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Abstract 

 
 Integrated circuits have entered the era of System-on-a-

Chip (SoC), which refers to integrating all components of a 

computer or other electronic system into a single chip. With 

the increasing design size, IP has become an inevitable 

choi ce for SoC design. The widespread use of all kinds of 

IPs has changed the nature of the design flow, making On - 

Chip Buses (OCB) essential to the design. Of all OCBs 

existing in the market, the AMBA bus system is widely used 

as the de facto standard SoC bus. The latest specification 

introduced by ARM is AMBA 4.0 specifications. A bus 

bridge is used to convert transactions from one bus 

protocol to another. Based on AMBA 4.0 bus, the 

Intellectual Property (IP) core of Advanced Peripheral Bus 

(APB) bridge has been designed, which translates the 

AXI4.0-lite transactions (AXI Master) into APB 4.0 

transactions (APB Master). As most of the peripherals don’t 

use the advanced features of AXI4 bus, the APB bus has 

been implemented to interact with the processor to reduce 

complexity. The bridge provides an interface between the 

high-performance AXI bus and low-power APB domain. It 

has a Slave interface which receives the AXI4 master 

transactions and converts them to  APB  master  

transactions and  initiates  them  on  the  APB  bus.  As  the  

APB  protocol  is significantly simpler  than  AXI4,  the  

AXI4  transactions  are  properly  downgraded  to  APB 

transactions. 
 

1. Introduction  

The Advanced Microcontroller Bus Architecture 

(AMBA) is used as the on-chip bus in system-on-a-chip (SoC) 

designs. Since its inception, the scope of AMBA has gone far beyond 

microcontroller devices and is now widely used on a range 

of ASIC and SoC parts including applications processors used in 

modern portable mobile devices. AMBA protocol is an open 

standard, on-chip interconnect specification for the connection and 

management of functional blocks in a System-on-Chip (SoC). It 

facilitates right-first-time development of multi-processor designs 

with large numbers of controllers and peripherals. 

AMBA was introduced by ARM Ltd in 1996. The first 

AMBA buses were Advanced System Bus (ASB) and Advanced 

Peripheral Bus (APB). In its 2nd version, AMBA 2, ARM added 

AMBA High-performance Bus (AHB) that is a single clock-edge 

protocol. In 2003, ARM introduced the 3rd generation, AMBA 3, 

including AXI to reach even higher performance inter-connects and 

the Advanced Trace Bus (ATB) as part of the CoreSight on-chip 

debug and trace solution. These protocols are today the de facto 

standard for 32-bit embedded processors because they are well 

documented and can be used without royalties. 

 

The important aspect of a SoC is not only which 

components or blocks it houses, but also how they are interconnected. 

AMBA is a solution for the blocks to interface with each other. The 

objective of the AMBA specification is to: 

 facilitate right-first-time development of embedded 

microcontroller products with one or more CPUs, GPUs or 

signal processors, 

 be technology independent, to allow reuse of IP cores, 

peripheral and system macrocells across diverse IC 

processes, 

 encourage modular system design to improve processor 

independence, and the development of reusable peripheral 

and system IP libraries 

 minimize silicon infrastructure while supporting high 

performance and low power on-chip communication. 

 

ARM  introduced  the  Advanced  Microcontroller  Bus  

Architecture  (AMBA)  4.0 specifications in March 2010, 

which includes Advanced eXtensible Interface (AXI) 4.0. 

AMBA bus protocol has become the de facto standard SoC bus. 

That means more and more existing IPs must be able to 

communicate with AMBA 4.0 bus. Based on AMBA 4.0 bus, an 

Intellectual Property (IP) core of AXI (Advanced extensible 

Interface) Lite to APB (Advanced Peripheral Bus) Bridge can be 

designed, which would translate the AXI4.0-lite transactions into 

APB 4.0 transactions. The bridge provides interfaces between the 

high- performance AXI bus and low-power APB domain. 

 

2. Block Diagram 

The design specification mainly deals with the 

implementation and verification of the APB bridge which 

converts AXI4 protocol transactions to APB protocol transactions. 

AXI4 and APB are protocols of the AMBA bus family from ARM 

for mobile SOCs. The AXI4 forms the main processor 

communication bus and APB is the primary peripheral bus. As 

most of the peripherals don’t use the advanced features of AXI4 

bus they implement the APB bus to interact with the processor to 

reduce complexity. An RTL which converts AXI4 transactions to 

APB bus will be helpful in integrating peripherals which use 
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the simpler APB bus, into an SOC with standard ARM 

processor/s. 

