangular slab with interior corneropenings where a small virtual displacement is given to the slab. The same principle was also used by Islam,S. et al ${ }^{4}$ in their paper. In other words, the work equation is given by

$$
\begin{equation*}
\iint W_{u l t} \delta(x, y) d x d y=\sum\left(m_{u l t, x} \theta_{x} y_{0}+m_{u l t, y} \theta_{y} x_{0}\right) \tag{1}
\end{equation*}
$$

where $W_{u l t}$ is the ultimate load per unit area of slab, $\delta(x, y)$ is the virtual displacement in the direction of the loading at the element of area of dimensions $d x, d y, m_{u l t, x}$ and $m_{u l t, y}$ are the yield moments per unit width in the x and y directions, θ_{x} and θ_{y} are the components of the virtual rotation of the slab segments in the x and y directions and x_{0} and y_{0} are the projected length of the yield lines in x and y directions of slab. The equation (1) contains terms C_{1}, C_{2}, C_{3} and C_{4} which define the positions of the node points of the yield lines. The values of C_{1}, C_{2}, C_{3} and C_{4} to be used in the equation are those which give the minimum load to cause failure. A computer program has been written to find the values of C_{1}, C_{2}, C_{3} and C_{4} (in terms of r_{1}, r_{2}, r_{3} and r_{4}) corresponding to minimum load carrying capacity of the slab.For definitions of various parameters refer notations. Johansen ${ }^{1}$ has proved that the yield line theory is an upper bound method, so care has been taken to examine all the possible yield line patterns for TAC slab to ensure that the most critical collapse mode is considered otherwise the load carrying capacity of the slab will be overestimated.

Formulation of Virtual Work Equations

There is several possible yield line patterns associated with different edge conditions of the slab. For the OLC edge conditionof slab, the possible admissible failure yield line patterns aretwenty, For the OLD edge conditions of slab, the possible admissible failure yield line patterns aretwenty. These admissible failure yield line patterns are obtained basing on the yield line principleof Johansen $\cdot \mathrm{K} . \mathrm{W}^{1}$. For the given configuration of the slab, these twenty failure patterns and corresponding equations have been investigated depending upon the support condition of the slab using a computer program.

The orthogonal reinforced rectangular slab having interior corner opening with the given configuration and the yield criteria are shown in notation Fig.5. The slab is subjected to uniformly distributed load ($W_{u l t}$). Note that the slab is not carrying any load over the area of the opening.

The generalized virtual work equations for continuous edge (CS) condition of slab are derived for the predicted possible admissible failure yield line patterns using the virtual work equation. To get the equations for other edge conditions of the slab, modification should be carried out in the numerators of the equations of each failure patterns.ForOLCslab $I_{1}=I_{2}=I_{3}=0$ or $I_{1}=$ $I_{3}=I_{4}=0$, for $O L D$ slab $I_{2}=0$ or $I_{4}=0$.

Virtual Work Equations for Two Adjacent sides Continuous (TAC) Slab

Twentypossible failure patterns are predicted for two edge conditions of the slab.The governing failure pattern for different edge conditions and for different data is presented in Table-1. Let δ be the virtual displacement at a \& b (Fig. 1), for theconsidered failure Pattern-1of aslab. Three unknown dimensions $C_{1}, C_{2}, \& C_{3}$ are necessary to define the yield line propagation completely.All otheradmissible failure patterns are as shown in APPENDIX-A.

The derived equations below are for the continuously supported rectangular slab with interior corner opening.

PATTERN 1:

The external work done by segment A:-
$=\left[W_{u l t} \frac{1}{2} C_{5} y_{1} \frac{C_{5}}{3 C_{1}}+W_{u l t} C_{5} y_{3} \frac{C_{5}}{2 C_{1}}+W_{u l t} \frac{1}{2} C_{8} x_{1} \frac{x_{1}}{3 C_{1}}\right]$
$=W_{u l t} L_{y}^{2} r\left[\frac{r_{1} r_{5}^{3}}{6 r_{3}}+\frac{r_{1} r_{5}^{2}}{2}\left(1-r_{8}-\frac{r_{1} r_{5}}{r_{3}}\right)+\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}\right]$
The external work done by segment B:-
$=\left[W_{u l t} \frac{1}{2} x_{1} C_{8} \frac{C_{8}}{3\left(L_{y}-C_{3}\right)}+W_{u l t} x_{3} C_{8} \frac{C_{8}}{2\left(L_{y}-C_{3}\right)}+W_{u l t} \frac{1}{2} x_{2} C_{8} \frac{C_{8}}{3\left(L_{y}-C_{3}\right)}\right]$
$=W_{u l t} L_{y}^{2} r\left[\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}+\frac{r_{3}^{2} r_{8}^{3}}{2\left(r_{3}-1\right)}\left(1-\frac{r_{3} r_{8}}{\left(r_{3}-1\right)}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\right)+\frac{r_{3}^{2} r_{8}^{3}}{6 r_{2}\left(r_{3}-1\right)^{2}}\right]$
The external work done by segment C:-
$=\left[W_{u l t} \frac{1}{2} C_{8} x_{2} \frac{x_{2}}{3 C_{2}}+W_{u l t} y_{4} C_{7} \frac{C_{7}}{2 C_{2}}+W_{u l t} \frac{1}{2} y_{2} C_{7} \frac{C_{7}}{3 C_{2}}\right]$
$=W_{u l t} L_{y}{ }^{2} r\left[\frac{r_{3}^{2} r_{8}^{3}}{6 r_{2}\left(r_{3}-1\right)^{2}}+\left(1-r_{8}-\frac{r_{2} r_{7}}{r_{3}}\right) \frac{r_{2} r_{7}^{2}}{2}+\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}\right]$
The external work done by segment $\mathrm{D}:-$
$=\left[W_{u l t} \frac{1}{2} C_{7} y_{2} \frac{y_{2}}{3 C_{3}}+W_{u l t} \alpha L_{x} C_{6} \frac{C_{6}}{2 C_{3}}+W_{u l t} \frac{1}{2} C_{5} y_{1} \frac{y_{1}}{3 C_{3}}\right]$
$=W_{u l t} L_{y}{ }^{2} r\left[\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}+\frac{r_{3} r_{6}^{2}\left(1-r_{5}-r_{7}\right)}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right]$
Total work done $=$ work done by segment's $(A+B+C+D)$
$=W_{u l t} L_{y}^{2} r\left[\begin{array}{l}{\left[\frac{r_{1} r_{5}^{3}}{6 r_{3}}+\frac{r_{1} r_{5}^{2}}{2}\left(1-r_{8}-\frac{r_{1} r_{5}}{r_{3}}\right)+\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}\right]+\left[\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}+\frac{r_{3}^{2} r_{8}^{3}}{2\left(r_{3}-1\right)}\left(1-\frac{r_{3} r_{8}}{\left(r_{3}-1\right)}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\right)+\frac{r_{3}^{2} r_{8}^{3}}{6 r_{2}\left(r_{3}-1\right)^{2}}\right]} \\ +\left[\frac{r_{3}^{2} r_{8}^{3}}{6 r_{2}\left(r_{3}-1\right)^{2}}+\left(1-r_{8}-\frac{r_{2} r_{7}}{r_{3}}\right) \frac{r_{2} r_{7}^{2}}{2}+\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}\right]+\left[\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}+\frac{r_{3} r_{6}^{2}\left(1-r_{5}-r_{7}\right)}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right]\end{array}\right]$
Energy absorbed yield lines: -
$=\left[\begin{array}{l}{\left[m_{u l t} K_{x}^{\prime}\left(y_{1}+C_{8}\right) \frac{1}{C_{1}}+m_{u l t} I_{1} L_{y} \frac{1}{C_{1}}\right]+\left[m_{u l t} K_{y}^{\prime}\left(x_{1}+x_{2}\right) \frac{1}{\left(L_{y}-C_{3}\right)}+m_{u l t} I_{2} L_{x} \frac{1}{\left(L_{y}-C_{3}\right)}\right]} \\ +\left[m_{u l t} K_{x}^{\prime}\left(y_{2}+C_{8}\right) \frac{1}{C_{2}}+m_{u l t} I_{3} L_{y} \frac{1}{C_{2}}\right]+\left[m_{u l t} K_{y}^{\prime}\left(C_{5}+C_{7}\right) \frac{1}{C_{3}}+m_{u l t} I_{4} L_{x} \frac{1}{C_{3}}\right]\end{array}\right]$
$=m_{u l t}\left[\begin{array}{l}\left.\left[\frac{K_{x}^{1} r_{1}}{r}\left(\frac{r_{1} r_{5}}{r_{3}}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}^{2} r_{8}}{\left(r_{3}-1\right)^{2}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{I_{2} r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1} r_{2}}{r}\left(\frac{r_{2} r_{7}}{r_{3}}+r_{8}\right)+\frac{I_{3} r_{2}}{r}\right]+\right] \\ {\left[K_{y}^{1} r r_{3}\left(r_{5}+r_{7}\right)+I_{4} r r_{3}\right]}\end{array}\right.$

