
Fig. 1. Axes of rotation [1]

Abstract—This project aims to implement rate control of multiple

rotor VTOL aircraft or multirotors using a 3-axis MEMS

angular rate sensor. There are a number of open and closed

source flight control platforms available which focus on the very

high level functions of micro unmanned air vehicles (MAV’s),

these functions include autonomous GPS aided/denied

navigation, position control, velocity control, altitude control,

waypoint navigation, etc. While these modes augment the feature

set with abilities which allow an operator with very less flying

skills to be able to command and control the MAV but when it

comes to the recent mini drone racing revolution they are not as

well suited to the needs of people flying acrobatics and racing.

Drone racers require a very basic setup having the ability to

provide high response times. This is essential for achieving high-

G manoeuvers. The challenge is being able to synchronize the

process of sending motor commands with the input signals and

the data from the IMU with minimal latency. This paper aims to

provide a simple cheap solution for such applications.

Keywords—rotations; drones; gyroscopes; rate control; flying;

IMU; multirotor; radio control; embedded systems.

I. INTRODUCTION

Multiple rotors VTOL aircraft or Multirotor aircraft come in

variety of configurations, but so far the most popular and easy

to build is the quadcopter. A quadcopter has four motors

arranged in the form of a symmetrical quadrilateral; it can be a

square, rectangle or a kite. The main control for aircraft is

along the roll, pitch and yaw axis for stabilization. The

cumulative thrust vector and gravity vector add up to give us

the direction of translation. In case of rotor craft the thrust and

Lift vector are generally collinear but pointing in opposite

directions thus giving them the unique ability to hover.

Multirotors are popular because of their simplicity and lack of

mechanical complexity which comes with the conventional

helicopter designs, but what is lost in mechanical complexity

is made up for in electronic and software code complexity.

The reason for such code complexity is that any multicopter is

naturally unstable and given the practical world constraints it

will never be able to fly unless there is some sort of feedback

control which periodically updates the motor/actuator speeds

to stabilize the system. The various levels of control

hierarchically speaking are

1. Angular Rate control

2. Angle Control

3. Altitude Control

4. Heading Control

5.Position, Velocity and Acceleration Control

6. Autonomous Navigation

7. Trajectory Planning

8. Obstacle avoidance, etc.

The recent mini drone racing phenomenon has necessitated a

renewed focus on the most basic level of control i.e. angular

rate control, this because mini drones owing to their small size

and low moment of inertia are very agile. The dynamics of this

system make it very difficult to implement higher control

mechanisms reliably; this is mainly because the sensors used

to estimate acceleration, heading, position, etc. Simply fail to

keep up with the fast attitude changes and high centrifugal

forces. This makes the job of sensor data filtering much more

critical. Because of this rate controlled flight has become more

popular as it provides a simplistic mode of control for the pilot

to showcase his/her flying abilities.

II. BASICS OF MULTIROTOR FLIGHT

Multirotors have multiple rotating propellers which generate

lift in the upward direction. If this lift is more that the force of

gravity exerted on the aircraft; then the aircraft should achieve

flight. In order to maintain stable flight a multirotor requires

active computerized stabilization where the flight controller

works continuously to stabilize the aircraft on its roll, pitch

and yaw axes. Fig. 1 shows the three axes of rotation and fig.

2 illustrates a quadcopter whose nose is pointing in the

direction of the positive roll axis. The clockwise and counter

clockwise arrows show the direction of spin of propellers. It is

important to note the spin directions as they are essential for

stabilization of the multirotor along its yaw axis. Fig. 3

illustrates the direction of torques generated by each motor. In

this figure every spinning propeller exerts a torque on the

chassis; this torque is generated as a result of the drag

experienced by propellers when moving through air. As a

consequence of newton’s third law of motion, the propellers

spinning in the clockwise direction exert a counter torque on

Angular Rate Control for VTOL Multirotor
Aircraft

Low Cost Embedded Solution for Basic Rate Control of Micro UAV Rotor

Craft

Akshat Deshpande
Industrial Robotics Center

Rashtrasant Tukadoji Maharaj Nagpur University’s

Oberoi Center for Excellence

Nagpur, India.

