
APB Bridge Based on AMBA 4.0

G Prathibha

Department of ECE

Sree Buddha College of Engineering, Pattoor

Pandalam, Kerala

Ambika Sekhar

Department of ECE

Sree Buddha College of Engineering, Pattoor

Pandalam, Kerala

Abstract

 Integrated circuits have entered the era of System-on-a-

Chip (SoC), which refers to integrating all components of a

computer or other electronic system into a single chip. With

the increasing design size, IP has become an inevitable

choi ce for SoC design. The widespread use of all kinds of

IPs has changed the nature of the design flow, making On -

Chip Buses (OCB) essential to the design. Of all OCBs

existing in the market, the AMBA bus system is widely used

as the de facto standard SoC bus. The latest specification

introduced by ARM is AMBA 4.0 specifications. A bus

bridge is used to convert transactions from one bus

protocol to another. Based on AMBA 4.0 bus, the

Intellectual Property (IP) core of Advanced Peripheral Bus

(APB) bridge has been designed, which translates the

AXI4.0-lite transactions (AXI Master) into APB 4.0

transactions (APB Master). As most of the peripherals don’t

use the advanced features of AXI4 bus, the APB bus has

been implemented to interact with the processor to reduce

complexity. The bridge provides an interface between the

high-performance AXI bus and low-power APB domain. It

has a Slave interface which receives the AXI4 master

transactions and converts them to APB master

transactions and initiates them on the APB bus. As the

APB protocol is significantly simpler than AXI4, the

AXI4 transactions are properly downgraded to APB

transactions.

1. Introduction

The Advanced Microcontroller Bus Architecture

(AMBA) is used as the on-chip bus in system-on-a-chip (SoC)

designs. Since its inception, the scope of AMBA has gone far beyond

microcontroller devices and is now widely used on a range

of ASIC and SoC parts including applications processors used in

modern portable mobile devices. AMBA protocol is an open

standard, on-chip interconnect specification for the connection and

management of functional blocks in a System-on-Chip (SoC). It

facilitates right-first-time development of multi-processor designs

with large numbers of controllers and peripherals.

AMBA was introduced by ARM Ltd in 1996. The first

AMBA buses were Advanced System Bus (ASB) and Advanced

Peripheral Bus (APB). In its 2nd version, AMBA 2, ARM added

AMBA High-performance Bus (AHB) that is a single clock-edge

protocol. In 2003, ARM introduced the 3rd generation, AMBA 3,

including AXI to reach even higher performance inter-connects and

the Advanced Trace Bus (ATB) as part of the CoreSight on-chip

debug and trace solution. These protocols are today the de facto

standard for 32-bit embedded processors because they are well

documented and can be used without royalties.

The important aspect of a SoC is not only which

components or blocks it houses, but also how they are interconnected.

AMBA is a solution for the blocks to interface with each other. The

objective of the AMBA specification is to:

 facilitate right-first-time development of embedded

microcontroller products with one or more CPUs, GPUs or

signal processors,

 be technology independent, to allow reuse of IP cores,

peripheral and system macrocells across diverse IC

processes,

 encourage modular system design to improve processor

independence, and the development of reusable peripheral

and system IP libraries

 minimize silicon infrastructure while supporting high

performance and low power on-chip communication.

ARM introduced the Advanced Microcontroller Bus

Architecture (AMBA) 4.0 specifications in March 2010,

which includes Advanced eXtensible Interface (AXI) 4.0.

AMBA bus protocol has become the de facto standard SoC bus.

That means more and more existing IPs must be able to

communicate with AMBA 4.0 bus. Based on AMBA 4.0 bus, an

Intellectual Property (IP) core of AXI (Advanced extensible

Interface) Lite to APB (Advanced Peripheral Bus) Bridge can be

designed, which would translate the AXI4.0-lite transactions into

APB 4.0 transactions. The bridge provides interfaces between the

high- performance AXI bus and low-power APB domain.

2. Block Diagram

The design specification mainly deals with the

implementation and verification of the APB bridge which

converts AXI4 protocol transactions to APB protocol transactions.

AXI4 and APB are protocols of the AMBA bus family from ARM

for mobile SOCs. The AXI4 forms the main processor

communication bus and APB is the primary peripheral bus. As

most of the peripherals don’t use the advanced features of AXI4

bus they implement the APB bus to interact with the processor to

reduce complexity. An RTL which converts AXI4 transactions to

APB bus will be helpful in integrating peripherals which use

411

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90212

the simpler APB bus, into an SOC with standard ARM

processor/s.