Equating total work done by the segments to energy absorbed by yield lines we get
$\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\begin{array}{l}{\left[\frac{K_{x}^{1} r_{1}}{r}\left(\frac{r_{1} r_{5}}{r_{3}}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[\frac{\left.K_{y}^{1} r r_{3}^{2} r_{8}\left(\frac{1}{\left(r_{3}-1\right)^{2}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{I_{2} r r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1} r_{2}}{r}\left(\frac{r_{2} r_{7}}{r_{3}}+r_{8}\right)+\frac{I_{3} r_{2}}{r}\right]+\right]}{\left[\left[\frac{r_{1} r_{5}^{3}}{6 r_{3}}+\frac{r_{1} r_{5}^{2}}{2}\left(1-r_{8}-\frac{r_{1} r_{5}}{r_{3}}\right)+\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}\right]+\left[\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}+\frac{r_{3}^{2} r_{8}^{3}}{2\left(r_{3}-1\right)}\left(1-\frac{r_{3} r_{8}}{\left(r_{3}-1\right)}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)\right)+\frac{r_{3}^{2} r_{8}^{3}}{6 r_{2}\left(r_{3}-1\right)^{2}}\right]\right.}\right]} \\ +\left[\frac{r_{3}^{2} r_{8}^{3}}{6 r_{2}\left(r_{3}-1\right)^{2}}+\left(1-r_{8}-\frac{r_{2} r_{7}}{r_{3}}\right) \frac{r_{2} r_{7}^{2}}{2}+\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}\right]+\left[\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}+\frac{r_{3} r_{6}^{2}\left(1-r_{5}-r_{7}\right)}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right]\end{array}\right]}{}$

Equation 2 for Failure Pattern - 2
$\left.\begin{array}{rl}W_{u l t} l_{y}^{2} \\ m_{u l t} & \frac{\left[\left[\frac{K_{x}^{1} r_{5} r_{1}^{2}}{r}+\frac{I_{1} r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}}{\left(r_{3}-1\right)}\left(r_{5}+r_{7}\right)+\frac{I_{2} r r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1} r_{2}^{2} r_{7}}{r}+\frac{I_{3} r_{2}}{r}\right]+\left[\frac{K_{y}^{1} r_{3}}{r}\left(r_{5}+r_{7}\right)+\frac{I_{4} r_{3}}{r}\right]\right]}{\left.2 *\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}+\left(1-r_{1} r_{5}\right) \frac{r_{5}^{2} r_{1}}{2}+\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]+\left[\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}+\frac{\alpha r_{8}^{3} r_{3}}{2\left(r_{3}-1\right)}+\frac{r_{2}^{2} r_{7}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]+\right]} \\ R *\left[\frac{r_{2}^{2} r_{7}^{3}\left(r_{3}-1\right)}{6 r_{3}}+\frac{\left(1-r_{7} r_{2}\right) r_{2} r_{7}^{3}}{2}+\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}\right]+\left[\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}+\frac{\alpha r_{6}^{2} r_{3}}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right]\end{array}\right]$
Equation 3 for Failure Pattern -3
$\left.\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\begin{array}{l}\left.\left[\frac{K_{x}^{1} r_{1}}{r}\left(\frac{r_{1} r_{5}}{r_{3}}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}}{\left(r_{3}-1\right)}\left(\frac{r_{8} r_{3}}{r_{1}\left(r_{3}-1\right)}+r_{7}\right)+\frac{I_{2} r r_{3}}{\left(r_{3}-1\right)}\right]+\left[K_{y}^{1} r r_{3}\left(r_{7}+r_{5}\right)+I_{4} r r_{3}\right]+\right] \\ r\end{array} \frac{I_{3} r_{2}}{r}\right]}{\left[\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}+\left(1-r_{8}-\frac{r_{1} r_{5}}{r_{3}}\right) \frac{r_{1} r_{5}^{2}}{2}+\frac{r_{8}^{3} r_{3}^{2}}{6 r_{1}\left(r_{3}-1\right)^{2}}\right]+\left[\frac{r_{8}^{3} r_{3}^{2}}{6 r_{1}\left(r_{3}-1\right)^{2}}+\left(1-r_{7}-\frac{r_{8} r_{3}}{r_{1}\left(r_{3}-1\right)}\right) \frac{r_{3} r_{8}^{2}}{2\left(r_{3}-1\right)}+\frac{r_{2}^{2} r_{7}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]+\right]}\right]$
Equation 4 for Failure Pattern - 4
$\left.\begin{array}{rl}W_{u l t} l_{y}^{2} \\ m_{u l t}\end{array}=\frac{\left.\left.\left[\begin{array}{l}\left.\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{6}+\frac{r_{1} r_{5}\left(r_{3}-1\right)}{r_{3}}\right)+\frac{I_{2} r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}}{\left(r_{3}-1\right)}\left(r_{5}+r_{7}\right)+\frac{I_{2} r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1} r_{2}^{2} r_{7}}{r}+\frac{I_{3} r_{2}}{r}\right]+\right] \\ {\left[\left[\frac{K_{y}^{1} r r_{3} r_{6}^{2}}{r_{6}}+\left(1-r_{6}-\frac{r_{1} r_{3}}{r_{1}}+r_{7}\right)+I_{3} r_{3}-1\right)\right.} \\ r_{3}\end{array}\right] \frac{r_{1} r_{5}^{2}}{2}+\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]+\left[\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}+\frac{\alpha r_{3} r_{8}^{2}}{2\left(r_{3}-1\right)}+\frac{r_{2}^{2} r_{7}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]+\right]}{\left[\frac{r_{2}^{2} r_{7}^{3}\left(r_{3}-1\right)}{6 r_{3}}+\left(1-r_{2} r_{7}\right) \frac{r_{2} r_{7}^{2}}{2}+\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}\right]+\left[\frac{r_{2}^{2} r_{7}^{3}}{6 r_{3}}+\left(1-r_{7}-\frac{r_{6} r_{3}}{r_{1}}\right) \frac{r_{3} r_{6}^{2}}{2}+\frac{r_{3}^{2} r_{6}^{2}}{6 r_{1}}\right]}\right]$

Equation 5 for Failure Pattern - 5
$\left.\begin{array}{rl}W_{u l t} l_{y}^{2} \\ m_{u l t}\end{array}=\frac{\left.\left[\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{6}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}\left(\frac{r_{8} r_{3}}{\left(r_{3}-1\right)}\right.}{r_{1}\left(r_{3}-1\right)}+r_{7}\right)+\frac{I_{2} r r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1}}{r}\left(r_{2}^{2} r_{7}\right)+\frac{I_{3} r_{2}}{r}\right]+\right]}{\left[K_{y}^{1} r r_{3}\left(r_{7}+\frac{r_{3} r_{6}}{r_{1}}\right)+I_{4} r r_{3}\right]}\right]\left[\begin{array}{ll}{\left[\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\frac{\beta r_{1} r_{5}^{2}}{2}+\frac{r_{8}^{3} r_{3}^{2}}{6 r_{1}\left(r_{3}-1\right)^{2}}\right]+\left[\frac{r_{8}^{3} r_{3}^{2}}{6 r_{1}\left(r_{3}-1\right)^{2}}+\left(1-r_{7}-\frac{r_{3} r_{8}}{r_{1}\left(r_{3}-1\right)}\right) \frac{r_{6}^{2} r_{3}}{2\left(r_{3}-1\right)}+\frac{r_{2}^{2} r_{7}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]}\end{array}\right]$