Dr. Shyamkant Limaye
Center Head of Industrial Robotics

Rashtrasant Tukadoji Maharaj Nagpur University’s

Oberoi Center for Excellence

Nagpur, India.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

57

Fig. 4. Yaw control [1]

Fig. 2. Quadcopter Roll and Pitch axes [1]

Fig. 3. Resultant torques on the frame

the copter trying to spin it in the counter clockwise direction

,likewise the propellers spinning in the counter clockwise

direction exert a force on the chassis to spin it clockwise.

Hence theoretically if all the motors spin at the same speed the

resultant of all torques exerted on the body should approach

zero and prevent the copter from spinning on its yaw axis. If

the copter is commanded to yaw clockwise or anticlockwise

by the pilot, then it achieves this by speeding up the

corresponding diagonal motor pair and decreasing the speed

on the other two motors thus creating an imbalance of torques

and spinning the copter with the desired velocity. For example

if the copter is commanded to yaw in the counter clockwise

direction, speeds of motors 1 and 3 are increased and

simultaneously speeds of motors 2 and 4 are decreased by the

same amount. This way the resultant torque on the copter

spins it in the desired counter clockwise direction. This is

illustrated in fig. 4. The amount of increase or decrease in

motor speeds influences the amount of reaction torque exerted

on the body and hence the speed of rotation or angular

velocity along the yaw axis [2]. The underlying assumption is

that the center of gravity lies at the intersection of the roll,

pitch and yaw axes. Further if we see how the copter tries to

roll under pilot command. In fig. 5 the motors on the left side

(Red) of the roll axis are sped up while the motors on the right

side (Green) are slowed down this causes an increased

coefficient of lift on the left side as compared to the right side

of the copter, hence rolling the copter towards right. If we

want to roll the copter left it is vice versa. The amount of

increase or decreases in motor speeds directly controls the

difference in lift generated on either side of the copter and

thereby the speed of rotation or angular rate along the roll axis

[2]. A similar method is used to make the copter pitch up and

down depending on controls applied by the pilot. As shown in

fig. 6 when the motors on the rear (Red) of the copter are sped

up and the motors on the front of the copter (Green) are

slowed down, there is more lift generated on the rear half of

the copter as compared to front half, this difference in lift

exerts a force on the copter causing it to pitch forward. If the

copter has to be pitched backwards we just switch the motors

being sped up with the ones being slowed down. The amount

of increase or decrease in motor speeds decides the difference

in lift generated on either side of the copter and hence the

speed of rotation or angular rate along the pitch axis [2].

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝐹𝑖𝑔𝑢𝑟𝑒 3, 𝑖𝑓 𝑤𝑒 𝑎𝑠𝑠𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑢𝑠𝑡 𝐹 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 (1)
𝑓1 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐵𝑦 𝑀𝑜𝑡𝑜𝑟 1

𝑓2 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐵𝑦 𝑀𝑜𝑡𝑜𝑟 2

𝑓3 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑀𝑜𝑡𝑜𝑟 4

𝑓4 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑀𝑜𝑡𝑜𝑟 5

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟𝑠 𝑢𝑠𝑒𝑑 𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝑝𝑖𝑡𝑐ℎ
𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝑝𝑖𝑡𝑐ℎ

𝑇ℎ𝑟𝑢𝑠𝑡 ∝ 𝑀𝑜𝑡𝑜𝑟 𝑆𝑝𝑒𝑒𝑑 (2)

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑎𝑙𝑙 𝑚𝑜𝑡𝑜𝑟𝑠 𝑎𝑟𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔

 𝑡ℎ𝑟𝑢𝑠𝑡 𝑜𝑓 500 𝑔𝑚𝑠 𝑒𝑎𝑐ℎ

𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 500 𝑔𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠

𝑇𝑜 𝑦𝑎𝑤 𝑡ℎ𝑒 𝑐𝑜𝑝𝑡𝑒𝑟 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒,
 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔,

 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑡𝑜𝑟 𝑡ℎ𝑟𝑢𝑠𝑡𝑠

𝑓1 = 300 𝑓2 = 700 𝑓3 = 300 𝑓4 = 700

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑓𝑜𝑟 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡,
 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔,

 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑡𝑜𝑟 𝑡ℎ𝑟𝑢𝑠𝑡𝑠

𝑓1 = 700 𝑓2 = 300 𝑓3 = 300 𝑓4 = 700

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠

 𝐹𝑖𝑛𝑎𝑙𝑙𝑦 𝑓𝑜𝑟 𝑝𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡

 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑡𝑜𝑟

 𝑡ℎ𝑟𝑢𝑠𝑡𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠

𝑓1 = 300 𝑓2 = 300 𝑓3 = 700 𝑓4 = 700

 𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠

Here the thrust increase/decrease of 200gms is completely

arbitrary, in the practical implementation this value will be

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

58

Fig. 6. Pitch control [1]

Fig. 5 Roll Control [1]

influenced by the desired angular rate and output of the control

loop, nevertheless these equations tell us that for any

manoeuver even though the individual motor thrusts change

corresponding to the axis of motion but the total thrust

generated by the system remains same. This is to ensure that

the copter always generates the same lift for a certain throttle

level and the copter does not descend or ascend due to

application of control input. Though after the copter tilts the

magnitude of thrust in the downward direction reduces

causing the copter to descend, but this scheme is important to

have symmetric control over all axes of rotation [2].

Here 500 grams is the base thrust and the motor speed signal

corresponding to the base speed is called the collective. The

value of this collective is specified by the pilot’s throttle

signal. Also complimentary control helps when the motors are

saturated. For example when the motor are operating close to

90% of their achievable thrust and the pilot demands a roll rate

of 400 degrees per second at that point some motors will be

required to spin at 110% while others will be required to spin

at 70% of their achievable speeds but since the motors cannot

spin at more than 100% speed the response of the system

suffers, even then the system is still maneuverable considering

that the rest of the motors can slow down to 70 % speed and

produce a rotation rate close to the desired rate. To work

around this problem the maximum collective applied to the

motors is limited to 85% of the total motor output signal, this

way there is enough headroom for accommodating rate

requests of close to 300 degrees per seconds without

compromising on system response [3].

This is even more useful when the collective is close to zero

i.e. if the collective is at 30% and the controller demands a rate

of 360 degrees per seconds on the pitch axis, in this case two

of the motors will have to spin at 0% speed while the other

two will have to spin at 60% speed. This might be fine to do

theoretically but when a brushless motor stops, it can be

difficult to restart it, this is because the way BLDC motors are

driven they do not produce a lot of starting torque and with air

flowing through the propellers the motor might fail to restart

in air and lead to a crash. Hence the software should ensure

that it never lets the motor speeds fall below a certain

minimum value to protect against motor stalling. This

minimum value is close to 15% of the throttle signal. In this

case as well because the motor speeds cannot be decreased

beyond a certain value, the complimentary thrust mechanism

helps the flight controller to comply with the pilot’s desired

commands while flying at very low throttle levels, all of this

without compromising on flight integrity [3].

A. Abbreviations and Acronyms

IMU inertial measurement unit; VTOL vertical take-off

and landing; MAV micro aerial vehicle; UAV unmanned

Aerial vehicle; MEMS micro electro-mechanical sensors;

GPS global positioning system; GNSS global navigation

satellite subsystem; BLDC brushless direct current.

III. IMPLEMENTATION

For the purpose of this implementation an AVR

microcontroller will be used; however this scheme can be

diversified so that it can be implemented using

microcontrollers with more powerful architectures.