A bus bridge is used to convert transactions from one

bus protocol to another. Here the transactions coming from a

processor (AXI4 Master) are converted to APB Master

transactions. Hence the bus bridge has a Slave interface which

receives the AXI4 master transactions and converts them to APB

master transactions and initiates them on the APB bus. As the

APB protocol is significantly simpler than AXI4, the AXI4

transactions will have to be downgraded to APB transactions.

The block diagram of the bus bridge system can be given as

shown below.

Figure 1: APB Bridge block diagram

3. RTL Block Diagram

A bus bridge is used to convert transactions from one

bus protocol to another. Here the transactions coming from a

processor (AXI4 Master) has been converted to APB Master

transactions. Hence the bus bridge has a Slave interface which

receives the AXI4 master transactions and converts them to APB

master transactions and initiates them on the APB bus. As the

APB protocol is significantly simpler than AXI4, the AXI4

transactions have been properly downgraded to APB transactions.

As the first step, we have the RTL block diagram as

show in figure 2. The various signal channels of AXI and the APB

signals were studied thoroughly. From this study, a

Figure 2: RTL Block Diagram

transaction table was generated, which gives the relation between

various AXI and APB signals. It is from this table that we get an

idea of how to generate the signals necessary and how they can be

used for read and write operations.

4. Waveforms Expected

Depending on the transaction table generated, there read

and write operations are expected to be as shown n the figures given

below.

Figure 3: Expected read access waveform

Figure 4: Expected write access waveform

When read/write address is aligned to the read/write size,

for 'FIXED' burst AXI4 type, address for all APB reads/writes will

remain the same. For 'INCREMENTING' burst AXI4 type,

address for APB reads/writes will be increased according to the

data bus width on the APB size. For 'WRAPPING' burst AXI4

type, address for APB reads/writes will be increased according to

the data bus width on the APB size. It will also have to be wrapped

according to the wrap size calculated as given in AXI4

412

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90212

specifications.

When read/write address is unaligned to the read/write

size, for 'FIXED' burst AXI4 type, address for all APB reads will

remain the same. The size of transfer should not exceed data bus

width. If system address is higher than that of master, then

higher order bits are filled with zeroes, else they are left

unconnected if narrower. For 'INCREMENTING' burst AXI4 type,

address for APB reads will be increased according to the data bus

width on the APB size. The size of transfer should not exceed data

bus width. If system address is higher than that of master, then

higher order bits are filled with zeroes, else they are left

unconnected if narrower. For 'WRAPPING' burst AXI4 type,

address for APB reads will be increased according to the data bus

width on the APB size. It will also have to be wrapped according

to the wrap size calculated as given in AXI4 specifications. The

size of transfer should not exceed data bus width. If system

address is higher than that of master, then higher order bits are

filled with zeroes, else they are left unconnected if narrower.

For AXI read/write data transactions, as APB is single

data exchange bus we will need to wait for each data to come

before we can initiate a data beat on the AXI read bus. More

complications come in if data bus size is different in AXI4 and

APB.

The write response channel signals is for letting the AXI

peripherals know about the conditions of transfer. Errors and such

related conditions will be made known.

5. Simulation and Implementation

5.1 Clock and Reset Block

As in any SoC designs, the main unit is the clock and reset

block. The purpose of this block is to generate the necessary clock
and reset signals. In the APB bridge, we need two clock signals and
two reset signals. ACLK and ARESETn for the AXI part and the
PCLK and PRESETn for the APB part. The figure below shows the
simulation result for clock and reset block.

Figure 5: Clock and reset block output

5.2 Transaction Generator Block

The purpose of this block is to generate random values

for all the signals related to AXI. For each positive edge of the

ACLK, the signals have different values. This is generated by

using the keyword $random in the verilog language.

Random values are obtained for the signals when this keyword

is used. An intermediate signal is generated for all the signals

involved in the transactions in this block.

The signal values depend on the reset value. As the

reset is an active low signal, when its value s 0, all the values for

the signals will be 0, else when the reset value is 1, random value

is generated for each clock cycle.

Figure 6: Transaction generator block output

5.3 APB Slave Block

The APB slave block contains all the APB signals. The

function of this block is to check whether the function that is to be

performed by the slave is a read one or a write one. This depends

on the value of the PWRITE signal. If the value on that signal is

HGH, it’s a write process or else it’s a read process, provided

PSEL, PREADY and PENABLE are HIGH. When it’s a read

operation, the value in the memory location is read by the

PRDATA signal. When it’s a write operation, the value on the

PWDATA is written on to the memory location.