Equation 6 for Failure Pattern - 6
$\begin{gathered}W_{u l t} l_{y}^{2} \\ m_{u l t}\end{gathered}=\frac{\left[\left[\begin{array}{l}\left.\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{6}+\frac{r_{1} r_{5}\left(r_{3}-1\right)}{r_{3}}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}}{\left(r_{3}-1\right)}\left(r_{7}+r_{5}\right)+\frac{I_{2} r r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1} r_{2}}{r}+\frac{I_{3} r_{2}}{r}\right]+\right] \\ R *\left[\left[\frac{\left.r_{3}^{2} r_{6}^{3} r\left(\frac{r_{3} r_{6}}{r_{1}}+r_{7}\right)+I_{4} r_{3} r\right]}{6 r_{1}}+\left(1-r_{6}-\frac{\left(r_{3}-1\right) r_{5} r_{1}}{r_{3}}\right) \frac{r_{1} r_{5}^{2}}{2}+\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]+\left[\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}+\frac{\alpha r_{3} r_{8}^{2}}{2\left(r_{3}-1\right)}+\frac{\left(r_{3}-1\right)\left(r_{2} r_{7}-1\right)}{2 r_{2} r_{3}}+\frac{\left(r_{3}-1\right)}{6 r_{2} r_{3}}\right]\right. \\ +\left[\frac{\left(r_{3}-1\right)}{6 r_{2} r_{3}}+\frac{1}{6 r_{2} r_{3}}\right]+\left[\frac{1}{6 r_{2} r_{3}}+\frac{\left(r_{7} r_{2}-1\right)}{2 r_{3} r_{2}}+\left(1-r_{7}-\frac{r_{6} r_{3}}{r_{1}}\right) \frac{r_{3} r_{6}^{2}}{2}+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]\end{array}\right]\right.}{}$
Equation 7 for Failure Pattern - 7

$$
\begin{aligned}
&\left.\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{8}+\frac{r_{1} r_{5}}{r_{3}}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}}{\left(r_{3}-1\right)}\left(r_{7}+\frac{r_{8} r_{3}}{r_{1}\left(r_{3}-1\right)}\right)+\frac{I_{2} r_{3} r}{\left(r_{3}-1\right)}\right]+\right]}{\left[\left[\frac{K_{x}^{1} r_{2}}{r}+\frac{I_{3} r_{2}}{r}\right]+\left[K_{y}^{1} r r_{3}\left(r_{5}+r_{7}\right)+I_{4} r r_{3}\right]\right.}\right] \\
& R *\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}+\left(1-r_{8}-\frac{r_{1} r_{5}}{r_{3}}\right) \frac{r_{1} r_{5}^{2}}{2}+\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}\right]+ \\
& {\left[\frac{r_{3}^{2} r_{8}^{3}}{6 r_{1}\left(r_{3}-1\right)^{2}}+\left(1-r_{7}-\frac{r_{3} r_{8}}{r_{1}\left(r_{3}-1\right)}\right) \frac{r_{3} r_{8}^{2}}{2\left(r_{3}-1\right)}+\frac{\left(r_{2} r_{7}-1\right)\left(r_{3}-1\right)}{2 r_{3} r_{2}}+\frac{\left(r_{3}-1\right)}{6 r_{2} r_{3}}\right]+} \\
& {\left[\frac{\left(r_{3}-1\right)}{6 r_{2} r_{3}}+\frac{1}{6 r_{3} r_{2}}\right]+\left[\frac{1}{6 r_{3} r_{2}}+\frac{\left(r_{2} r_{7}-1\right)}{2 r_{3} r_{2}}+\frac{\alpha r_{3} r_{6}^{2}}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right] }
\end{aligned}
$$

Equation 8 for Failure Pattern -8
$\left.\begin{array}{rl}W_{u l t} l_{y}^{2} \\ m_{u l t} & \left.=\frac{\left[\left(\frac{K_{x}^{1} r_{1}}{r}\left(r_{6}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right)+\left[\frac{K_{y}^{1} r r_{3}}{\left(r_{3}-1\right)}\left(\frac{r_{8} r_{3}}{r_{1}\left(r_{3}-1\right)}+r_{7}\right)+\frac{I_{2} r r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1} r_{2}}{r}+\frac{I_{3} r_{2}}{r}\right]+\right]}{\left[\left(K_{y}^{1} r r_{3}\left(r_{7}+\frac{r_{3} r_{6}}{r_{1}}\right)+I_{4} r_{3}\right]\right.}\right] \\ R^{*}\left[\left(\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\frac{\beta r_{1} r_{5}^{2}}{2}+\frac{r_{8}^{3} r_{3}^{2}}{6 r_{1}\left(r_{3}-1\right)^{2}}\right]+\left[\frac{r_{8}^{3} r_{3}^{2}}{6 r_{1}\left(r_{3}-1\right)^{2}}+\left(1-r_{7}-\frac{r_{3} r_{8}}{r_{1}\left(r_{3}-1\right)}\right) \frac{r_{8}^{2} r_{3}}{2\left(r_{3}-1\right)}+\frac{\left(r_{2} r_{7}-1\right)\left(r_{3}-1\right)}{2 r_{3} r_{2}}+\frac{\left(r_{3}-1\right)}{6 r_{3} r_{2}}\right]+\right] \\ {\left[\frac{\left(r_{3}-1\right)}{6 r_{2} r_{3}}+\frac{1}{6 r_{2} r_{3}}\right]+\left[\frac{1}{6 r_{2} r_{3}}+\frac{\left(r_{2} r_{7}-1\right)}{2 r_{3} r_{2}}+\left(1-r_{7}-\frac{r_{3} r_{6}}{r_{1}}\right) \frac{r_{3} r_{6}^{2}}{2}+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]}\end{array}\right]$
Equation 9 for Failure Pattern - 9
$\begin{aligned} & \frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\left[\frac{K_{x}^{1} r_{1}}{r}\left(\frac{r_{1} r_{5}}{r_{3}}+\frac{r_{1} r_{5}\left(r_{3}-1\right)}{r_{3}}\right)+\frac{I r_{1}}{r}\right]+\left[\frac{K_{y}^{1} r r_{3}}{\left(r_{3}-1\right)}\left(r_{7}+r_{5}\right)+\frac{I_{2} r_{3}}{\left(r_{3}-1\right)}\right]+\left[\frac{K_{x}^{1} r_{2}}{r}+\frac{I_{3} r_{2}}{r}\right]+\left[K_{y}^{1} r r_{3}\left(r_{7}+r_{5}\right)+I_{4} r_{3}\right]\right]}{\left[\left(\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}+\left(1-r_{1} r_{5}\right) \frac{r_{1} r_{5}^{2}}{2}+\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}\right]+\left[\frac{r_{1}^{2} r_{5}^{3}\left(r_{3}-1\right)}{6 r_{3}}+\frac{\alpha r_{8}^{2} r_{3}}{2\left(r_{3}-1\right)}+\frac{\left(r_{2} r_{7}-1\right)\left(r_{3}-1\right)}{2 r_{3} r_{2}}+\frac{\left(r_{3}-1\right)}{6 r_{2} r_{3}}\right]+\right]} \\ &\left.R^{*}\right] {\left[\frac{\left(r_{3}-1\right)}{6 r_{2} r_{3}}+\frac{1}{6 r_{2} r_{3}}\right]+\left[\frac{1}{6 r_{2} r_{3}}+\frac{\left(r_{2} r_{7}-1\right)}{2 r_{3} r_{2}}+\frac{\alpha r_{6}^{2} r_{3}}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right] }\end{aligned}$
Equation 10 for Failure Pattern - 10

$$
\begin{aligned}
\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\begin{array}{l}
{\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{6}+\frac{r_{5} r_{1}}{r_{4}}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}\left(r_{5}+r_{7}\right)+I_{2} r r_{4}\right]+} \\
\left.\left[\frac{K_{x}^{1}}{r} \frac{r_{1}}{r_{1}-1}\left(\frac{r_{1} r_{7}}{r_{4}\left(r_{1}-1\right)}+r_{6}\right)+\frac{I_{3}}{r} \frac{r_{1}}{r_{1}-1}\right]+\left[K_{y}^{1} r\left(r_{3}^{2} r_{6}\right)+I_{4} r r_{3}\right]\right] \\
{\left[\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\frac{\left(r_{4}-r_{5} r_{1}-r_{4} r_{6}\right) r_{1} r_{5}^{2}}{2 r_{4}}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{4}}\right]+\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{4}}+\frac{\alpha r_{8}^{2} r_{4}}{2}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}\right]+} \\
{\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}+\frac{r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}\left(1-\frac{r_{1} r_{7}}{r_{4}\left(r_{1}-1\right)}-r_{6}\right)+\frac{r_{3}^{2} r_{6}^{3}\left(r_{1}-1\right)}{6 r_{1}}\right]+} \\
{\left[\frac{r_{3}^{2} r_{6}^{3}\left(r_{1}-1\right)}{6 r_{1}}+r_{3} r_{6}\left(\frac{r_{1}-r_{3} r_{6}-\left(r_{1}-1\right) r_{3} r_{6}}{2 r_{1}}\right)+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]}
\end{array}\right]}{} & \left.R^{[}\right]
\end{aligned}
$$

