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Abstarct -  In this paper, the free vibration and damping characteristics of sandwich cylindrical and conical shells with viscoelastic 

core are investigated by using a semi-analytical method. Donnel's shell theory and the energy principle are applied to establish the 
theoretical formulations of the sandwich shell with viscoelastic core. The displacement components of the viscoelastic core are expressed 
as those of base and constraining layers by using continuity condition. The displacement field of the sandwich shell expanded by the 
Legendre polynomials in axial direction and Fourier series in circumferential direction. The presented method are verified to have 
enough reliability and accuracy for predicting the natural frequencies and modal loss factors of the sandwich cylindrical and conical 
shells with viscoelastic layer by comparing to the vibrational analysis results of published article. 
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I. INTRODUCTION 
Sandwich structures are widely used in various 

engineering applications duo to the high vibration and noise 
reduction ability caused by the large shear deformation of the 
viscoelastic material layer [1]. Therefore, the study on the 
dynamic characteristics of the sandwich structures have 
attracted a lot of interest of many researchers [2, 3]. Yang et 
al. [4] studied the vibration and damping characteristics of 
the sandwich conical shells and annular plates with arbitrary 
boundary conditions including classical and elastic ones by 
using a simple and efficient modified Fourier solution. Wang 
et al. [5] presented a semi-analytical method for the free 
vibration analysis of the functionally graded (FG) sandwich 
doubly-curved panels and shells of revolution with arbitrary 
boundary conditions. Bardell et al. [6] presented the 
vibration study of a general three-layer conical sandwich 
panel based on the h-p version of the finite element method. 
In their study, the h-p finite element formulation of sandwich 
panel was derived based on a set of trigonometric assumed 
displacement functions. Singha et al. [7] investigated the free 
vibration behavior of rotating pretwisted sandwich conical 
shell panels with functionally graded graphene-reinforced 
composite (FG-GRC) face sheets and homogenous core 
using finite element method in conjunction with HSDT. 
Sofiyev and Osmancelebioglu [8] demonstrated the 
effectiveness of functionally graded coatings in the vibration 
of sandwich truncated conical shells. In their study, the 
governing equations were established by using FSDT and 
Donnell kinematics assumptions. Jin et al. [9] developed an 
accurate solution for the vibration and damping 
characteristics of a three-layered passive constrained layer 

damping (PCLD) cylindrical shell with general elastically 
restrained boundaries by means of the modified Fourier–Ritz 
method in conjunction with Donnell shell assumptions and 
linear viscoelastic theory. Sahu et al. [10] conducted the free 
vibration study of doubly curved sandwich shell panels 
having a core of viscoelastic material, constrained by a 
functionally graded material (FGM) layer by using finite 
element method (FEM) in framework of FSDT. 

Meanwhile, researchers proposed different numerical 
methods such as FEM [10, 11], differential quadrature 
method [12], pb-2 Ritz method [13], Non-Uniform Rational 
B-Splines (NURBS) method [14], spectral-Tchebychev 
solution technique [15], dynamic stiffness method [16-18], 
meshfree method [19, 20] for the dynamic analysis of 
composite shells and plates. The meshfree method is 
attracting attention from researchers due to their excellent 
behaviors [21-23]. 

In this study, a semi-analytical method for the free 
vibration and damping analysis of sandwich cylindrical and 
conical shells with viscoelastic core with Legendre 
polynomials as displacement functions is presented. The 
theoretical formulations of the sandwich shell are established 
by using the energy principle, FSDT and Donnel’s shell 
thoery. Using the continuity condition in interface between 
the layers, the displacement components of the viscoelastic 
core are replaced by those of base and constraining layers. 
The displacement component of the sandwich shell are 
approximated by using Fourier series in conjunction with 
Legendre polynomials. The accuracy and reliability of the 
presented method are verified through the comparison with 
the results of published literature.  
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II. THEORETICAL FORMULATIONS 
 

