
API Security: Protecting APIs With Keycloak

Danso Solomon Danquah, Yin Chunyong.
School of Computing and Software

Nanjing University of Information Science and Technology.

No.219 Ningliu Road, Jiangsu Province, China, 210044

Abstract—Nowadays, securing APIs is of paramount

importance due to the interconnectedness of our world.

Keycloak is an open-source tool that offers several security

features, including authentication, authorization, and Single

Sign-On. In this journal, we delve into the ways of protecting

APIs with Keycloak. We investigate how to configure Keycloak

with APIs and illustrate how it can be utilized to authenticate

and authorize API requests. Additionally, we examine how to

set up OAuth2/OpenID Connect integration and merge

Keycloak with existing enterprise authentication systems. By

employing Keycloak in API security, companies can enhance

their overall security measures, reduce the possibility of data

breaches, and provide a seamless user experience.

Keywords—: API Security, Keycloak, Oauth2, OpenID.

I. INTRODUCTION

APIs, or application programming interfaces, are a crucial

part of modern software development. They allow

developers to access functionality and data from other

applications, services, and platforms, making it possible to

create complex, integrated systems that can provide a wide

range of features and capabilities. However, the widespread

use of APIs also presents a significant security risk, as

unauthorized access to APIs can result in data breaches, theft

of intellectual property, and other forms of cybercrime [4].

As a result, there is an urgent need to protect APIs and

ensure that they are only accessed by authorized users and

applications.

Keycloak is an open-source identity and access management

system that provides authentication, authorization, and other

security features for web applications and APIs. Keycloak is

often used for protecting APIs due to its ability to provide

secure authentication and authorization for both internal and

external users, as well as its support for a wide range of

authentication protocols and security standards.

Keycloak also provides a range of features for managing

users and roles, including support for multi-factor

authentication and fine-grained access control. This allows

organizations to easily manage user accounts, enforce

password policies, and control access to specific APIs and

resources based on user roles and permissions. One of the

key features of Keycloak is its support for OAuth 2.0 and

OpenID Connect, which are widely used authentication

protocols for web applications and APIs. These protocols

provide a standardized way for applications to authenticate

and authorize users, and Keycloak provides built-in support

for both protocols, making it easy to integrate with a wide

range of applications and APIs [3]. In addition to OAuth 2.0

and OpenID Connect, Keycloak also supports a range of

other authentication protocols and security standards,

including SAML, LDAP, and Kerberos. This flexibility

makes it easy to integrate Keycloak with a wide range of

existing systems and applications, regardless of their

authentication requirements.

Fig. 1. Regular API Communication

The figure above shows how a regular web application

communicates with an API. The communication goes

through a network, but in most cases the internet to perform

a CRUD (Create Retrieve Update Delete) operation. This

action exposes the user from the web application to several

security threats. It is therefore of topmost relevance to ensure

that users from any application level is well protected when

making API calls.

This study elaborates on the relevance of using Keycloak

IAM to protect APIs, how to protect the API and the

limitations of Keycloak.

II. RELATED WORK

[6] This study presents a case study on how to use the Spring

Security framework in combination with KeyCloak-based

OAuth2 to secure microservice architecture APIs.

The case study itself describes the development of a web-

based application that uses a microservice architecture, with

several RESTful APIs exposed to the front-end application.

The authors then explain how they used Spring Security to

secure the APIs, with KeyCloak as the authentication and

authorization provider. They go into detail about the various

Spring Security components used, such as authentication

providers, security filters, and access control. The authors

also describe the configuration steps needed to integrate

Spring Security and KeyCloak, including the creation of

KeyCloak clients and the configuration of OAuth2 settings.

They provide code examples and configuration snippets to

illustrate the process, making it easier for readers to replicate

the setup. The paper then presents the results of the case

study, which show that the Spring Security and KeyCloak-

based OAuth2 setup provided effective security for the

microservices. The authors also discuss the limitations of

their approach, such as the need for additional configuration

for more complex authorization scenarios.

[7] Keycloak is an open-source IAM system that provides

authentication, authorization, and security for applications.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

561

www.ijert.org
www.ijert.org
www.ijert.org

The authors introduce Keycloak, covering its architecture,

installation, configuration, and integration with OpenID

Connect and OAuth 2.0. They also provide guidance on how

to configure Keycloak for different environments, such as

development, testing, and production. Managing users and

roles in Keycloak includes creating and managing user

accounts, setting up groups and roles, and defining

permissions and policies. The authors also provide guidance

on how to customize user profiles, set up two-factor

authentication, and integrate Keycloak with external identity

providers. Finally, they provide a step-by-step guide on how

to integrate Keycloak with various types of applications,

including Java, Node.js, and PHP. Overall, "Keycloak-

Identity and Access Management for Modern Applications"

is an essential guidebook for anyone looking to implement a

secure and scalable identity and access management system

for modern applications. With its comprehensive coverage

of Keycloak's features and its practical examples and use

cases, this book is an excellent resource for both beginners

and experienced professionals in the field of IAM.