Equation 11 for Failure Pattern - 11
$\left.\begin{array}{rl}W_{u l t} l_{y}^{2} \\ m_{u l t} & \left.=\frac{\left[\left[\frac{K_{x}^{1} r_{1}}{r_{1}}\left(\frac{r_{1} r_{5}+r_{3} r_{8}}{r_{3}}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}\left(\frac{r_{4} r_{8}+\left(r_{4} r_{8}\right)\left(r_{1}-1\right)}{r_{1}}\right)+I_{2} r r_{4}\right]+\right]}{\left[\left[\frac{K_{x}^{1} r_{1}}{r\left(r_{1}-1\right)}\left(\frac{r_{1} r_{7}}{r_{3}\left(r_{1}-1\right)}+r_{8}\right)+\frac{I_{3} r_{1}}{r\left(r_{1}-1\right)}\right]+\left[K_{y}^{1} r r_{3}\left(r_{5}+r_{7}\right)+I_{4} r r_{3}\right]\right.}\right] \\ R *\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}+\frac{\left(r_{3}-r_{1} r_{5}-r_{3} r_{8}\right) r_{1} r_{5}^{2}}{2 r_{3}}+\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}\right]+\left[\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\frac{\left(r_{1}-r_{4} r_{8}-r_{4} r_{8}\left(r_{1}-1\right)\right) r_{4} r_{8}^{2}}{2 r_{1}}+\frac{r_{4}^{2} r_{8}^{3}\left(r_{1}-1\right)}{6 r_{1}}\right]+ \\ {\left[\frac{r_{4}^{2} r_{8}^{3}\left(r_{1}-1\right)}{6 r_{1}}+\left(1-\frac{r_{1} r_{7}}{r_{3}\left(r_{1}-1\right)}-r_{8}\right) \frac{r_{1} r_{7}^{2}}{2 r_{3}\left(r_{1}-1\right)^{2}}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{3}-1\right)^{2}}\right]+\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{3}-1\right)^{2}}+\frac{\alpha r_{6}^{2} r_{3}}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right]}\end{array}\right]$
Equation 12 for Failure Pattern - 12

$$
\begin{aligned}
\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}= & {\left[\begin{array}{l}
{\left[\frac{K_{x}^{1} r_{1}}{r}\left(\frac{r_{5} r_{1}}{r_{3}}+\frac{r_{1} r_{5}}{r_{4}}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}\left(r_{7}+r_{5}\right)+I_{2} r r_{4}\right]+} \\
{\left[\frac{K_{x}^{1}}{r}\left(\frac{r_{1}^{2} r_{7}}{r_{4}\left(r_{1}-1\right)^{2}}+\frac{r_{1}^{2} r_{7}}{r_{3}\left(r_{1}-1\right)^{2}}\right)+\frac{I_{1} r_{1}}{r\left(r_{1}-1\right)}\right]+\left[K_{y}^{1} r r_{3}\left(r_{5}+r_{7}\right)+\frac{I_{y} r_{3}}{r}\right]} \\
R *\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}+\frac{r_{1} r_{5}^{2}}{2}\left(1-\frac{r_{1} r_{5}}{r_{3}}-\frac{r_{1} r_{5}}{r_{4}}\right)+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{4}}\right]+\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{4}}+\frac{\alpha r_{4} r_{8}^{2}}{2}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}\right]+ \\
{\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}+\frac{r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}\left(1-\frac{r_{1} r_{7}}{r_{3}\left(r_{1}-1\right)}-\frac{r_{1} r_{7}}{r_{4}\left(r_{1}-1\right)}\right)+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}\right]+} \\
{\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}+\frac{\alpha r_{3} r_{6}^{2}}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right]}
\end{array}\right.}
\end{aligned}
$$

Equation 13 for Failure Pattern - 13

$$
\begin{aligned}
& \left.\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\begin{array}{l}
{\left[\frac{k_{x}^{1} r_{1}}{r}\left(r_{8}+\frac{r_{1} r_{5}}{r_{3}}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}\left(\frac{r_{4} r_{8}}{r_{1}}+r_{7}\right)+I_{2} r_{4}\right]+} \\
{\left[\left(\frac{k_{x}^{1} r_{1}^{2} r_{7}}{r\left(r_{1}-1\right)^{2}}\left(\frac{1}{r_{3}}+\frac{1}{r_{4}}\right)+\frac{I_{3} r_{1}}{r\left(r_{1}-1\right)}\right]+\left[K_{y}^{1} r r_{3}\left(r_{5}+r_{7}\right)++I_{4} r r_{3}\right]\right]} \\
\end{array} R^{*}\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}+\left(1-r_{5}-\frac{r_{1} r_{5}}{r_{3}}\right) \frac{r_{1} r_{5}^{2}}{2}+\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}\right]+\left[\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\left(1-r_{7}-\frac{r_{4} r_{8}}{r_{1}}\right) r_{4} r_{8}^{2}\right.\right.}{2}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}\right]+ \\
& \left.\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}+\left(1-\frac{r_{1} r_{7}}{\left(r_{1}-1\right)}\left(\frac{1}{r_{3}}+\frac{1}{r_{4}}\right)\right) \frac{r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}\right]+\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}+\frac{\alpha r_{3} r_{6}^{2}}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{3}}\right]\right]
\end{aligned}
$$

Equation 14 for Failure Pattern - 14

$$
\begin{aligned}
W_{u l t} l_{y}^{2} \\
m_{u l t}
\end{aligned}=\frac{\left[\begin{array} { l }
{ [\frac { k _ { x } ^ { 1 } r _ { 1 } } { r } (r _ { 6 } + \frac { r _ { 1 } r _ { 5 } } { r _ { 4 } }) + \frac { I _ { 1 } r _ { 1 } } { r }] + [K _ { y } ^ { 1 } r r _ { 4 } (r _ { 5 } + r _ { 7 }) + I _ { 2 } r r _ { 4 }] + } \\
{ [\frac { k _ { x } ^ { 1 } r _ { 1 } ^ { 2 } r _ { 7 } } { r (r _ { 1 } - 1) ^ { 2 } } (\frac { 1 } { r _ { 3 } } + \frac { 1 } { r _ { 4 } }) + \frac { I _ { 3 } r _ { 1 } } { r (r _ { 1 } - 1) }] + [K _ { y } ^ { 1 } r r _ { 3 } (\frac { r _ { 3 } r _ { 6 } } { r _ { 1 } } + r _ { 7 }) + + I _ { 4 } r r _ { 3 }]] }
\end{array} \left[\left[\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\left(1-r_{6}-\frac{r_{1} r_{5}}{r_{4}}\right) \frac{r_{1} r_{5}^{2}}{2}+\frac{r_{1}^{2} r_{5}^{3}}{6 r_{4}}\right]+\left[\frac{r_{1}^{2} r_{5}^{3}}{6 r_{4}}+\frac{\alpha r_{4} r_{8}^{2}}{2}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}\right]+\right.\right.}{} R^{*}\left[\begin{array}{l}
{\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}+\left(1-\frac{r_{1} r_{7}}{\left(r_{1}-1\right)}\left(\frac{1}{r_{3}}+\frac{1}{r_{4}}\right)\right) \frac{r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}\right]+} \\
{\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}+\left(1--r_{7}-\frac{r_{3} r_{6}}{r_{1}}\right) \frac{r_{3} r_{6}^{2}}{2}+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]}
\end{array}\right]
$$

