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Abstarct - In this paper, the free vibration and damping characteristics of sandwich cylindrical and conical shells with viscoelastic
core are investigated by using a semi-analytical method. Donnel's shell theory and the energy principle are applied to establish the
theoretical formulations of the sandwich shell with viscoelastic core. The displacement components of the viscoelastic core are expressed
as those of base and constraining layers by using continuity condition. The displacement field of the sandwich shell expanded by the
Legendre polynomials in axial direction and Fourier series in circumferential direction. The presented method are verified to have
enough reliability and accuracy for predicting the natural frequencies and modal loss factors of the sandwich cylindrical and conical
shells with viscoelastic layer by comparing to the vibrational analysis results of published article.
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I. INTRODUCTION

Sandwich structures are widely used in various
engineering applications duo to the high vibration and noise
reduction ability caused by the large shear deformation of the
viscoelastic material layer [1]. Therefore, the study on the
dynamic characteristics of the sandwich structures have
attracted a lot of interest of many researchers [2, 3]. Yang et
al. [4] studied the vibration and damping characteristics of
the sandwich conical shells and annular plates with arbitrary
boundary conditions including classical and elastic ones by
using a simple and efficient modified Fourier solution. Wang
et al. [5] presented a semi-analytical method for the free
vibration analysis of the functionally graded (FG) sandwich
doubly-curved panels and shells of revolution with arbitrary
boundary conditions. Bardell et al. [6] presented the
vibration study of a general three-layer conical sandwich
panel based on the h-p version of the finite element method.
In their study, the h-p finite element formulation of sandwich
panel was derived based on a set of trigonometric assumed
displacement functions. Singha et al. [7] investigated the free
vibration behavior of rotating pretwisted sandwich conical
shell panels with functionally graded graphene-reinforced
composite (FG-GRC) face sheets and homogenous core
using finite element method in conjunction with HSDT.
Sofiyev and Osmancelebioglu [8] demonstrated the
effectiveness of functionally graded coatings in the vibration
of sandwich truncated conical shells. In their study, the
governing equations were established by using FSDT and
Donnell kinematics assumptions. Jin et al. [9] developed an
accurate solution for the vibration and damping
characteristics of a three-layered passive constrained layer
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damping (PCLD) cylindrical shell with general elastically
restrained boundaries by means of the modified Fourier—Ritz
method in conjunction with Donnell shell assumptions and
linear viscoelastic theory. Sahu et al. [10] conducted the free
vibration study of doubly curved sandwich shell panels
having a core of viscoelastic material, constrained by a
functionally graded material (FGM) layer by using finite
element method (FEM) in framework of FSDT.

Meanwhile, researchers proposed different numerical
methods such as FEM [10, 11], differential quadrature
method [12], pb-2 Ritz method [13], Non-Uniform Rational
B-Splines (NURBS) method [14], spectral-Tchebychev
solution technique [15], dynamic stiffness method [16-18],
meshfree method [19, 20] for the dynamic analysis of
composite shells and plates. The meshfree method is
attracting attention from researchers due to their excellent
behaviors [21-23].

In this study, a semi-analytical method for the free
vibration and damping analysis of sandwich cylindrical and
conical shells with viscoelastic core with Legendre
polynomials as displacement functions is presented. The
theoretical formulations of the sandwich shell are established
by using the energy principle, FSDT and Donnel’s shell
thoery. Using the continuity condition in interface between
the layers, the displacement components of the viscoelastic
core are replaced by those of base and constraining layers.
The displacement component of the sandwich shell are
approximated by using Fourier series in conjunction with
Legendre polynomials. The accuracy and reliability of the
presented method are verified through the comparison with
the results of published literature.
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II. THEORETICAL FORMULATIONS

Fig. 1 shows the geometry and coordinate system of a
sandwich conical shell which is composed of the base layer,
the viscoelastic core and the constraining layer. Orthogonal
curvilinear coordinate systems (x, 6, z) are located on the
middle surfaces of each layer of the conical shell. The
symbols L and a are the length and semi-vertex angle of the
sandwich conical shell. R,y and 4; (i=s,v,c) denote small edge
radius and thickness of each layer, and the subscripts s, v,
and ¢ are indicated for base layer, viscoelastic core and
constraining layer, respectively. The cylindrical shell is
considered as a conical shell with semi-vertex angle a=0.