Specifications of the test system are as follows.

A. AVR Atmega328 16Mhz 5V TTL on an Arduino

Nano.

B. Invensense ITG-3200 3-Axis MEMS Gyro connected

over the I2C bus

IV. CHARACTERISTICS OF INPUTS AND OUTPUTS

Inputs to the system include a MEMS gyroscope connected on

the I2C bus and a radio control receiver connected to the port

pins which support pin change interrupts. The I2C bus is

configured to communicate at 400 KHz, it is externally pulled

up to 3.3 volts so that both the micro-controller as well as the

sensor can communicate without damaging each other. The

receiver has four wires each corresponding to four channels of

roll, pitch, yaw and collective control connected to pins PB0-

PB3 of the controller these four signals communicate at 50Hz

on a protocol based on PWM which is shown in figure 7,

decoding this signal has been described in the focuses ahead.

Output of the system is in the form of four 400Hz PWM

signals, one for each motor of the quadcopter. This signal

communicates the speed of motors as commanded by the

flight controller to the electronic speed controllers which spin

the motors at this desired target speed. The number of signals

depends on the number of motors for the configuration of

multicopter being controlled. This signal protocol is identical

to the one used by the radio receiver to communicate position

of sticks on the pilot’s radio transmitter module to the flight

controller, but this operates at a much higher frequency of 400

Hz to provide a higher refresh rate of motor speeds [3]. The

speed controllers are connected to pins PD0-PD5. This

controller is able to control multicopter configurations having

up to 6 motors.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

59

Fig. 7 PPM and PWM signal waveform [4]

Fig. 8 PPM signal decoder

V. THE RC COMMUNICATION PROTOCOL

While the MEMS gyroscope communicates through the

standard Phillips I2C protocol, the radio receiver

communicates using a protocol which is called PPM or pulse

position modulation in the RC hobby community; in reality

this is in fact a PWM signal where the width of pulse gives us

the value of signal. This signal is illustrated in the fig. 7. The

figure shows that each individual PWM signal corresponds to

one channel of control, with regard to this implementation

there are only four channels and hence four PWM signals to

decode. Each PWM signal operates at a base frequency of 50

Hz and hence the period of this signal is 20 milliseconds. Out

of this entire time period of 20 milliseconds the signal is

always ON for the first 1000 microseconds and changes in

width only happen between 1~2 milliseconds, while for the

remaining 18 milliseconds the signal is always off. During this

time the signal does not carry any information. When width of

the pulse is 1 millisecond or 1000 microseconds this means

that the value of signal it represents is 0 % and when width of

the pulse is 2 milliseconds or 2000 microseconds the value of

signal is 100%. Different radio manufacturers use the same

protocol but the pulse widths corresponding to 0% and 100%

signal might be different. For example the radio used here has

a minimum pulse width of 828 microseconds and a maximum

pulse width of 2172 microseconds. This necessitates that

whenever a new brand of receiver is connected to the system,

the user should first calibrate the radio to ascertain the

maximum and minimum pulse widths. These values are saved

in the EEPROM of the AVR controller and it is not required to

repeat this calibration procedure every time the system is

powered up [3].

The output pins of the flight controller communicate desired

motor speeds to the speed controllers using this same protocol

but in their case the unusable pulse width of 18 milliseconds is

reduced to only 0.5 milliseconds this way the maximum

period of this pulse is reduced to 2.5 milliseconds instead of

20 milliseconds thereby increasing the frequency to 400 Hz

instead of 50 Hz. One important consideration when choosing

the electronic speed controllers is that they should support a

400 Hz refresh rate. The distinction between speed controllers

which support fast update and those who don’t is very

essential to understand because the effects on flight

performance are significant [3].