Equation 15 for Failure Pattern - 15

$$
\begin{aligned}
\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\begin{array}{l}
{\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{8}+r_{6}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}\left(r_{7}+\frac{r_{4} r_{8}}{r_{1}}\right)+I_{2} r r_{4}\right]+} \\
\left.\left[\frac{K_{x}^{1} r_{1}^{2} r_{7}}{r\left(r_{1}-1\right)^{2}}\left(\frac{1}{r_{4}}+\frac{1}{r_{3}}\right)+\frac{I_{3} r_{1}}{r\left(r_{1}-1\right)}\right]+\left[K_{y}^{1} r r_{3}\left(r_{7}+\frac{r_{3} r_{6}}{r_{1}}\right)+I_{4} r r_{3}\right]\right] \\
{\left[\left[\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\frac{\beta r_{1} r_{5}^{2}}{2}+\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}\right]+\left[\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\left(1-r_{7}-\frac{r_{4} r_{8}}{r_{1}}\right) \frac{r_{4} r_{8}^{2}}{2}+\frac{r_{7}^{3} r_{1}^{2}}{6 r_{4}\left(r_{1}-1\right)^{2}}\right]+\right.}
\end{array}\right.}{R *\left[\begin{array}{l}
{\left[\frac{r_{7}^{3} r_{1}^{2}}{6 r_{4}\left(r_{1}-1\right)^{2}}+\frac{r_{7}^{2} r_{1}}{2\left(r_{1}-1\right)}\left(1-\frac{r_{7} r_{1}}{\left(r_{1}-1\right)}\left(\frac{1}{r_{4}}+\frac{1}{r_{3}}\right)\right)+\frac{r_{7}^{3} r_{1}^{2}}{6 r_{3}\left(r_{1}-1\right)^{2}}\right]+} \\
{\left[\frac{r_{7}^{3} r_{1}^{2}}{6 r_{3}\left(r_{1}-1\right)^{2}}+\left(1--r_{7}-\frac{r_{3} r_{6}}{r_{1}}\right) \frac{r_{3} r_{6}^{2}}{2}+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]}
\end{array}\right.} .
\end{aligned}
$$

Equation 16 for Failure Pattern- 16

$$
\begin{aligned}
& \frac{W_{u l l_{y}^{2}}^{2}}{m_{u l t}}=\frac{\left[\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{6}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}^{2} r_{8}+I_{2} r_{4}\right]+\left[\frac{K_{x}^{1} r_{1}}{r(r-1)}\left(r_{6}+r_{8}\right)+\frac{I_{4} r_{1}}{r(r-1)}\right]+\left[K_{y}^{1} r_{3}^{2} r_{6}+I_{4} r r_{3}\right]\right]}{R^{*}\left[\frac{\left.\left[\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\frac{\beta r_{1} r_{5}^{2}}{2}+\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}\right]+\left[\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\frac{r_{8}^{2} r_{4}}{2}\left(1-r_{4} r_{8}\right)+\frac{r_{8}^{3} r_{4}^{2}\left(r_{1}-1\right)}{6 r_{1}}\right]+\left[\frac{r_{8}^{3} r_{4}^{2}\left(r_{1}-1\right)}{6 r_{1}}++\frac{\beta r_{7}^{2} r_{1}}{2\left(r_{1}-1\right)}+\frac{r_{3}^{2} r_{6}^{3}\left(r_{1}-1\right)}{6 r_{1}}\right]+\right]}{\left[\frac{r_{r}^{2} r_{6}^{3}\left(r_{1}-1\right)}{6 r_{1}}+\frac{r_{6}^{2} r_{3}}{2}\left(1-r_{3} r_{6}\right)+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]}\right.} ⿻ 一 .
\end{aligned}
$$

Equation 17 for Failure Pattern- 17
$\frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left[\left[\frac{K_{x}^{1} r_{1}}{r}\left(r_{6}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}+I_{2} r r_{4}\right]+\left[\frac{K_{x}^{1} r_{1}}{r\left(r_{1}-1\right)}\left(r_{6}+r_{8}\right)+\frac{I_{3} r_{1}}{r\left(r_{1}-1\right)}\right]+\left[K_{y}^{1} r\left(r_{3}^{2} r_{6}\right)+I_{4} r r_{3}\right]\right]}{} \begin{aligned} & *\left[\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\frac{\beta r_{5}^{2} r_{1}}{2}+\frac{\left(r_{4} r_{8}-1\right)}{2 r_{4} r_{1}}+\frac{1}{6 r_{1} r_{4}}\right]+\left[\frac{1}{6 r_{1} r_{4}}+\frac{\left(r_{1}-1\right)}{6 r_{1} r_{4}}\right]+ \\ & {\left[\frac{\left(r_{1}-1\right)}{6 r_{1} r_{4}}+\frac{\left(r_{4} r_{8}-1\right)\left(r_{1}-1\right)}{2 r_{4} r_{1}}+\frac{\beta r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}+\frac{r_{3}^{2} r_{6}^{3}\left(r_{1}-1\right)}{6 r_{1}}\right]+\left[\frac{r_{3}^{2} r_{6}^{2}\left(r_{1}-1\right)}{6 r_{1}}+\left(1-r_{3} r_{6}\right) \frac{r_{6}^{2} r_{3}}{2}+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]}\end{aligned}$
Equation 18 for Failure Pattern- 18

$$
\begin{aligned}
& \frac{W_{u l t} l_{y}^{2}}{m_{u l t}}=\frac{\left.\left[\frac{K^{1} r_{1}}{r}\left(r_{6}+r_{8}\right)+\frac{I_{1} r_{1}}{r}\right]+\left[K_{y}^{1} r r_{4}^{2} r_{8}+I_{2} r r_{4}\right]+\left[\frac{K_{x}^{1} r_{1}}{r\left(r_{1}-1\right)}\left(r_{8}+r_{6}\right)+\frac{I_{3} r_{1}}{r\left(r_{1}-1\right)}\right]+\left[K_{y}^{1} r r_{3}+I_{y} r r_{3}\right]\right]}{} R^{*}\left[\left[\frac{1}{6 r_{1} r_{3}}+\left(\frac{r_{6} r_{3}-1}{2 r_{3} r_{1}}\right)+\frac{\beta r_{1} r_{5}^{2}}{2}+\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}\right]+\left[\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\frac{\left(r_{8} r_{4}-1\right) r_{4} r_{8}^{2}}{2}+\frac{\left(r_{1}-1\right) r_{4}^{2} r_{8}^{3}}{6 r_{1}}\right]+\right] \\
& {\left[\frac{\left(r_{1}-1\right) r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\frac{\beta r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}+\frac{\left(r_{6} r_{3}-1\right)\left(r_{1}-1\right)}{2 r_{3} r_{1}}+\frac{\left(r_{1}-1\right)}{3 r_{3} r_{1}}\right]+\left[\frac{\left(r_{1}-1\right)}{6 r_{3} r_{1}}+\frac{1}{6 r_{3} r_{1}}\right] }
\end{aligned}
$$

Equation 19 for Failure Pattern- 19

$$
\begin{aligned}
\frac{W_{u l t} l_{y}^{2}}{m_{u l t}} & \frac{\left[\begin{array} { l }
{ [\frac { K _ { x } ^ { 1 } r _ { 1 } } { r } (r _ { 6 } + r _ { 8 }) + \frac { I _ { 1 } r _ { 1 } } { r }] + [K _ { y } ^ { 1 } r r _ { 4 } (r _ { 7 } + \frac { r _ { 4 } r _ { 8 } } { r _ { 1 } }) + I _ { 2 } r r _ { 4 }] + [\frac { K _ { x } ^ { 1 } r _ { 1 } } { r (r _ { 1 } - 1) } (r _ { 6 } + \frac { r _ { 7 } r _ { 1 } } { r _ { 4 } (r _ { 1 } - 1) }) + \frac { I _ { 3 } r _ { 1 } } { r (r _ { 1 } - 1) }] +] }
\end{array} \left[\left[\frac{1}{\left[K_{y}^{1} r r_{3}+I_{4} r r_{3}\right]}+\frac{\left(r_{3} r_{6}-1\right)}{2 r_{1} r_{3}}+\frac{\beta r_{1} r_{5}^{2}}{2}+\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}\right]+\left[\frac{r_{4}^{2} r_{8}^{3}}{6 r_{1}}+\left(1-r_{7}-\frac{r_{4} r_{8}}{r_{1}}\right) \frac{r_{8}^{2} r_{4}}{2}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}\right]+\right.\right.}{\left.R^{*}\right]} \\
& {\left.\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{4}\left(r_{1}-1\right)^{2}}+\left(1-r_{6}-\frac{r_{1} r_{7}}{r_{4}\left(r_{1}-1\right)}\right) \frac{r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}+\frac{\left(r_{6} r_{3}-1\right) r_{1}}{2 r_{3}\left(r_{1}-1\right)}+\frac{\left(r_{1}-1\right)}{6 r_{3} r_{1}}\right]+\left[\frac{\left(r_{1}-1\right)}{6 r_{3} r_{1}}+\frac{1}{6 r_{3} r_{1}}\right]\right] }
\end{aligned}
$$