A bus bridge is used to convert transactions from one 

bus protocol to another. Here the transactions coming from a 

processor (AXI4 Master) are converted to APB Master 

transactions. Hence the bus bridge has a Slave interface which 

receives the AXI4 master transactions and converts them to APB 

master transactions and initiates them on the APB bus. As the 

APB protocol is significantly simpler than AXI4, the AXI4 

transactions will have to be downgraded to APB transactions. 

The block diagram of the bus bridge system can be given as 

shown below. 

 
Figure 1: APB Bridge block diagram 

 

3. RTL Block Diagram 

A bus bridge is used to convert transactions from one 

bus protocol to another. Here the transactions coming from a 

processor (AXI4 Master) has been converted to APB Master 

transactions. Hence the bus bridge has a Slave interface which 

receives the AXI4 master transactions and converts them to APB 

master transactions and initiates them on the APB bus. As the 

APB protocol is significantly simpler than AXI4, the AXI4 

transactions have been properly downgraded to APB transactions. 

As the first step, we have the RTL block diagram as 

show in figure 2. The various signal channels of AXI and the APB 

signals were studied thoroughly.  From this study, a 

 
Figure 2: RTL Block Diagram 

 

transaction table was generated, which gives the relation between 

various AXI and APB signals. It is from this table that we get an 

idea of how to generate the signals necessary and how they can be 

used for read and write operations. 

4. Waveforms Expected 

Depending on the transaction table generated, there read 

and write operations are expected to be as shown n the figures given 

below. 

 
Figure 3: Expected read access waveform 

 
Figure 4: Expected write access waveform 

 

When read/write address is aligned to the read/write size, 

for 'FIXED' burst AXI4 type, address for all APB reads/writes will 

remain the same. For 'INCREMENTING' burst AXI4 type, 

address for APB reads/writes will be increased according to the 

data bus width on the APB size. For 'WRAPPING' burst AXI4 

type, address for APB reads/writes will be increased according to 

the data bus width on the APB size. It will also have to be wrapped 

according to the wrap size calculated as given in AXI4 
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specifications. 

When read/write address is unaligned to the read/write 

size, for 'FIXED' burst AXI4 type, address for all APB reads will 

remain the same. The size of transfer should not exceed data bus 

width. If system address is higher than that of master, then 

higher order bits are filled with zeroes, else they are left 

unconnected if narrower. For 'INCREMENTING' burst AXI4 type, 

address for APB reads will be increased according to the data bus 

width on the APB size.  The size of transfer should not exceed data 

bus width. If system address is higher than  that  of  master,  then  

higher  order  bits  are  filled  with  zeroes,  else  they  are  left 

unconnected if narrower. For 'WRAPPING' burst AXI4 type, 

address for APB reads will be increased according to the data bus 

width on the APB size. It will also have to be wrapped according 

to the wrap size calculated as given in AXI4 specifications.  The 

size of transfer should not exceed data bus width. If system 

address is higher than that of master, then higher order bits are 

filled with zeroes, else they are left unconnected if narrower. 

For AXI read/write data transactions, as APB is single 

data exchange bus we will need to wait for each data to come 

before we can initiate a data beat on the AXI read bus. More 

complications come in if data bus size is different in AXI4 and 

APB. 

The write response channel signals is for letting the AXI 

peripherals know about the conditions of transfer. Errors and such 

related conditions will be made known. 

 

 

5. Simulation and Implementation 

 

5.1 Clock and Reset Block 

 
As in any SoC designs, the main unit is the clock and reset 

block. The purpose of this block is to generate the necessary clock 
and reset signals. In the APB bridge, we need two clock signals and 
two reset signals. ACLK and ARESETn for the AXI part and the 
PCLK and PRESETn for the APB part. The figure below shows the 
simulation result for clock and reset block. 

 

Figure 5: Clock and reset block output 

 

5.2 Transaction Generator Block 

 
The purpose of this block is to generate random values 

for all the signals related to AXI.  For  each  positive  edge  of  the  

ACLK,  the  signals  have  different  values.  This  is generated by 

using the keyword  $random in the verilog language. 

Random values  are obtained for the signals when this keyword 

is used. An intermediate signal is generated for all the signals 

involved in the transactions in this block. 

The signal values depend on the reset value. As the 

reset is an active low signal, when its value s 0, all the values for 

the signals will be 0, else when the reset value is 1, random value 

is generated for each clock cycle. 