III. THREAT MODEL

In the case of Keycloak, the threat model can be broken

down into several categories, including:

A. Authentication

Keycloak is primarily responsible for providing

authentication services for users and applications.

Therefore, threats to the authentication process can

compromise the entire system's security. Some potential

threats include:

• Password guessing and brute force attacks

• Phishing attacks

• Man-in-the-middle attacks

• Session hijacking

• Credential stuffing

To mitigate these threats, Keycloak implements several

security measures such as password policies, two-factor

authentication, secure cookie settings, and SSL/TLS

encryption.

B. Authorization

Keycloak provides access control services that ensure that

only authorized users and applications can access protected

resources. Threats to authorization can lead to data breaches

and other security incidents. Some potential threats include:

• Access token theft and replay attacks

• Cross-site scripting (XSS) attacks

• Cross-site request forgery (CSRF) attacks

• Privilege escalation

• Insufficient access control

To mitigate these threats, Keycloak implements several

security measures such as token encryption, token

revocation, CORS policies, and role-based access control.

C. Infrastructure

Keycloak relies on infrastructure components such as

databases, servers, and network devices. Any vulnerabilities

in the infrastructure can lead to compromise the entire

system's security. Some potential threats include:

• Server misconfiguration

• Network attacks

• Database vulnerabilities

• Operating system vulnerabilities

• Third-party software vulnerabilities

To mitigate these threats, Keycloak recommends

implementing secure system configurations, regular

vulnerability scanning, and software patching.

D. Administration.

Keycloak's administrative interface provides powerful tools

for managing users, roles, and permissions. Therefore, any

vulnerabilities in the administration interface can

compromise the entire system's security. Some potential

threats include:

• Weak or default passwords

• Insufficient user access control

• Insecure API endpoints

• Lack of audit logging

• Social engineering attacks

To mitigate these threats, Keycloak recommends

implementing strong passwords, restricting user access to

administrative functions, enabling secure API

communication, and enabling audit logging.

IV. DESIGN

APIs are often used to expose critical data and services to

external applications and users. Therefore, securing APIs is

essential to prevent unauthorized access, data breaches, and

other security threats. The consequences of API security

breaches can be severe, including loss of reputation, legal

liability, and financial losses. API security involves several

layers of protection, such as authentication, authorization,

encryption, and validation. Authentication verifies the

identity of users and applications accessing the API, while

authorization determines the level of access granted to them.

Encryption ensures that the data transmitted between the

API and its consumers is protected from interception and

tampering. Validation ensures that the data sent to the API

is in the expected format and within the acceptable limits.

Keycloak provides a comprehensive set of features to secure

APIs and manage identity and access control.

To protect an API with Keycloak, you need to perform the

following steps:

a) Configure Keycloak client:

First, you need to create a Keycloak client that

represents your API. You can do this by logging in

to the Keycloak administration console, selecting

the realm you want to use, and creating a new

client.

When creating the client, you need to specify the

following settings:

- Client ID: A unique identifier for the client.

- Client Protocol: The protocol used by the API

(e.g., OpenID Connect, OAuth 2.0).

- Access Type: The type of access granted to the

client (e.g., confidential, public).

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

562

www.ijert.org
www.ijert.org
www.ijert.org

- Valid Redirect URIs: The URLs that the client

is allowed to redirect to after authentication.

ONCE you have created the client, you need to note

down its Client ID and Client Secret, which will be

used to authenticate the API requests.

b) Secure API Endpoints:

Next, you need to secure the endpoints of your API

by adding an authentication mechanism. You can

do this by adding a security filter or interceptor to

your API code that verifies the authenticity of the

requests.

For example, if you are using Java and Spring Boot,

you can use the Spring Security framework to

secure your API endpoints. You can add the

Keycloak Spring Security adapter to your project

dependencies and configure it to use the Keycloak

client you created earlier.

The Spring Security adapter provides several

features, such as:

• Authentication: Verifying the identity of the user or

application accessing the API.

• Authorization: Determining the level of access

granted to the user or application.

• Session Management: Managing the user session

and logout.

c) Test API Authentication:

To test API authentication with Keycloak, you first need

to obtain an access token from the Keycloak

authentication server. You can use a tool like Postman

or cURL to send a request to the Keycloak server and

receive an access token in the response. The access

token will contain information about the user, client,

and scope of the authentication request.

Once you have obtained an access token, you can use it

to send authenticated requests to the API endpoint. In

the request headers, you should include the access token

in the Authorization header, using the Bearer scheme.

The API server will then verify the access token with

the Keycloak authentication server to ensure that it is

valid and has the appropriate permissions to access the

requested resource.

After sending an authenticated request to the API

endpoint, you should receive a response from the server.

The response should contain the requested resource or

an appropriate error message if the request was not

successful. You should verify that the response contains

the expected data and that the authentication and

authorization mechanisms are working as intended.

It's important to note that testing API authentication is

not a one-time process. You should regularly test your

API's authentication and authorization mechanisms to

ensure that they are functioning correctly and that there

are no vulnerabilities that could be exploited by

attackers.