Equation 20 for Failure Pattern - 20

$$
\begin{aligned}
W_{u l t} l_{y}^{2} \\
m_{u l t}
\end{aligned}=\frac{\left[\begin{array} { l }
{ [\frac { K _ { x } ^ { 1 } r _ { 1 } } { r } (r _ { 6 } + r _ { 8 }) + \frac { I _ { 1 } r _ { 1 } } { r }] + [K _ { y } ^ { 1 } r r _ { 4 } + I _ { 2 } r r _ { 4 }] + } \\
{ [\frac { K _ { x } ^ { 1 } r _ { 1 } } { r (r _ { 1 } - 1) } (\frac { r _ { 1 } r _ { 7 } } { r _ { 3 } (r _ { 1 } - 1) } + r _ { 8 }) + \frac { I _ { 3 } r _ { 1 } } { r (r _ { 1 } - 1) }] + [K _ { y } ^ { 1 } r r _ { 3 } (\frac { r _ { 6 } r _ { 3 } } { r _ { 1 } } + r _ { 7 }) + I _ { 4 } r r _ { 3 }]] }
\end{array} \left[\begin{array}{l}
{\left[\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}+\frac{\beta r_{5}^{2} r_{1}}{2}+\frac{\left(r_{8} r_{4}-1\right)}{2 r_{4} r_{1}}+\frac{1}{6 r_{4} r_{1}}\right]+\left[\frac{1}{6 r_{4} r_{1}}+\frac{\left(r_{1}-1\right)}{6 r_{4} r_{1}}\right]} \\
\left.\left[\frac{\left(r_{1}-1\right)}{6 r_{4} r_{1}}+\frac{\left(r_{8} r_{4}-1\right)\left(r_{1}-1\right)}{2 r_{4} r_{1}}+\left(1-r_{8}-\frac{r_{1} r_{7}}{r_{3}\left(r_{1}-1\right)}\right) \frac{r_{1} r_{7}^{2}}{2\left(r_{1}-1\right)}+\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}\right]+\right] \\
{\left[\frac{r_{1}^{2} r_{7}^{3}}{6 r_{3}\left(r_{1}-1\right)^{2}}+\left(1-r_{7}-\frac{r_{6} r_{3}}{r_{1}}\right) \frac{r_{3} r_{6}^{2}}{2}+\frac{r_{3}^{2} r_{6}^{3}}{6 r_{1}}\right]}
\end{array}\right.\right.}{}
$$

The respective equations for corresponding failure patterns can be obtained for OLC and OLD condition by making respective negative yield moment coefficients zero.

Minimization of theVirtual Work Equations

The value $\frac{W_{u l t} L_{y}{ }^{2}}{m_{u l t}}$ of these equationsconsists of the unknown non dimensional parameters r_{1}, r_{2}, r_{3} and r_{4} which define the positions of the yield lines.A computer program has been developed for various values of the non dimensional parameters r_{1}, r_{2}, r_{3} and r_{4} within their allowable ranges in order to find the minimum value of $\frac{W_{u l t} L_{y}{ }^{2}}{m_{u l t}}$ for the yield line failure patterns considered. In this computer program, the values of r_{1}, r_{2}, r_{3} and r_{4} were varied at increments of 0.1 . Using the above equations, one can develop useful charts basing on orthogonality which may be used eitherfor design or analysis in general. The governing failure pattern for different edge conditions and for different data is presented in Table-1.

EXAMPLE: One Long sideDiscontinuous Slab (OLD)
(Negative moment to positive moment ratio in both directions is same and unity)
Transform an orthotropic slab to an equivalent isotropic slab in which the ratio of Negative moment to positive moment in both directions is same and unity using the affine theorem.

Since $I_{1} / K_{x}^{\prime}=I_{2} / K_{y}^{\prime}=1.0$, the transformation of the given orthotropic slab(Fig.2 (a)) in X - direction is transformed to an equivalent isotropic slab (Fig.2 (b)) by dividing with $\sqrt{\mu}$. This principle is illustrated in Fig.2. Using the above methodology, few numerical examples are presented in Table 2.

Table 3shows the strength and the failure pattern forOLD based on the principle $\mu=r^{2}$ for different values of coefficient of orthotropy (μ) and their corresponding orthogonal affine moment coefficients.

Note: In the case of SS, TLC and TSC edge conditions of the slab; the affine theorem cannot be applied because the negative moment is not present along one of the edges of the given slab. Therefore one can design the slab as orthotropic using any available computer program.

Preparation of Charts

Design charts have been prepared for One Long side Discontinuous slab (OLD)slabs.Charts 1-4 are shown in Appendix-B.Charts1-4 are plotted for $\frac{W_{u l t} L_{y}{ }^{2}}{m_{u l t}}$ versus Opening $(\alpha=\beta)$ for various ratios of K1, K2 and r for different CS conditions.The values of rare taken between 1 and 3. The K1 values are plotted varying between 1 and 5 thus ensuring that greater yield moment is in the direction of short span. This is in accordance with elastic theory distribution of bending moments. The values of K2 are plotted for 1 and 2 for One Long sideDiscontinuous slab (OLD). While preparing the design charts, the least value of $\frac{W_{u l t} L_{y}{ }^{2}}{m_{u l t}}$ given by thirteenfailure patterns is considered. Using these charts one can directly design or do analysis of a slab with ainterior corner opening. In addition, a special charts5-6 is presented for various values of openings which can be used for transforming an orthogonal slab to equivalent isotropic slab for the governing failure patterns only.

A. Analysis Problem:(OLC)

Determine the safe uniformly distributed load on a rectangular two way slab with interior corneropening all sides continuousslab(Fig.3(a)) for the following data:

A slab 6 mX 4 m with interior corner opening of size 1.2 mX 0.4 m at a distance of 1.2 m from long edge and 0.8 m from short edge is reinforced with 10 mm diameter bars @ 200 mm c/c perpendicular to long span and 8 mm diameter bars @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ perpendicular to short span. Two meshes are used one at top long side continuous and one at bottom, thickness of the slab is 120 mm . Characteristic strength of concrete is 20 MPa and yield stress of steel is 415 MPa .

Solution:

$$
\begin{equation*}
\text { According to IS 456:2000 }{ }^{9}, m_{u l t}=0.87 f_{y} A_{s t} z, \text { where } z=d\left(1-\frac{f_{y} A_{s t}}{f_{c k} b d^{2}}\right)--------- \tag{2}
\end{equation*}
$$

Assuming effective depth of slab in short span direction $=100.00 \mathrm{~mm}$ effective depth of slab in long span direction= 90.00 mm
Area of the steel perpendicular to long span $=374 \mathrm{~mm}^{2}$
Area of the steel perpendicular to short span $=314 \mathrm{~mm}^{2}$
The ultimate moments in short and long span directions can be found using the expression (2).
Therefore, $m_{u l t}$ parallel to long span $=13.489 \mathrm{kNm} / \mathrm{m}$ $m_{u l t}$ parallel to short span $=10.192 \mathrm{kNm} / \mathrm{m}$

For aspect ratio of slab, $r=\frac{6.0}{4.0}=1.5$ and taking $m_{u l t}=13.489 \mathrm{kNm} / \mathrm{m}$,
The orthogonal coefficients (Fig.3(b)) will be $K_{x}=0.755, I_{I}=I_{3}=0$ and $K_{y}^{`}=I_{2}=1.0, I_{4}=0$. With these orthogonal coefficients and for $\alpha=0.2, \beta=0.1, r=1.5, \mathrm{C}_{5}=1.2 \mathrm{~m}, \mathrm{C}_{6}=0.8 \mathrm{~m}$;

Twenty predicted failure patterns are evaluated by using computer program to find the governing failure pattern and the final results are as follows.

$$
\begin{aligned}
& \frac{W_{u l t} L_{y}{ }^{2}}{m_{u l t}}=19.67773, r_{1}=3.46191, r_{2}=3.15185, r_{3}=3.46191 \text { and the failure pattern is } 7 \\
& W_{u l t}=\frac{19.67773 \times 13.489}{4^{2}}=16.5895 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

$$
W_{d l}=(\text { dead load including finishing })=(0.12 \times 25)+0.5=3.5 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
W_{u l l}=1.5\left(W_{l l}+W_{d l}\right)=16.5895 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
W_{l l}=\frac{16.5895}{1.5}-3.5=7.56 \mathrm{kN} / \mathrm{m}^{2}
$$

The intensity of live load on the slab is $7.56 \mathrm{kN} / \mathrm{m}^{2}$

B. Design Problem: (OLD)

Designall sides continuous slab of $5.0 \mathrm{~m} \times 2.5 \mathrm{~m}$ with interior corner openings of size 1.5 mX 0.75 m at a distance of 0.5 m from long edge and 0.5 m from short edge to carry a uniformly distributed live load of $4.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 mix and Fe 415 grade steel.