Output from the flight controller has a maximum pulse width

of 2000 microseconds corresponding to 100% signal and a

minimum width of 1000 microseconds corresponding to 0%

signal. The speed controllers are unaware of the pulse widths

corresponding to 0% and 100% signal generated by the flight

controller. To make speed controllers compatible with

different pulse widths generated by different manufacturers of

radio control equipment they have a calibration routine built in

to them which lets the user program the maximum and

minimum pulse widths generated by any receiver or flight

controller. The user has to invoke this subroutine to let the

speed controllers know the maximum and minimum pulse

widths to be expected from the flight controller.

VI. INITIALIZATION

The code begins by initializing the gyroscope. It sets the range

of the gyro at +- 2000 degrees per second on each axis, the

internal sample rate is set at 8K samples per second and the

internal LPF is set to band limit the gyro data to below 256

Hz. The first 50 filtered gyro readings on each axis are fed to a

moving average filter. The output is checked to see if resultant

angular rate is not more than 30 degrees per second on each

axis, if this is not the case then either the aircraft is moving or

the sensor is unhealthy.

Timer modules within the AVR controller are used to measure

the pulse widths of signals coming from the radio receiver.

They are also used for calculating delays and for generating

required pulses to instruct the speed controllers to spin motors

at their designated speeds.

Timer0 is programmed with a prescaler of 8 this ensures that

the time elapsed per tick is 0.5 microseconds. This way time

required for the timer to count 256 steps and overflow is 128

microseconds, an overflow counter is maintained which keeps

track of number of overflows since start-up. To find the

current time since power up the number of overflows is

multiplied with 128, then the current value of timer0 is divided

by 2 and added to this product. This gives us the exact time

elapsed in microseconds. This timer is used for calculating

delays and also for measuring pulse widths for the receiver

signals.

Timer1 is programmed in fast PWM mode with a prescaler of

8 to ensure one timer tick happens after 0.5 microseconds,

Fig. 7

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

60

Fig. 9 RC transmitter stick configuration [5]

frequency of PWM is decided by the top of counter which is

specified by the value of the input capture register. The value

of ICR1 is set to 3999 to generate a wave with frequency of

400Hz. Values within the output compare match registers and

the output compare interrupt handler is used to generate up to

6 simultaneous PWM signals for sending motor commands to

the motor speed controllers.

Input channel pulse widths from the radio control receiver are

sanity-checked for errors, if this is not checked then it might

lead to uncertain values being fed into the rate controller, if the

sanity checker produces an error then either the receiver is

disconnected or some inputs are disconnected. In both cases

the initialization will fail and the controller will generate a

specific beep sequence to warn the user of an initialization

error. Prerequisites for initialization are that the platform is set

motionless and receiver is connected on power up.

VII. START-UP

During the start-up sequence the gyroscope is calibrated. As a

part of this sequence the gyro data is averaged over 3 seconds

and the gyro bias per axis is calculated, these values are used

during flight for estimating the real gyro angular rate sans

error due to gyro drift. Temperature readings from the gyro

sensor are used to make small adjustments to the estimated

gyro bias. Once the gyroscope is calibrated, the platform is

ready to allow its control loop to take over.

VIII. ARMING

As a safety feature arming is a sequence which is enforced

upon by the flight controller, this way the pilot has to

explicitly specify when the motor outputs are enabled thus

allowing actuation of the propellers.

IX. INPUT CONVERSION TO THEIR PHYSICAL

 REPRESENTATIONS

The data from the radio receiver is decoded by using a pin

change interrupt method. As shown in fig. 7 the receiver

channel pulse widths appear in a staggered fashion such that

no two channels have pulses occurring at the same time. The

pulses appear one after the other and therefore the signals are

decoded in the order of their occurrence. When all four

channels have been decoded, it is implied that a new data

frame has arrived. Fig. 8 shows the how receiver channel

widths are measured by the software. The receiver pulse

widths ideally range from 1000~2000 microseconds but the

practical pulse widths in this test case range from 828~2172

microseconds, from this measured value, the value of pulse

width which corresponds to 0% signal value is subtracted. In

the ideal case 0% signal is represented by 1000 microseconds

so the resultant pulse width range after subtraction is reduced

to 0~1000 microseconds. In the test case the 0% signal

corresponds to a pulse width of 828 microseconds so after

subtraction the range is 0~1344 microseconds. The code

constrains values of the pulse widths from 0~1344 so that

values falling out of this range are limited to a maximum of

1344 and a minimum of 0. These constrained values are

subtracted from their respective pre-constrained counterparts.