Fig. 1 shows the geometry and coordinate system of a 
sandwich conical shell which is composed of the base layer, 
the viscoelastic core and the constraining layer. Orthogonal 
curvilinear coordinate systems (x, θ, z) are located on the 
middle surfaces of each layer of the conical shell. The 
symbols L and α are the length and semi-vertex angle of the 
sandwich conical shell. Ri0 and hi (i=s,v,c) denote small edge 
radius and thickness of each layer, and the subscripts s, v, 
and c are indicated for base layer, viscoelastic core and 
constraining layer, respectively. The cylindrical shell is 
considered as a conical shell with semi-vertex angle α=0. 
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Fig. 1. Geometry and coordinate system of 

sandwich conical shell with viscoelastic core. 
Based on the FSDT and Donnel’s shell theory, the 

displacement components at any point of individual layer are 
expressed as [9] 
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where ui, vi and w represent the middle plane displacements 
of each layer in the x, θ and z directions, respectively. In the 
base and constraining layers, the shear rotations ψxi and ψθi 
can be written as follows. 
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where Ri=Ri0+xsinα. 
By using the displacement continuity between layers, 

the displacements of the viscoelastic layer can be expressed 
as: 
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Generally, the Young’s modulus of the viscoelastic layer 
is much smaller than that of the base and constraining layers. 
Therefore, it can be assumed that the viscoelastic material 
layer undergoes only shear strains while the other two layers 

are only allowed flexural and axial deformations. 
Considering Eq. (3), the strains of the core layer are 
expressed as: 
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The shear stresses of the core layer are expressed as: 
v v v v
xz v xz z v zG Gθ θτ γ τ γ= =  (6) 

where the shear modulus Gv of the viscoelastic material is 
composed of real and imaginary parts. 

v r iG G iG= +  (7) 
where Gr and Gi denote the real part and imaginary part of 
the complex shear modulus of the viscoelastic material layer, 
respectively. 

Meanwhile, the stress-strain relationships of the base and 
constraining layers can be written as follows. 
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where the stiffness coefficients Qmn of the isotropic material 
are as 
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where Ei and μi are the Young’s modulus and Poisson’s ratios 
of the base and constraining layers. The strain-displacement 
relationships of the base and constraining layers can be 
written as: 
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The strain energies of the sandwich shell can be 
described as follows. 
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The kinetic energies of the sandwich shell can be given 
as 
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where ρi (i=s,v,c) denotes the density of each layer. 
The elastic energies stored in distributed springs of base 

and constraining layers can be given as 
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The total Lagrangian energy function of the sandwich 
conical shell can be written as follows. 

BCL T U U= − −  (14) 
By introducing the Legendre polynomial, the 

displacement components can be expanded as follows. 
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where ϕm(x) is the m-order Legendre polynomial for the 
displacement function; ω is an angular frequency, t denotes 
time. The symbols s

mnU , s
mnV , c

mnU , c
mnV , mnW , s

mnU , s
mnV , 

c
mnU , c

mnV  and mnW  unknown coefficients of the Legendre 
polynomials that you want to obtain;  

Minimizing the above Lagrangian energy function with 
respect to the unknown nodal displacement components, 

0, , , , , , , , , ,s s c c s s c c
mn mn mn mn mn mn mn mn mn mn

L q U V U V W U V U V W
q
∂

= =
∂

      (16) 

Substituting Eq. (15) into Eq.(14), following governing 
equations are obtained. 

( )2
sω− = 0K M U  (17) 

where Us is the nodal displacement vector, and K and M are 
the stiffness and mass matrices. From the above Eq.(17), the 
complex eigenvalues are obtained. The real part of the 
natural frequency ω of the sandwich shell and the modal loss 
factor η are defined as follows. 
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III. Numerical Results 
It is very important to determine the proper degree of 

polynomial that can simultaneously guarantee the accuracy 
of the solution and the computational efficiency. 

Because, increasing the degree of the polynomial will 
reduce the computational efficiency: the computation time 
for the solution process will be long, and the increase of the 
excessive polynomial degree will result in the case that the 
solution does not converge and diverges. For the 
determination of the proper degree of a polynomial, the 
natural frequency convergence characteristics with 
increasing polynomial degree are investigated and the results 
are shown in Fig. 2. 

 

 
Fig.2. Convergence of modal loss factor for a sandwich 

conical shell. 
 
As shown in Fig. 2, the present method can be ensured 

stable convergence for predicting the natural frequencies and 
modal loss factors of the sandwich conical shell. The 
boundary conditions are generalized by the introduction of 
an artificial spring technique, and the type of boundary 
conditions is selected according to the spring stiffness. The 
effects of spring stiffness values of elastic boundary on the 
natural frequencies and modal loss factors of sandwich 
conical and cylindrical shells are investigated in Fig. 3. 
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Fig.3. Convergence of natural frequency for a sandwich shells with 

different boundary spring stiffness; 
(a) conical, (b) cylindrical. 