$$
\text { Given data:Aspect ratio of } \operatorname{slab}(r)=\frac{\boldsymbol{L}_{\boldsymbol{x}}}{\boldsymbol{L}_{\boldsymbol{y}}}=5.0 / 2.5=2.0, \alpha L_{x}=1.5 \mathrm{~m}, \beta L_{y}=0.75 \mathrm{~m} \text {. }
$$

$\therefore \alpha=0.3, \beta=0.3, \mathrm{C}_{5}=0.5 \mathrm{~m}, \mathrm{C}_{6}=0.5 \mathrm{~m}$
Twenty predicted failure patterns are evaluated by using the computer program to find the governing failure pattern, byassuming $K_{x}^{\prime}=I_{1}=I_{3}=1.0, K_{y}^{\prime}=I_{2}=2.0, I_{4}=0$.
The value of $\frac{W_{u l t} L_{y}{ }^{2}}{m_{u l t}}=37.83424$ andthe failure pattern is 8
Unknown parameters:
$r_{1}=\frac{L_{x}}{C_{1}}=4.6000, r_{2}=\frac{L_{x}}{C_{2}}=3.55185, r_{3}=\frac{L_{y}}{C_{3}}=2.34783$
$C_{1}=1.0869 \mathrm{~m}, C_{2}=1.4077 \mathrm{~m}, C_{3}=1.0648 \mathrm{~m}$
Assuming overall thickness of slab $=110 \mathrm{~mm}$
Dead load of slab=110 X $25=2.75 \mathrm{kN}$
Dead loads including finishing's $=3.5 \mathrm{kN} / \mathrm{m}^{2}$
Total load $=8.0 \mathrm{kN} / \mathrm{m}^{2}$
Ultimate total load $=1.5 \times 8.0=12.0 \mathrm{kN} / \mathrm{m}^{2}$
$m_{u l t}=\frac{12.0 \times 2.5^{2}}{34.83424}=2.15305 \mathrm{kNm} / \mathrm{m}$
The orthogonal moments are $K^{1}{ }_{x} m_{u l t}=I_{1} m_{u l t}=1.0 \times 2.15305=2.15305 \mathrm{kNm} / \mathrm{m}$

$$
K_{y}^{l} m_{u l t}=I_{2} m_{u l}=2.0 \mathrm{X} \quad 2.15305=4.3061 \mathrm{kNm} / \mathrm{m}
$$

Effective depth, $d=\sqrt{\frac{2.15305 \times 10^{6}}{(0.138 \times 20 \times 1000)}}=27.9301 \mathrm{~mm}$
Adopt effective depth as 100 mm and overall depth as 110 mm
Area of steel along short span $=155.169 \mathrm{~mm}^{2}$
Minimum area of steel required along short span $=204.82 \mathrm{~mm}^{2}$
Use 8 mm diameter bars @ 240 mm c/c
Area of steel along long span $=84.3189 \mathrm{~mm}^{2}$
Use 6 mm diameter bars @ $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Details of reinforcement are shown in Fig.4(c).

CONCLUSIONS:

1. The virtual work equations for orthotropic slabs with unequalinterior corner openingwith all sides continuous whose aspect ratio of opening is different from the aspect ratio of slab subjected to udlare presented.
2. Design charts for One LongsideDiscontinuous slabare presented for different aspect ratios of slab.
3. Few numerical examples are presented based on theorem of VI and VII of affine theorem of Johansen. K.W. ${ }^{1}$ for orthotropic slabs with interior corner openings.
4. Twouseful charts for affine transformation for different sizes of openings arealso presented.
5. In case of One Long sideDiscontinuous, for $\mathrm{K} 2=1,2$ and $\mathrm{K} 1=1,2,3$ and 5 the strength of the slab is decreasing with increase in aspect ratio when compared to solid slab.
6. The charts can be used either for analysis or design for different size of openings in the interior corner of the slab.

REFERENCES:

[1] Johansen, K.W., "Yield-Line Theory ", Cement and Concrete Association, London, 1962, pp. 181.
[2] Goli, H B. and Gesund, H., "Linearity in Limit State Design of Orthotropic Slabs" J. of Structural Division,ASCE,, Oct.1979, Vol.105, No. ST10, pp.1901-1915.
[3] Rambabu,K. and Goli, H B. "Simplified approach to design orthogonal slabs using affine theorem",Journal of Structural Engineering, Chennai, India, Dec 2006-Jan 2007,Vol.33,No.5,pp.435-442.
[4] Islam,S. and Park, R., "Yield line analysis of two-way reinforced concrete slabs with openings",The Structural Engineer,June 1971,Vol. 49, No. 6, pp. 269-275.
[5] Zaslavsky.Aron,"Yield line analysis of rectangular slabs with central opening", Proc. Of ACI, December 1967,Vol. No.64,pp. 838-844.
[6] Siva Rama Prasad,Ch., and Goli,H. B., "Limit State Coefficients for Orthogonal Slabs." International Journal of Structural Engineering, India, Jan-June 1987, Vol.7, No.1, pp. 93-111.
[7] Sudhakar, K.J., and Goli,H B., "Limit State Coefficients for Trapezoidal- Shaped Slabs Supported on Three Sides", Journal of Structural Engineering, Chennai, India, June-July 2005, Vol.32, No.2, pp.101-108.
[8] Veerendra Kumar and Milan Bandyopadhyay " Yield line analysis of two way reinforced concrete slabs having two adjacent edges discontinuous with openings",Journal of Structural Engineering, Chennai, India, June-July 2009,Vol.36,No.2, pp.82-99.
[9] Indian Standard Plain and Reinforced Concrete-Code of Practice, IS 456:2000,BISNewDelhi.

Fig 2 (a): ORTHOTROPIC SLAB
$K^{\prime}{ }_{x}=I_{1}=I_{3}=0.5, K_{y}{ }_{y}=I_{2}=1, I_{4}=0$.
$r 5=0.2, r 6=0.2, \alpha=0.2, \beta=0.2$,
$I_{3} / K_{x}^{\prime}=I_{4} / K_{y}^{\prime}=1.0, \mu=0.5, \sum \mathrm{~K}=3$ $r=L_{x} / L_{y}=5.6 / 4=1.4$,
In order to check on affine theorem a computer program is used to evaluate the value of $W_{u l t} L_{y}{ }^{2} / m_{u l t}$ and the value is 22.60740

Fig 2 (b): EQUIVALENT ISOTROPIC SLAB

As per affine theorem the transformed
$K_{\mathrm{x}}^{\prime}=I_{1}=I_{3}=1, K_{y}^{\prime}=I_{2}=1, I_{4}=0$.
$r 5=0.2, r 6=0.2, \alpha=0.2, \beta=0.2$,
$L_{x}{ }^{\prime}=L_{x} / \sqrt{ } \mu=5.6 / \sqrt{ } 0.5=7.92 \mathrm{~m}$,
$r=7.92 / 4=1.98, \mu=1.0, \sum \mathrm{~K}=4$,
The value of $W_{u l t} L_{y}{ }^{2} / m_{u l t}$ is obtained from chart - 5 for $r=1.77$. Taking this value one can design the given orthotropic slab without using computer program.