The difference between the two should be zero at all times, if

the difference is greater or less than zero then this indicates

that invalid signals are being received from the receiver and

can be ignored. Each time an invalid signal is detected the

code increments an error counter variable, if the value if this

variable reaches 100, this means that the signal has been

invalid for 2 seconds and there is some problem with the RC

communication link. In which case the all the motors are

shutdown as a safety feature. This error variable is reset to

zero every 10 seconds, just so that small receiver errors don’t

accumulate and reset the system.

Now the code has data corresponding to the stick positions on

the pilot’s radio transmitter module. Fig. 9 shows a typical

layout of the pilot’s transmitter module, it has two sticks

which can move in the up/down and right/left directions. The

pulse widths are converted to their corresponding stick

positions. This is done by mapping the signal pulse widths.

For the throttle stick, the pulse width range of 0~1344 is

mapped to 0~1000, since it is not spring loaded and does not

return to the center when released. Similarly this is repeated

for all the other channels but since all these sticks are spring

loaded the pulse widths of 0~1344 are mapped from -500~500

to denote positive as well as negative stick deflections [5]. By

using this method the position of any stick can be estimated

within 1/1000 of its range. The gyroscope data which is

acquired over the I2C bus is in the form of three 16-bit

integers, one each for X, Y and Z axes is converted to angular

rate in degrees per second by multiplying it with the

sensitivity scale factor of 14.375. After this the software has

raw angular rate data in degrees per second for the roll, pitch

and yaw axes. Now there are two decoded data inputs to the

system in the form of stick position and gyro rate. Before

feeding these values into the control loop, the code has to

specify what each individual stick position stands for. Since

the code aims to implement rate control, the position of roll,

pitch and yaw sticks are converted into the desired angular rate

measured in millidegrees per second. The throttle stick

position value specifies the amount of collective from 0~1000.

The yaw stick position specifies the desired yaw angular rate

in +-2000 millidegrees per second, likewise the roll and pitch

stick positions specify the desired roll and pitch angular rate in

+-3600 millidegrees per second. These ranges can be changed

depending on the pilot’s preferences of agility; making them

these ranges higher will make the copter more agile while

decreasing them will make it more docile. This is called stick

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

61

Fig. 11 Derivative kick [6]

Fig. 12 Integral windup mitigation [6]

Fig. 10 PI controller

Fig. 13 Effects of proportional term on system response [8]

response scaling and is achieved by mapping the stick position

ranges with the desired range of angular velocities.

Mapping is a function used frequently for rescaling data

ranges, this function is derived from the Arduino libraries and

this is the function definition.

𝐿𝑜𝑛𝑔 𝑚𝑎𝑝 (
𝑙𝑜𝑛𝑔 𝑥, 𝑙𝑜𝑛𝑔 𝑜𝑙𝑑𝑚𝑖𝑛,

 𝑙𝑜𝑛𝑔 𝑜𝑙𝑑𝑚𝑎𝑥, 𝑙𝑜𝑛𝑔 𝑛𝑒𝑤𝑚𝑖𝑛, 𝑙𝑜𝑛𝑔 𝑛𝑒𝑤𝑚𝑎𝑥
)