 
 

Figure 6: Transaction generator block output 
 

5.3 APB Slave Block 

The APB slave block contains all the APB signals. The 

function of this block is to check whether the function that is to be 

performed by the slave is a read one or a write one. This depends 

on the value of the PWRITE signal. If the value on that signal is 

HGH, it’s a write process or else it’s a read process, provided 

PSEL, PREADY and PENABLE are HIGH.  When  it’s  a  read  

operation,  the  value  in  the  memory  location  is  read  by  the 

PRDATA signal. When it’s a write operation, the value on the 

PWDATA is written on to the memory location. 
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Figure 7: APB Slave block output 

 

5.4 AXI Master Block 

 
 

Figure 8: AXI master block output 
 

The  master  block  performs  the  operations  for  the  

AXI4  Master  Read  Address section, AXI4 Master Write 

Address section and AXI4 Master Write Data section. In the 

read address section, the read address is generated. The states 

present in the read/write address section are IDLE and VALID, 

whereas for the read/write sections are IDLE and READY. 

In the AXI4 Master Read/Write Address section, 

depending on the condition of ARESETn, 

ARREADY/AWREADY and signal xfr/xfw from the transaction 

generator, the states shift between IDLE and VALID. The 

necessary signals values depends on  ARESETn condition and 

assumes values from transaction generator. 

The AXI4 Master Write Data section uses FIFO to store 

and read values. There are flags to indicate if FIFO is full or empty 

and to know whether it’s read or write. The address and length are 

stored in the FIFO. The write pointer is incremented after the 

write address. In case of read operation, address is incremented 

after one batch of data is completely accessed. The read pointer is 

reverted back to 0 after reaching maximum count and WLAST is 

asserted at the end of data transfer. The output of this section is 

shown in the figure 8. 

 

5.5 Bridge Block 

The bridge block consists of the AXI and the APB 

signals. The APB part works on the basis of the state diagram 

shown in figure 9. 

   
Figure 9: APB State diagram 

 

The IDLE state is the default state for the peripheral bus. 

When a transfer is required the bus moves into the SETUP state, 

where the appropriate select signal, PSELx, is asserted. The bus 
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only remains in the SETUP state for one clock cycle and will 

always move to the ENABLE state on the next rising edge of the 

clock. In the ENABLE state the enable signal, PENABLE is 

asserted. The address, write and select signals all remain stable 

during the transition from the SETUP to ENABLE state. The 

ENABLE state also only lasts for a single clock cycle and after 

this state the bus will return to the IDLE state if no further 

transfers are required. Alternatively, if another transfer is to follow 

then the bus will move directly to the SETUP state. It is acceptable 

for the address, write and select signals to glitch during a 

transition from the ENABLE to SETUP 

states. 

 
 

Figure 10(a): Bridge block output 

For the AXI, we have the storing read/write address section and 

read/write data section. In the AXI read/write address storing 

sections, the FIFO flags and pointers are initialized. Upon reset, all 

the values are zero. Otherwise, depending on the APB signals, the 

pointer and flag conditions are altered. The read/write address 

storing section is for the AXI master unit. 

 

In the AXI4 Slave Read Data storing section, bridge 

takes data from APB slave and initiates read transaction on AXI4 

slave interface. The write and read data signals of AXI work on 

the condition of the flags and pointers. 

 
 

Figure 10(b): Bridge block output 
 

The entire code for the clock and reset block, and for 

the block diagram part was done in Verilog. The simulation 

software used is the Icarus Verilog.   For the complete 

implementation on the FPGA board, Xilinx ISE Design suite 13.2 

has been used. The board used is the Digilent Basys board, which 

has been intefaced to the PC using the Adept applicaton of 

Digilent. 
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5.6 Complete Simulation 

 

Figure 11: Complete output 

 

The device utilization summary is given in the table below. 

 

Table 1: Device Utilization Summary 

 

6. Conclusion 

 

The  APB  bridge  that  has  been  designed  is  used  for  

reducing  the  processor complexity as most of the peripherals 

don’t use the advanced features of AXI 4 bus.  AXI 4 being the 

ARM’s latest protocol has lots of new features which are not used 

by most of the peripherals. Thus, the transactions from AXI 

master has to be converted to APB master transactions for the 

further processing. 

The implemented bridge generates the necessary AXI 

signals an all the APB signals. The clock and reset modules, AXI 

master module and the APB slave module have together been 

incorporated along with the bridge module to for the complete 

implementation. Conditions for checking errors have also been 

implemented in the bridge. The language used for coding is 

VERILOG. The simulation software is Icarus Verilog. 
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