Fig 2 - Orthotropic slab and equivalent isotropic slab as per Theorems VI and VII of Johansen

Fig. 3 (a) Analysis problem

Fig. 4 (a) Design problem

Fig. 3 (b) orthogonal moment coefficients

Fig. 4 (b) orthogonal moment coefficients

Fig. 4 (c)

Fig. 5

Table 1		
Governing failure patterns for different data for different edge conditions		
Failure Patterns	OLC (20)	OLD (18)
	Opening Sizes	Opening Sizes
1	$\mathrm{r} 5=0.3, \mathrm{r} 6=0.2, \alpha=0.2, \beta=0.1, \mathrm{r}=1.3 \quad$ *	$\mathrm{r} 5=0.3, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.3, \mathrm{r}=1$
2	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.2, \mathrm{r}=1.4$	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.4, \alpha=0.1, \beta=0.1, \mathrm{r}=1 \quad$ *
3	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.3, \beta=0.2, \mathrm{r}=1.3$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.3, \beta=0.2, \mathrm{r}=1.5$
4	$\mathrm{r} 5=0.3, \mathrm{r} 6=0.3, \alpha=0.2, \beta=0.2, \mathrm{r}=1.1$	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.4, \alpha=0.1, \beta=0.1, \mathrm{r}=1.5$
5	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.2, \alpha=0.3, \beta=0.1, \mathrm{r}=1$	$\mathrm{r} 5=0.1, \mathrm{r} 6=0.1, \alpha=0.4, \beta=0.3, \mathrm{r}=1.5$
6	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.2, \alpha=0.1, \beta=0.3, \mathrm{r}=1.8$	$\mathrm{r} 5=0.3, \mathrm{r} 6=0.3, \alpha=0.1, \beta=0.2, \mathrm{r}=2$
7	$\mathrm{r} 5=0.1, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.2, \mathrm{r}=1$	$\mathrm{r} 5=0.1, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.2, \mathrm{r}=1$
8	$\mathrm{r} 5=0.1, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.1, \mathrm{r}=1$	$\mathrm{r} 5=0.1, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.1, \mathrm{r}=2$
9	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.4, \mathrm{r}=1$	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.1, \mathrm{r}=2$
10	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.3, \alpha=0.1, \beta=0.2, \mathrm{r}=1.1$	----
11	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.2, \beta=0.2, \mathrm{r}=1$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.3, \mathrm{r}=1$
12	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.1, \alpha=0.1, \beta=0.4, \mathrm{r}=1.2$	---
13	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.2, \beta=0.4, \mathrm{r}=1$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.3, \beta=0.4, \mathrm{r}=1.5$
14	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.2, \alpha=0.1, \beta=0.3, \mathrm{r}=1.2$	$\mathrm{r} 5=0.4, \mathrm{r} 6=0.3, \alpha=0.1, \beta=0.2, \mathrm{r}=1.8$
15	$\mathrm{r} 5=0.1, \mathrm{r} 6=0.1, \alpha=0.4, \beta=0.3, \mathrm{r}=1$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.2, \alpha=0.3, \beta=0.3, \mathrm{r}=1.5$
16	$\mathrm{r} 5=0.3, \mathrm{r} 6=0.2, \alpha=0.2, \beta=0.2, \mathrm{r}=1$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.3, \alpha=0.2, \beta=0.2, \mathrm{r}=1$
17	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.3, \alpha=0.1, \beta=0.1, \mathrm{r}=1 \quad$ *	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.3, \alpha=0.2, \beta=0.1, \mathrm{r}=1$
18	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.3, \alpha=0.3, \beta=0.1, \mathrm{r}=1$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.3, \alpha=0.1, \beta=0.2, \mathrm{r}=1$
19	$\mathrm{r} 5=0.2, \mathrm{r}=0.3, \alpha=0.3, \beta=0.2, \mathrm{r}=1$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.4, \alpha=0.3, \beta=0.1, \mathrm{r}=1.3$
20	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.1, \alpha=0.3, \beta=0.1, \mathrm{r}=1$	$\mathrm{r} 5=0.2, \mathrm{r} 6=0.2, \alpha=0.2, \beta=0.3, \mathrm{r}=1$
COEFFICIENTS	$\begin{aligned} & \mathrm{K}^{\prime} \mathrm{x}=1.33, \mathrm{~K}^{\prime} \mathrm{y}=0.33, \mathrm{I} 1=0, \mathrm{I} 2=2.33, \\ & \mathrm{I} 3=0, \mathrm{I} 4=0, \mu=0.5, \sum \mathrm{~K}=4 \end{aligned}$	$\begin{aligned} & \mathrm{K}^{\prime} \mathrm{x}=0.9, \mathrm{~K}^{\prime} \mathrm{y}=0.5, \mathrm{I} 1=1.5, \mathrm{I} 2=1.1, \\ & \mathrm{I} 3=1.5, \mathrm{I} 4=0, \mu=1.5, \sum \mathrm{~K}=4 \end{aligned}$
*COEFFICIENTS	$\begin{aligned} & \mathrm{K}^{\prime} \mathrm{x}=2, \mathrm{~K}^{\prime} \mathrm{y}=0.5, \mathrm{I} 1=0, \mathrm{I} 2=1.5, \\ & \mathrm{I} 3=0, \mathrm{I} 4=0, \mu=1, \sum \mathrm{~K}=4 \end{aligned}$	$\begin{aligned} & \mathrm{K}^{\prime} \mathrm{x}=0.67, \mathrm{~K}^{\prime} \mathrm{y}=1.33, \mathrm{I} 1=0.67, \\ & \mathrm{I} 2=1.33, \mathrm{I} 3=0.67, \mathrm{I} 4=0 \\ & \mu=0.50, \sum \mathrm{~K}=4 \end{aligned}$

Table-3				
One Long side continuous slab(OLD), based on the principle $\mu=r^{2}$				
Coefficient of orthotropy ($\boldsymbol{\mu}$)	Aspect Ratio of Slab $r=\sqrt{\mu}$	Orthogonal moment coefficients (affine)	$\frac{W_{u l t} L_{y}^{2}}{m_{u l t}}$	Failure pattern for all aspect ratios
0.25	0.5	$\begin{aligned} & K_{x}^{\prime}=0.25, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=0.25, I_{2}=1.0 \end{aligned}$	44.61118	Interior corner opening coefficient
0.5	0.707	$\begin{aligned} & K_{x}^{\prime}=0.5, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=0.5, I_{2}=1.0 \end{aligned}$	44.61118	
0.667	0.817	$\begin{aligned} & K_{x}^{\prime}=0.667, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=0.667, I_{2}=1.0 \end{aligned}$	44.61118	
1.0	1.0	$\begin{aligned} & K_{x}^{\prime}=1.0, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=1.0, I_{2}=1.0 \end{aligned}$	44.61118	
1.44	1.2	$\begin{aligned} & K_{x}^{\prime}=1.44, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=1.44, I_{2}=1.0 \end{aligned}$	44.61118	
1.5	1.225	$\begin{aligned} & K_{x}^{\prime}=1.5, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=1.5, I_{2}=1.0 \end{aligned}$	44.61118	
2.0	1.414	$\begin{aligned} & K_{x}^{\prime}=2.0, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=2.0, I_{2}=1.0 \end{aligned}$	44.61118	
2.25	1.5	$\begin{aligned} & K_{x}^{\prime}=2.25, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=2.25, I_{2}=1.0 \end{aligned}$	44.61118	
4.0	2.0	$\begin{aligned} & K_{x}^{\prime}=4.0, K_{y}^{\prime}=1.0 \\ & I_{1}=I_{3}=4.0, I_{2}=1.0 \end{aligned}$	44.61118	

Notation:

	Continuous edge
SMMM M M M M M M	Simply supported edge
	Free edge
---------	Negative yield line
CS	A slab supported on all sides continuously (restrained)
SS	A slab simply supported on all sides
OLC	A slab restrained on one long sides and simply supported on other three sides
OLD	A slab restrained on three sides and simply supported on one long sides
$K_{x}^{\prime} m_{u l t}$	Positive ultimate yield moment per unit length provided by bottom tension

	bars placed parallel to X -axis
$K_{y}^{\prime} m_{\text {ult }}$	Positive ultimate yield moment per unit length provided by bottom tension bars placed parallel to Y -axis
$I_{1} m_{u l t}$ and $I_{3} m_{u l t}$	Negative ultimate yield moment perunit length provided by top tension reinforcement bars placed parallelto x -axis.
$I_{2} m_{u l t}$ and $I_{4} m_{u l t}$	Negative ultimate yield moment perunit length provided by top tension reinforcement bars placed parallelto y -axis.
K1	$K^{\prime}{ }_{y} / K^{\prime}{ }_{x}$
K2	$I_{2} / K^{\prime}{ }_{y}$
L_{x}, L_{y}	Slab dimensions in X and Y directionsrespectively
α, β	coefficients of opening in the slab
$m_{\text {ult }}$	Ultimate Yield moment per unit lengthof the slab
r	Aspect ratio of slab defined by L_{x} / L_{y}.
$r_{1}, r_{2}, r_{3}, r_{4}$	Non dimensional parameters of yield line propagation
r_{5}, r_{6}	Non dimensional parameters of opening distances
udl	Uniformly Distributed Load
$W_{u l t}$	Ultimate uniformly distributed loadper unit area of slab.
μ	$\text { Coefficient of orthotropy }=\frac{\left[K_{x}{ }_{x}+I_{1}\right]}{\left[K_{y}{ }_{y}+I_{2}\right]}$

Appendix-A

Appendix-B

Chart-2: OLD, K2=1

Chart-3: OLD, K2=2

Chart- 5: Strength Vs Aspect Ratio