𝑥 = (𝑥 − 𝑜𝑙𝑑𝑚𝑖𝑛) ∗
𝑛𝑒𝑤𝑚𝑎𝑥 − 𝑛𝑒𝑤𝑚𝑖𝑛

𝑜𝑙𝑑𝑚𝑎𝑥 − 𝑜𝑙𝑑𝑚𝑖𝑛
+ 𝑛𝑒𝑤𝑚𝑖𝑛 (3)

Another frequently used function from the Arduino libraries is

the constrain function defined below

 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛 (𝑙𝑜𝑛𝑔 𝑥, 𝑙𝑜𝑛𝑔 𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒, 𝑙𝑜𝑛𝑔 𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒)

𝑖𝑓 (𝑥 < 𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒) → 𝑥 = 𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒
𝑖𝑓(𝑥 > 𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒) → 𝑥 = 𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒

𝑟𝑒𝑡𝑢𝑟𝑛 (𝑥) (4)

X. THE MAIN CONTROL LOOP

We use a Proportional Integral (PI) controller for controlling

the angular rates along the 3 axes of motion; this requires the

code to run 3 separate instances of the control algorithm, one

for each axis. The outputs of all three controllers are converted

to 3 motor speed signals and applied together. Fig. 10 shows

how the PI controller works. The proportional gain takes care

of the impulse response of the system. Using only a

proportional controller for this system would be enough for

stability, making it the most important parameter which

decides if a system is flyable or not, but the controller might

not be able to compensate for the steady state error, this is

because the proportional controller generates a constant output

for constant error and under external forces like winds, the

constant output of the controller might not be enough to

counteract these forces. To reduce this steady state error to

zero we use the integral gain constant which accelerates the

system towards the set point and acts to reduce the steady state

error. The derivative term is not used in this controller since

the transient response of this system isn’t very large, also

introduction of a derivative term can introduce instability in

the system due the characteristic derivative kick whenever a

step change in set point is provided to the system, this kick can

cause momentary saturation of the motors and excessive

current draw. Fig. 11 shows the derivative kick phenomenon

[6][7].

In a PI controller of this kind we have to protect against

integral windup, this is done by constraining the I term

between two values so that system does not get saturated at

any point due to a longer lasting error signal [6][7], windup

mitigation is illustrated in fig. 12.

One very important assumption is that the loop time of the

controller is small enough that three rotations can be fused in

to one; this ensures that we compensate for any rate error on

all three axes at the same time, without violating the non-

commutative property of 3D rotations. Further as a part of the

control loop the gyro data which is in degrees per seconds is

converted to millidegrees. The reason why we increase the

range of input data by converting the units into smaller units is

because we want to avoid computing floating point data,

which can take longer for the processor. This also gives us

more resolution to work with. Also the rate at which the

controller completes an iteration is not affected by the speed at

which the inputs and outputs of the system are generated. The

process of getting the inputs and generating the outputs are

completely decoupled from the main loop, this ensures that the

input signal from the pilot appearing every 50Hz along with

the gyro signal at 256Hz and motor outputs being generated at

400Hz do not cause unwanted control loop delays or over-

runs. To make these three signal frequencies work with the

main loop in stable manner we perform scheduling using timer

interrupts, this ensures that multiple subroutines are serviced

while having minimal impact on the rate of execution of the

main code. Next the rate error is calculated by subtracting the

actual rate measured by the gyro from the desired rate

calculated from the pilot’s input. There will be three errors

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

62

Fig. 16 Desired output [10]

Fig. 14 Effects of integral term on system response [9]

Fig. 15 Motor signal generation

Fig. 17 Software flow diagram

calculated on the roll, pitch, and yaw axes. These errors will

be given as inputs to the PI algorithm. The rate error is

multiplied by the proportional gain this constitutes the P-term.

Further the current error is added to the last error which was

measured during the previous iteration, this accumulated error

value is multiplied by the loop time to calculate the integration

of the error signal. This integrated error value is multiplied by

the I-gain constant to calculate the I-term. The addition of P

and I terms forms the output of the PI controller [8].