Fig. 1. Geometry and coordinate system of
sandwich conical shell with viscoelastic core.
Based on the FSDT and Donnel’s shell theory, the
displacement components at any point of individual layer are
expressed as [9]

u, =u;, +zy
V,=Vv,+zi, i=s,v,c (1
w,=w

where u;, v; and w represent the middle plane displacements
of each layer in the x, 6 and z directions, respectively. In the
base and constraining layers, the shear rotations y,; and wy;
can be written as follows.
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By using the displacement continuity between layers,
the displacements of the viscoelastic layer can be expressed
as:
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Generally, the Young’s modulus of the viscoelastic layer
is much smaller than that of the base and constraining layers.
Therefore, it can be assumed that the viscoelastic material

layer undergoes only shear strains while the other two layers
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are only allowed flexural and axial deformations.
Considering Eq. (3), the strains of the core layer are
expressed as:
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The shear stresses of the core layer are expressed as:
t.=Gyr. 7.=G7,. (©)

where the shear modulus G, of the viscoelastic material is
composed of real and imaginary parts.

G, =G. +iG, %)
where G, and G; denote the real part and imaginary part of
the complex shear modulus of the viscoelastic material layer,
respectively.

Meanwhile, the stress-strain relationships of the base and

constraining layers can be written as follows.

G)‘: Qll QIZ 0 8i

g, |=| 0, O, 0| & | i=sc (3)
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where the stiffness coefficients O, of the isotropic material
are as
o, = :u,-z , O = llf ,ullz s O = m )
where E; and g, are the Young’s modulus and Poisson’s ratios
of the base and constraining layers. The strain-displacement
relationships of the base and constraining layers can be
written as:
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The strain energies of the sandwich shell can be

described as follows.

+2z
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The klnetlc energies of the sandwich shell can be given

as
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where p; (i=s,v,c) denotes the density of each layer.
The elastic energies stored in distributed springs of base

and constraining layers can be given as
2
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The total Lagrangian energy function of the sandwich
conical shell can be written as follows.
L=T-U-Up (14)
By introducing the Legendre polynomial, the
displacement components can be expanded as follows.
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where ¢,(x) is the m-order Legendre polynomial for the
displacement function; ® is an angular frequency, ¢ denotes
Vs Uc Vc W UA s

mn 3 mn 3 mn 3 mn 2 mn 3 mn 3 mn >

time. The symbols U’

Ue,, v¢ and W, unknown coefficients of the Legendre

polynomials that you want to obtain;

Minimizing the above Lagrangian energy function with
respect to the unknown nodal displacement components,
Lo g=0,.7.
oq

Substituting Eq. (15) into Eq.(14), following governing
equations are obtained.

(K-’M)U, =0 17)
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IJERTV 1415110190

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 14 Issue 11, November - 2025

where U, is the nodal displacement vector, and K and M are
the stiffness and mass matrices. From the above Eq.(17), the
complex eigenvalues are obtained. The real part of the
natural frequency w of the sandwich shell and the modal loss
factor # are defined as follows.

s :RZ(“’ ) as)
Vs
~ Im(a)z)
= Re(a)z) (19

II1. Numerical Results

It is very important to determine the proper degree of
polynomial that can simultaneously guarantee the accuracy
of the solution and the computational efficiency.

Because, increasing the degree of the polynomial will
reduce the computational efficiency: the computation time
for the solution process will be long, and the increase of the
excessive polynomial degree will result in the case that the
solution does mnot converge and diverges. For the
determination of the proper degree of a polynomial, the
natural frequency convergence characteristics with
increasing polynomial degree are investigated and the results
are shown in Fig. 2.
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Fig.2. Convergence of modal loss factor for a sandwich
conical shell.

As shown in Fig. 2, the present method can be ensured
stable convergence for predicting the natural frequencies and
modal loss factors of the sandwich conical shell. The
boundary conditions are generalized by the introduction of
an artificial spring technique, and the type of boundary
conditions is selected according to the spring stiffness. The
effects of spring stiffness values of elastic boundary on the
natural frequencies and modal loss factors of sandwich
conical and cylindrical shells are investigated in Fig. 3.
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Table. 3. Frequency parameters for a sandwich conical shell with various
semi-vertex angles (m=1).
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Fig.3. Convergence of natural frequency for a sandwich shells with
different boundary spring stiffness;
(a) conical, (b) cylindrical.

