
Application of Mobile Agents as a Tool for

Maintaining Consistency in Distributed

Applications

Amit Mishra, Rajendra Purohit
Associate Professor

Jodhpur Institute of Engineering and Technology

Jodhpur

Abstract: - Distributed application executes on multiple nodes

of remote sites. Due to involvement of multiple nodes, it

requires error recovery algorithms. Traditional message

passing techniques were proposed to design these error

recovery techniques in past. These techniques generate heavy

network traffic and other network overheads. The distributed

system also suffers from the “Domino Effect”, as it may roll

back the transaction to its initial state. Here in this paper we

are proposing mobile agents as a solution for error recovery

in distributed environment as well as to nullify the domino

effect. This new approach reduces the network traffic and

provides most updated system information for decision

making.

I. INTRODUCTION

Here in this paper we are basically discussing the use of

mobile agents as a tool for synchronization as well as for

nullifying domino effect. First, we will discuss mobile

agent and then we will discuss the domino effect.

Mobile agents- Mobile agents are moveable code and it

contains executable code as well as some other information

[1, 2]. Mobile agents are suitable for distributed

environment because this new technology offers several

advantages over existing old techniques. First, mobile

agents can work independently and autonomously. Any

specific task can associated with mobile agent and then it

can be dispatched in the network. Now this agent becomes

an independent entity in the network and it can work

autonomously. Second, mobile agent technique reduces the

network traffic as mobile agent can dispatch itself to any

remote site where it can interact with that site and no

packet movement is required for this interaction. Third,

mobile agents contain executable code and it can sense the

change in execution environment. After sensing it reacts to

this change accordingly. So mobile agent can react

dynamically to unpleasant situations and it provides better

fault tolerance capabilities and robustness. So after

considering these points, we can say that mobile agent

technology is suitable for distributed applications.

 Domino effect and Error recovery-

In a distributed system many users perform various

operations and transactions concurrently. The ACID

(Atomicity, Consistency, Isolation and Durability)

properties of a transaction allow safe sharing of data. The

mentioned properties can be achieved using recovery

manager at each site of a distributed system and its main

task is to save final change, due to transaction, in recovery

file and restore the site to a consistent state when a failure

occurs. It is known as Rollback in the system.

Fig.1 : Domino effect representation

In a distributed system these checkpoints must lead

system a globally consistent state [3]. Checkpoints and

error recovery algorithms can be used to maintain

consistency in a distributed environment. A local

checkpoint is a saved copy of an earlier local state of one

process. A global check point is a collection of local

check points, one for each system or process [4]. This

approach may generate domino effect in the system.

Domino effect can be represented using the Fig.1. We can

better understand it using this example. Consider a

situation where a sender of message m rolls back to a state

that precedes the sending of m. The receiver of m must

also roll back to a state that message precedes m’s receipt;

otherwise, the stats of the two processes would be

inconsistent because they would show that message m was

received without being sent. Under some scenarios,

rollback propagation may extend back to the initial state

of the computation, losing all the work performed before a

failure. This situation is known as Domino effect in the

system. It introduces the concept of mutually consistent

processes or events. Two processes p1 and p2 are

mutually consistent if:-

a) Every message recorded as “received from p1” in

p2’s state is recorded as “sent to p2” in p1’s state and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

1

b) Every message recorded as “received from p2” in

p1’s state is recorded as “sent to p1” in p2’s state

[10].

It can be represented using Fig1. as

Fig. 2: Timing diagram for a distributed system with an

inconsistent cut

The cut shown in Fig. 1 is not a consistent cut, as in this

diagram, the send event of process p4 (e41) is not recorded

or saved as it is not a part of the cut. It is also creates

orphan message. It is a message whose receiving event is

recorded in the checkpoint, but its sending point is lost. In

a distributed computing environment, this type of situation

may lead our system to inconsistent state.

II. NEW APPROACH

In this paper we are combining the points discussed in the

above section to maintain consistency and presenting this

as a solution for error recovery. The proposed solution can

be implemented using IBM’s Aglets [9]. Mobile agents

act as messengers or monitors that move from site to site

over the network and coordinate the processes for

checkpoints and rollback actions [4]. Traditional methods

are expensive in terms of network overheads because

multiple processes take part in the message sending and

receiving activities. Each mobile agent can distribute

itself in the network. Local checkpoint represents the

recorded state of any machine or site. A global checkpoint

can be defined as a set of all local checkpoints. In our

approach, a group of mobile agents is used to control and

monitor different conditions to coordinate consistent

global checkpoints.