413

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90212

Figure 7: APB Slave block output

5.4 AXI Master Block

Figure 8: AXI master block output

The master block performs the operations for the

AXI4 Master Read Address section, AXI4 Master Write

Address section and AXI4 Master Write Data section. In the

read address section, the read address is generated. The states

present in the read/write address section are IDLE and VALID,

whereas for the read/write sections are IDLE and READY.

In the AXI4 Master Read/Write Address section,

depending on the condition of ARESETn,

ARREADY/AWREADY and signal xfr/xfw from the transaction

generator, the states shift between IDLE and VALID. The

necessary signals values depends on ARESETn condition and

assumes values from transaction generator.

The AXI4 Master Write Data section uses FIFO to store

and read values. There are flags to indicate if FIFO is full or empty

and to know whether it’s read or write. The address and length are

stored in the FIFO. The write pointer is incremented after the

write address. In case of read operation, address is incremented

after one batch of data is completely accessed. The read pointer is

reverted back to 0 after reaching maximum count and WLAST is

asserted at the end of data transfer. The output of this section is

shown in the figure 8.

5.5 Bridge Block

The bridge block consists of the AXI and the APB

signals. The APB part works on the basis of the state diagram

shown in figure 9.

Figure 9: APB State diagram

The IDLE state is the default state for the peripheral bus.

When a transfer is required the bus moves into the SETUP state,

where the appropriate select signal, PSELx, is asserted. The bus

414

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90212

only remains in the SETUP state for one clock cycle and will

always move to the ENABLE state on the next rising edge of the

clock. In the ENABLE state the enable signal, PENABLE is

asserted. The address, write and select signals all remain stable

during the transition from the SETUP to ENABLE state. The

ENABLE state also only lasts for a single clock cycle and after

this state the bus will return to the IDLE state if no further

transfers are required. Alternatively, if another transfer is to follow

then the bus will move directly to the SETUP state. It is acceptable

for the address, write and select signals to glitch during a

transition from the ENABLE to SETUP

states.

Figure 10(a): Bridge block output

For the AXI, we have the storing read/write address section and

read/write data section. In the AXI read/write address storing

sections, the FIFO flags and pointers are initialized. Upon reset, all

the values are zero. Otherwise, depending on the APB signals, the

pointer and flag conditions are altered. The read/write address

storing section is for the AXI master unit.

In the AXI4 Slave Read Data storing section, bridge

takes data from APB slave and initiates read transaction on AXI4

slave interface. The write and read data signals of AXI work on

the condition of the flags and pointers.

Figure 10(b): Bridge block output

The entire code for the clock and reset block, and for

the block diagram part was done in Verilog. The simulation

software used is the Icarus Verilog. For the complete

implementation on the FPGA board, Xilinx ISE Design suite 13.2

has been used. The board used is the Digilent Basys board, which

has been intefaced to the PC using the Adept applicaton of

Digilent.

415

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90212

5.6 Complete Simulation

Figure 11: Complete output

The device utilization summary is given in the table below.

Table 1: Device Utilization Summary

6. Conclusion

The APB bridge that has been designed is used for

reducing the processor complexity as most of the peripherals

don’t use the advanced features of AXI 4 bus. AXI 4 being the

ARM’s latest protocol has lots of new features which are not used

by most of the peripherals. Thus, the transactions from AXI

master has to be converted to APB master transactions for the

further processing.

The implemented bridge generates the necessary AXI

signals an all the APB signals. The clock and reset modules, AXI

master module and the APB slave module have together been

incorporated along with the bridge module to for the complete

implementation. Conditions for checking errors have also been

implemented in the bridge. The language used for coding is

VERILOG. The simulation software is Icarus Verilog.

7. References

[1] ARM, "AMBA Specification Rev 2.0", www.arm.com

[2] ARM, "AMBA APB Protocol Specification Version 2.0",

www.arm.com

[3] Guoliang Ma, et. al., Inst. of Microelectron., Tsinghua

Univ., Beijing, China, “Design and Implementation of an

Advanced DMA Controller on AMBA-Based SoC”, IEEE

International Conference on ASIC, 2009, pp 419 - 422.

[4] Hyun-min Kyung,et. al., Processor Architecture Lab, SOC

R&D Center, System LSI Division, Semiconductor

Business, Samsung Electronics, Yongin-City, Kyeong-gi

Do, Republic of Korea, “Design and implementation of

Performance Analysis Unit (PAU) for AXI-based multi-

core System on Chip (SOC)”, Journal in Microprocessors

and Microsystems, 2010,pp 102–116

[5] Shaila S Math, Manjula R. B, S.S. Manvi , Dept. of

Electronics and Communication Engineering, REVA

Institute of Technology and Management, Bangalore, India

“Data Transactions on System-on-Chip Bus Using AXI4

Protocol”, International Conference on Recent

Advancements in Electrical, Electronics and Control

Engineering, 2011, pp 423-427.