Based on the above study, the spring stiffness values for
different boundary conditions considered in this study are set
as shown in Table 1, in which the symbols F, C, S and SD
mean free, clamped, simply supported and shear diaphragm
boundary conditions, respectively.

Table 1. Stiffness values for different boundary springs.

Boundary spring stiffness value

B.C.
ku, kv kow Kw
F 0 0 0 0
C 10 104 104 10
S 10 104 1014 0
SD 0 10 104 0

Next, the free vibration results of a sandwich cylindrical
shell are compared with those of literature to verify the
accuracy of the proposed method. In Table 2, the natural
frequencies for a sandwich cylindrical shell with various
boundary conditions are compared with those of literature.

u " B.C.
C-C C-S C-SD S-S
/6 1 12.915 12.549 11.745 12.544
2 10.968 10.685 10.595 10.608
3 9.205 8.905 8.869 8.749
4 7.958 7.620 7.410 7.403
/4 1 10.043 9.601 8.804 9.596
2 8.781 8.418 8.234 8.351
3 7.572 7.207 7.206 7.062
4 6.708 6.312 6.215 6.105
/3 1 7.107 6.634 6.024 6.606
2 6.384 5.940 5.756 5.847
3 5.703 5.248 5.244 5.081
4 5.265 4.778 4.745 4.559

The variations of the dimensionless frequencies and the
modal loss factors of a sandwich cylindrical shell with
various thickness ratio 4,/h are shown in Fig. 4.

€

Frequency parameter

 e————— ,,:3]

| So— - ap=5|

Modal loss factor, %

01 02 03 04 05 06 07 08
hJh

01 02

03 0.4 0.5 0.6 0.7 0.8
nJh

g

Table. 2. Comparison of natural frequencies for a sandwich cylindrical shell

with various boundary conditions.

B.Cs n Refl[9] Present Diff,%
Cc-C 1 873.13 873.128 0.0002
2 821.85 821.847 0.0004
3 764.95 764.945 0.0007
C-S 1 820.19 820.185 0.0006
2 765.25 765.244 0.0008
3 702.95 702.942 0.0011
C-SD 1 799.83 799.824 0.0008
2 757.92 757.918 0.0003
3 702.45 702.442 0.0011
C-F 1 669.29 669.283 0.0010
2 519.66 519.647 0.0025
3 406.55 406.536 0.0034

As observed from Table 2, the frequency results obtained
by the proposed method agree well with those of the

literature.

Based on the verification study of the proposed method, the

effect of some parameters on the natural frequency and the
modal loss factor of the sandwich cylindrical and conical
shells are investigated. First, the effect of semi-vertex angle
of a sandwich conical shell on the frequency parameters is
considered in Table 3.
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Fig.4. Variation of frequency parameters and modal loss factor for a
sandwich cylindrical shell with various thickness ratios; (a) C-C, (b)
C-SD.

It is clear that the frequency parameters decrease as the
thickness of viscoelastic layer increases. But modal loss
factors have no such change law.

IV. CONCLUSION

In this paper, a semi-analytical method is proposed to
analyze the vibration and damping characteristics of
sandwich cylindrical and conical shells with viscoelastic
material core. The theoretical formulations of the structural
model are established by using the energy principle in
framework of FSDT and Donnel’s shell theory. The energy
of the sandwich shell is composed of that of base layer,
viscoelastic core and constraining layer. The displacement
components at any point of the sandwich shell are expanded
by the Legendre polynomials in the meridional direction and
Fourier series in the circumferential direction. Numerical
examples for free vibration and damping analyses of
sandwich cylindrical and conical shells with viscoelastic core
are presented to verify the reliability and accuracy of the
presented method. First, the free vibration analysis results of
the sandwich shells obtained by the proposed method are
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compared with those of published literature. Finally, the
effects of several parameters such as geometric dimension,
material properties and boundary condition on the frequency
parameter and modal loss factor of the shell are investigated.
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