 
Based on the above study, the spring stiffness values for 

different boundary conditions considered in this study are set 
as shown in Table 1, in which the symbols F, C, S and SD 
mean free, clamped, simply supported and shear diaphragm 
boundary conditions, respectively. 

 
Table 1. Stiffness values for different boundary springs. 

B.C. Boundary spring stiffness value 
ku, kv kw Kw 

F 0 0 0 0 
C 1014 1014 1014 1014 
S 1014 1014 1014 0 

SD 0 1014 1014 0 
 
Next, the free vibration results of a sandwich cylindrical 

shell are compared with those of literature to verify the 
accuracy of the proposed method. In Table 2, the natural 
frequencies for a sandwich cylindrical shell with various 
boundary conditions are compared with those of literature. 

 
Table. 2. Comparison of natural frequencies for a sandwich cylindrical shell 

with various boundary conditions. 
 

B.Cs n Ref.[9] Present Diff,% 
C-C 1 873.13 873.128 0.0002 

 2 821.85 821.847 0.0004 
 3 764.95 764.945 0.0007 

C-S 1 820.19 820.185 0.0006 
 2 765.25 765.244 0.0008 
 3 702.95 702.942 0.0011 

C-SD 1 799.83 799.824 0.0008 
 2 757.92 757.918 0.0003 
 3 702.45 702.442 0.0011 

C-F 1 669.29 669.283 0.0010 
 2 519.66 519.647 0.0025 
 3 406.55 406.536 0.0034 

 
As observed from Table 2, the frequency results obtained 

by the proposed method agree well with those of the 
literature. 

Based on the verification study of the proposed method, the 
effect of some parameters on the natural frequency and the 
modal loss factor of the sandwich cylindrical and conical 
shells are investigated. First, the effect of semi-vertex angle 
of a sandwich conical shell on the frequency parameters is 
considered in Table 3. 

 
 
 

Table. 3. Frequency parameters for a sandwich conical shell with various 
semi-vertex angles (m=1). 

 

α n B.C.    
C-C C-S C-SD S-S 

π/6 1 12.915 12.549 11.745 12.544 
 2 10.968 10.685 10.595 10.608 
 3 9.205 8.905 8.869 8.749 
 4 7.958 7.620 7.410 7.403 

π/4 1 10.043 9.601 8.804 9.596 
 2 8.781 8.418 8.234 8.351 
 3 7.572 7.207 7.206 7.062 
 4 6.708 6.312 6.215 6.105 

π/3 1 7.107 6.634 6.024 6.606 
 2 6.384 5.940 5.756 5.847 
 3 5.703 5.248 5.244 5.081 
 4 5.265 4.778 4.745 4.559 

 
The variations of the dimensionless frequencies and the 

modal loss factors of a sandwich cylindrical shell with 
various thickness ratio hv/h are shown in Fig. 4. 

 

  

  
Fig.4. Variation of frequency parameters and modal loss factor for a 
sandwich cylindrical shell with various thickness ratios; (a) C-C, (b) 

C-SD. 

It is clear that the frequency parameters decrease as the 
thickness of viscoelastic layer increases. But modal loss 
factors have no such change law. 

 
IV. CONCLUSION 

In this paper, a semi-analytical method is proposed to 
analyze the vibration and damping characteristics of 
sandwich cylindrical and conical shells with viscoelastic 
material core. The theoretical formulations of the structural 
model are established by using the energy principle in 
framework of FSDT and Donnel’s shell theory. The energy 
of the sandwich shell is composed of that of base layer, 
viscoelastic core and constraining layer. The displacement 
components at any point of the sandwich shell are expanded 
by the Legendre polynomials in the meridional direction and 
Fourier series in the circumferential direction. Numerical 
examples for free vibration and damping analyses of 
sandwich cylindrical and conical shells with viscoelastic core 
are presented to verify the reliability and accuracy of the 
presented method. First, the free vibration analysis results of 
the sandwich shells obtained by the proposed method are 
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compared with those of published literature. Finally, the 
effects of several parameters such as geometric dimension, 
material properties and boundary condition on the frequency 
parameter and modal loss factor of the shell are investigated. 
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