[6] Sangik Choi and Shinwook Kang Mobile Convergence

Team, Digital Media R&D Center, Samsung Electronics

Co., Ltd., Suwon-city, Kyunggi-do, Republic of Korea,

“Implementation of an On-Chip Bus Bridge between

Heterogeneous Buses with Different Clock

Frequencies”, Proceedings in Fifth International Workshop

on System-on-Chip for Real-Time Applications, 2005, pp

530-534.

[7] Sergio Saponara, Tommaso Cecchini, Francesco Sechi,

Luca Fanucci, Department of Information Engineering,

University of Pisa, Pisa, Italy, “Pin-limited Frequency

Converter IP Bridge for Efficient Communication of

Automotive IC Sensors with Off-chip ECUs”, IEEE

International Workshop on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and

Applications, 2009,167-171.

[8] Darshana Dongre, Anil Kumar Sahu, Dept. of ECE, Shri.

Shankaracharya college of Engineering & Technology,

Bhilai, India, “Implementation of AXI Design Core with

DDR3 Memory Controller for SoC”, IJCST, Vol. 2, Issue

4, Oct.- Dec. 2011,pp 452-455.

[9] Khan, A.M., et. al., Aoste Project, INRIA Sophia-Antipolis

Mediterranee, Sophia-Antipolis, France, “IP-XACT

components with Abstract Time Characterization”, IEEE

Conference on Specification & Design Languages, 2009,

pp 1-6.

[10] Shrivastav, A. , et. al., Dept. of Electron. & Comm.,

Priyatam Inst. of Technol. & Manage., Indore, India,

“Performance Comparison of AMBA Bus-Based System-

On-Chip Communication Protocol”, International

Conference on Communication Systems and Network

Technologies, 2011,pp 449-454.

Logic Utilization Used Available Utilization

Number of Slices 948 960 98%

Number of Slice Flip Flops 928 1920 48%

Number of 4 input LUTs 1469 1920 76%

Number of IOs 18

Number of bonded IOBs 18 83 21%

Number of GCLKs 3 24 12%

416

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90212

[11] Muhlbach,S., et. al., Hamburg Univ. Of Technol.,

Hamburg, “Secure And Authenticated Communication In

Chip-Level Microcomputer Bus Systems With Tree Parity

Machines”, International Conference On Embedded

Computer Systems: Architectures, Modeling And

Simulation, 2007, Pp 201-208.

[12] Vijay D’silva, S. Ramesh, Indian Institute of Technology

Bombay, “Synchronous Protocol Automata: A Framework

for Modelling and Verification of SoC Communication

Architectures”, Proceedings in Design, Automation and

Test in Europe Conference and Exhibition, 2004. , pp 390-

395.

[13] Chenghai Ma et.al., , University of Bologna, Forlì, Italy,

“Design and Implementation of APB Bridge based on

AMBA 4.0”, in Satellite Navigation Technologies and

European Workshop on GNSS Signals and Signal

Processing (NAVITEC), 2010 5th

ESA Workshop, pp 1-7.

[14] GaoMing Du, DuoLi Zhang, et. al. , VLSI Research

institute,China, “FPGA Prototype Design of Network on

Chips”, 2nd International Conference on Anti-

counterfeiting, Security and Identification, 2008 ,pp 348-

351.

[15] Mohammed H. Alser, Maher M. Assaad, Electrical and

Electronics Engineering,

Universiti Teknologi PETRONAS, Perak Darul Ridzuan,

Malaysia, “Design and Modeling of Low-Power Clockless

Serial Link for Data Communication Systems”, National

Postgraduate Conference (NPC), 2011,pp 1-5.

[16] Jovanovic, S. , Lab. d'Instrum. et d'Electron. de Nancy,

Univ. Henri Poincare,Nancy, “A new high-performance

scalable dynamic interconnection for FPGA based

reconfigurable systems”, International Conference on

Application-Specific Systems, Architectures and

Processors, 2008,pp 61 - 66 .

[17] M. H. Neishaburi, Zeljko Zilic , McGill University,

Department of Electrical Engg., Montreal, Quebec Canada ,

“Debug Aware AXI-based Network Interface”, IEEE

International Symposium on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems, 2011.

[18] Fei Hong, Aviral Shrivastava, and Jongeun Lee, “Return

Data Interleaving for Multi-Channel Embedded CMPs

Systems”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 20, No. 7, July 2012, pp

1351-1354.

417

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90212