𝐏𝐈 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫

 𝐜(𝐭) = 𝐏 ∗ 𝐞(𝐭) + 𝐈 ∗ ∫ 𝐞(𝐭)
𝐭𝟐

𝐭𝟏
𝐝𝐭 (5)

𝑃 − 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑎𝑖𝑛
𝐼 − 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐺𝑎𝑖𝑛
𝑡2 − 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑡1 − 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑒𝑛𝑑 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑑𝑡 − 𝐿𝑜𝑜𝑝 𝑇𝑖𝑚𝑒
𝑒(𝑡) − 𝑅𝑎𝑡𝑒 𝐸𝑟𝑟𝑜𝑟
𝑐(𝑡) − 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡

Fig. 13 shows the effect of only P term on the output, fig. 14

shows the effect of I term on the output and fig. 16 shows the

desired response from the combination of PI terms.

Output of the controller is converted to corresponding motor

speed signals which act to reduce the error and providing

accurate control. The fig. 15 shows how motor output PWM

signals are generated using timer interrupts. Equations

governing the motor speed changes as a result of the output of

the controller are shown below; here the quadcopter shown in

fig. 3 is taken as reference.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

63

Fig. 14 Effects of integral term on system response

𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑀𝑜𝑡𝑜𝑟 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑌𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 (6)

𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙

𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑀𝑜𝑡𝑜𝑟 𝑂𝑢𝑝𝑢𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑃𝑖𝑡𝑐ℎ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 (7)

𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙

 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑀𝑜𝑡𝑜𝑟 𝑂𝑢𝑝𝑢𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑅𝑜𝑙𝑙 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 (8)

𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙
𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙

The motor outputs from the PI controller are constrained to

protect against motor saturation as well as stalling. The motor

speeds are sent to the motor speed controllers at the next

update of the 400Hz loop. This process is repeated

continuously to ensure that the desired and actual rates follow

each other on the roll pitch and yaw axes up until the time that

the system is not disarmed by the pilot. Tuning of the PI

controller on each of the three axes is done experimentally,

such that the pilot is comfortable with the response. This helps

different pilots customize the feel of the aircraft in accordance

with their requirements.

XI. RESULTS AND CONCLUSION

The control algorithm described in the above text was

implemented using the prior mentioned test bed and the flight

characteristics were tested. Implementation using an 8-bit

controller helps keep the cost down at the same time it allows

pilots to showcase their flying capabilities. Higher levels of

control can be ported on top of this controller for use with

SWARM applications, the kind being used at the flying

machine arena at ETH Zurich in Switzerland. The

performance of this controller has been showcased in the

video below

The controller compensates well given the imperfections in

this homemade frame. This demonstrates the robustness of this

controller. Fig. 17 illustrates the main control loop

REFERENCES

[1] http://blacktieaerial.com/the-physics-of-quadcopter-flight/
[2] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control

techniques applied to an indoor micro quadrotor,” IEEE/RSJ

International Conference on Intelligent Robots and Systems, vol. 3, pp.
2451–2456, 2004.

[3] J. Escare˜no, C. Salazar-Cruz, and R. Lozano, “Embedded control of a

four-rotor UAV,” American Control Conference, vol. 4, no. 11, pp.
3936–3941, 2006.

[4] http://diydrones.com/profiles/blogs/705844:BlogPost:38393

[5] http://smaccmpilot.org/hardware/rc-controller.html

[6] http://brettbeauregard.com/blog/2011/04/improving-the-beginners-pid-

introduction/

[7] Jun Li, Yuntang Li (2011). ―Dynamic Analysis and PID Control for a
Quadrotor‖ 2011 International Conference on Mechatronics and

Automation.

[8] http://www.pcbheaven.com/wikipages/PID_Theory/
[9] http://coder-tronics.com/pid-tutorial-c-code-example-pt1/

[10] http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendu

lum§ion=ControlPID

https://www.youtube.com/watch?v=qm6R5rheX40

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

64