We can order local events using check point numbers

called timestamps. Lamport or vector timestamps can be

used for this purpose. These timestamps must maintain

Happened-Before relationship. Domino effect may lead

system to the initial stage of computation, as we discussed

earlier [7]. To prevent this cascade rollback, we are using a

special mobile agent named Rollback coordinator. It

provides assurance that number of checkpoints will not

exceed the predefined value. It works as follows: - If

process X sends a message m to process Y, then the current

timestamp and check point of X is added to the message

header. Each process maintains

Fig.2 Use of mobile agent (RBC) for coordination

complete information of received messages by storing the

header of each message in a record called Message Record

Table (MRT).

Rollback coordinator moves from one site to another and it

carries updated information of previously visited sites

known as Global Information (GI)[4]. When it arrives at

site X, it analyses the MRT of site X and then uses these

records to update the GI and it identifies the dependencies

between this site X and other sites. Now it calculates the

number of rollbacks performed by this current site, if a

fault is detected at this moment. If this count is greater than

the predefined value, a coordinated checkpointing

procedure must be performed to remove the possibility of

domino effect [5,6]. Similarly it also calculates a new

recovery line for rollback procedure. For this purpose, the

Rollback coordinator generates a group of CC (consistency

coordinator) agents, one for each site, and dispatches them

to their corresponding sites. When this CC agent arrives at

any other site, it monitors the local site to see whether there

are any messages sent after last checkpoint. If this

condition is true, it will force this site to for checkpoint

procedure. This site is allowed to send any new messages

only after this checkpoint procedure. It means the normal

execution of this site is stopped after receiving this CC

agent.

After this forced checkpoint procedure, this CC sends a

completion_message to Rollback coordinator. After

receiving this completion_message from all the sites, it

sends normal_op message to all the sites to start the normal

execution again.

III. CONCLUSION

As discussed above, the distributed system suffers from the

domino effect. Due to this performance of system is also

reduced. Traditional techniques of agreement in distributed

system also generate heavy network traffic. The proposed

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

2

method solves this problem. It is efficient in terms of

computation as well as time. Mobile agents can configure it

according to network conditions and they can also take

decisions to maintain consistency. Similarly mobile agents

can also be used to nullify the effect of cascade roll-back

operation.

REFERENCES

[1] Amit Mishra, Anamika Choudhary “Mobile Agent:Security

Issues and Solution” International Journal of Computer

Technology and Electronics Engineering (IJCTEE) Volume 2,
Issue 6, December 2012

[2] Hyacinth S. Nwana, “Software Agents: An Overview ”
Intelligent systems Research, Advanced Applications &

Technology Department, Ipswich, Suffolk U.K. Cambridge

University Press 1996

[3] Colin J. Fidge “Timestamps in Message-Passing Systems That

Preserve the Partial Ordering”

http://fileadmin.cs.lth.se/cs/Personal/Amr_Ergawy/dist-algos-

papers/4.pdf

[4] Jiannong Cao, G.H. Chan, Weijia. Jia, Tharam S. Dillon
“Checkpointing and Rollback of Wide-Area Distributed

Applications Using Mobile Agents, “0-7695-0990-8/01 (C)

2001 IEEE

[5] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson, “A

Survey of Rollback-Recovery Protocols in Message-Passing
Systems”, Technical Report CMU-CS-99-148, School of

Computer Science, Carnegie Mellon University, October 1999.

[6] D.B. Johnson and W. Zwaenepoel, ``Recovery in Distributed
Systems Using Optimistic Message Logging and

Checkpointing", Journal of Algorithms, 11, 1990, pp462-491.

[7] D. Briatico, A. Giuffoletti and L. Simoncini, ``A Distributed

Domino-Effect Free Recovery Algorithm", IEEE Proc. 4th

Symposium on Reliability in Distributed Software and
Database Systems, Oct. 1984, pp207-215.

[8] B. Bhargava, Shy-Renn Lian, ``Independent Checkpointing
and Concurrent Rollback Recovery for Distributed Systems An

Optimistic Approach", IEEE Proc. 7th Symp. on Reliability in

Distributed Systems, Oct. 1988, pp3-12.

[9] C. Xu and D. Tao, “Building Distributed Applications with

Aglet”, http://www.cs.duke.edu/chong/aglet

[10] Randy Chow, T. Johnson “Distributed Operating Systems and

Algorithm Analysis”, Addison Wesley

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETRASECT-2015 Conference Proceedings

Volume 3, Issue 23

Special Issue - 2015

3