Fig. 2. Keycloak API Communication

Figure 2, shows how communication between an application

and an API. First a request is made by the user interface to

the API, however the API is structured to be accessed by

tokens, hence, the API oauth2 authentication principal

throws the user request to keycloak for the user to be

authenticated and authorized. During the authentication and

authorization process, keycloak provides a login interface

for the user to provide the right credentials, when the

credentials are right, keycloak then forwards the request

back to the API with the tokens, indicating that the user has

the right to make such calls to the API.

Results.

In Figure 3, show an error message with the HTTP status

code of 401 when an endpoint is accessed in postman

without providing the right credentials for keycloak to

assign a token to the user, which will be used to access the

endpoints.

Fig. 3. 401 Unauthorized

In figure 4, depicts how an authorized user can fully access

the resource assigned. This shows an endpoint accessibility

through keycloak. And gives HTTP status code of 200.

Fig. 4. 200 Success (Created)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

563

www.ijert.org
www.ijert.org
www.ijert.org

The figure 5, shows the various properties of the keycloak

configurations.

Issuer: is a URL that identifies the Keycloak instance that

issued a particular access token. This URL is included in the

access token's metadata, and can be used by client

applications to verify the authenticity and validity of the

token.

Authorization_endpoint: is a URL that is used by client

applications to obtain authorization from Keycloak before

accessing protected resources. When a user tries to access a

protected resource, the client application will redirect the

user to the authorization endpoint to initiate the

authorization process.

Also, there are various endpoints provided by keycloak after

the configuration to help identify the user after

authentication and authorization have been granted. These

endpoints includes, but not limited to:

➢ Token_introspection_endpoint

➢ Userinfo_endpoint

➢ End_session_endpoint

➢ Jwks_uri

➢ Check_session_iframe

Fig. 5 Keycloak OpenID

IV CHALLENGES AND LIMITATIONS

Keycloak is an open-source Identity and Access

Management (IAM) solution that offers a range of features

such as single sign-on, social login, user federation, and fine-

grained access control. However, organizations might face

several challenges and limitations when implementing

Keycloak.

One of the main challenges that organizations might face is

the complexity of the system. Keycloak provides numerous

configuration options, making it difficult for organizations

to set up and maintain. Another challenge is integrating

Keycloak with existing systems, especially in complex IT

environments or legacy systems, which could cause issues.

Additionally, Keycloak can be resource-intensive,

especially when used with large user bases or complex

access control policies. This can require significant

computing resources and may increase costs. Moreover,

while Keycloak provides customization options, there are

limitations in how much organizations can customize the

system to meet their specific needs. Furthermore, while

Keycloak has extensive documentation, some users may

find it challenging to navigate or may require additional

support to fully understand the system. Additionally,

upgrading to newer versions of Keycloak can be

challenging, especially for organizations with custom

extensions or integrations, which can require significant

testing and development resources.

In conclusion, while Keycloak is a robust and flexible IAM

solution, organizations need to be aware of the challenges

and limitations they might face when implementing it.

Proper planning and implementation can help mitigate these

challenges and ensure a successful deployment of Keycloak.

V. CONCLUSION

 Keycloak is a secure IAM solution that provides robust

authentication and authorization features, along with

comprehensive user management and security features. It is

widely used in production environments and has a strong

track record for security. However, as with any software, it

is important to keep up with security updates and best

practices to ensure continued security.

REFERENCES
[1] Tuecke, S., Ananthakrishnan, R., Chard, K., Lidman, M.,

McCollam, B. and Foster, I., 2016. Globus Auth: A research identity

and access management platform. In 12th IEEE International
Conference on e-Science.

[2] Nakandala, S., Gunasinghe, H., Marru, S. and Pierce, M., 2016.

Apache Airavata Security Manager: Authentication and
Authorization Implementations for a Multi-Tenant eScience

Framework

[3] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B. and
Mortimore, C., 2014. Openid connect core 1.0. The OpenID

Foundation, p.S3

[4] Hardt, D., 2012. The OAuth 2.0 authorization framework. [3]
Basney, J., Fleury, T. and Gaynor, J., 2014. CILogon: A federated

X. 509 certification authority for cyberinfrastructure logon.
Concurrency and Computation: Practice and Experience, 26(13),

pp.2225-2239.

[5] Christie, M. A., Bhandar, A., Nakandala, S., Marru, S., Abeysinghe,
E., Pamidighantam, S., & Pierce, M. E. (2017). Using keycloak for

gateway authentication and authorization.

[6] Chatterjee, A., & Prinz, A. (2022). Applying spring security
framework with KeyCloak-based OAuth2 to protect microservice

architecture APIs: a case study. Sensors, 22(5), 1703.

[7] Thorgersen, S., & Silva, P. I. (2021). Keycloak-identity and access
management for modern applications: harness the power of

Keycloak, OpenID Connect, and OAuth 2.0 protocols to secure

applications. Packt Publishing Ltd.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS040284
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 04, April-2023

564

www.ijert.org
www.ijert.org
www.ijert.org

