
Fig. 1. Axes of rotation [1]  

 
  

 
 

  

  

  

  

 

 

 

 

 

  

 

 

 

 
Abstract—This project aims to implement rate control of multiple 

rotor VTOL aircraft or multirotors using a 3-axis MEMS 

angular rate sensor. There are a number of open and closed 

source flight control platforms available which focus on the very 

high level functions of micro unmanned air vehicles (MAV’s), 

these functions include autonomous GPS aided/denied 

navigation, position control, velocity control, altitude control, 

waypoint navigation, etc. While these modes augment the feature 

set with abilities which allow an operator with very less flying 

skills to be able to command and control the MAV but when it 

comes to the recent mini drone racing revolution they are not as 

well suited to the needs of people flying acrobatics and racing. 

Drone racers require a very basic setup having the ability to 

provide high response times. This is essential for achieving high-

G manoeuvers. The challenge is being able to synchronize the 

process of sending motor commands with the input signals and 

the data from the IMU with minimal latency.  This paper aims to 

provide a simple cheap solution for such applications.                

Keywords—rotations; drones; gyroscopes; rate control; flying; 

IMU; multirotor; radio control; embedded systems.  

I.  INTRODUCTION  

Multiple rotors VTOL aircraft or Multirotor aircraft come in 

variety of configurations, but so far the most popular and easy 

to build is the quadcopter. A quadcopter has four motors 

arranged in the form of a symmetrical quadrilateral; it can be a 

square, rectangle or a kite. The main control for aircraft is 

along the roll, pitch and yaw axis for stabilization. The 

cumulative thrust vector and gravity vector add up to give us 

the direction of translation. In case of rotor craft the thrust and 

Lift vector are generally collinear but pointing in opposite 

directions thus giving them the unique ability to hover. 

Multirotors are popular because of their simplicity and lack of 

mechanical complexity which comes with the conventional 

helicopter designs, but what is lost in mechanical complexity 

is made up for in electronic and software code complexity. 

The reason for such code complexity is that any multicopter is 

naturally unstable and given the practical world constraints it 

will never be able to fly unless there is some sort of feedback 

control which periodically updates the motor/actuator speeds 

to stabilize the system. The various levels of control 

hierarchically speaking are 

1. Angular Rate control                             

2. Angle Control    

3. Altitude Control 

4. Heading Control                  

5.Position, Velocity and Acceleration Control                         

6. Autonomous Navigation  

7. Trajectory Planning               

8. Obstacle avoidance, etc.  

The recent mini drone racing phenomenon has necessitated a 

renewed focus on the most basic level of control i.e. angular 

rate control, this because mini drones owing to their small size 

and low moment of inertia are very agile. The dynamics of this 

system make it very difficult to implement higher control 

mechanisms reliably; this is mainly because the sensors used 

to estimate acceleration, heading, position, etc.  Simply fail to 

keep up with the fast attitude changes and high centrifugal 

forces. This makes the job of sensor data filtering much more 

critical. Because of this rate controlled flight has become more 

popular as it provides a simplistic mode of control for the pilot 

to showcase his/her flying abilities. 

II. BASICS OF MULTIROTOR FLIGHT 

Multirotors have multiple rotating propellers which generate 

lift in the upward direction. If this lift is more that the force of 

gravity exerted on the aircraft; then the aircraft should achieve 

flight. In order to maintain stable flight a multirotor requires 

active computerized stabilization where the flight controller 

works continuously to stabilize the aircraft on its roll, pitch 

and yaw axes. Fig. 1 shows the three axes of rotation and fig. 

2 illustrates a quadcopter whose nose is pointing in the 

direction of the positive roll axis. The clockwise and counter 

clockwise arrows show the direction of spin of propellers. It is 

important to note the spin directions as they are essential for 

stabilization of the multirotor along its yaw axis. Fig. 3 

illustrates the direction of torques generated by each motor. In 

this figure every spinning propeller exerts a torque on the 

chassis; this torque is generated as a result of the drag 

experienced by propellers when moving through air. As a 

consequence of newton’s third law of motion, the propellers 

spinning in the clockwise direction exert a counter torque on 
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Fig. 4. Yaw control [1] 

Fig. 2. Quadcopter Roll and Pitch axes [1] 

Fig. 3. Resultant torques on the frame 

the copter trying to spin it in the counter clockwise direction 

,likewise the propellers spinning in the counter clockwise 

direction exert a force on the chassis to spin it clockwise. 

Hence theoretically if all the motors spin at the same speed the 

resultant of all torques exerted on the body should approach 

zero and prevent the copter from spinning on its yaw axis.  If 

the copter is commanded to yaw clockwise or anticlockwise 

by the pilot, then it achieves this by speeding up the 

corresponding diagonal motor pair and decreasing the speed 

on the other two motors thus creating an imbalance of torques 

and spinning the copter with the desired velocity. For example 

if the copter is commanded to yaw in the counter clockwise 

direction, speeds of motors 1 and 3 are increased and 

simultaneously speeds of motors 2 and 4 are decreased by the 

same amount. This way the resultant torque on the copter 

spins it in the desired counter clockwise direction. This is 

illustrated in fig. 4. The amount of increase or decrease in 

motor speeds influences the amount of reaction torque exerted 

on the body and hence the speed of rotation or angular 

velocity along the yaw axis [2]. The underlying assumption is 

that the center of gravity lies at the intersection of the roll, 

pitch and yaw axes.  Further if we see how the copter tries to 

roll under pilot command. In fig. 5 the motors on the left side 

(Red) of the roll axis are sped up while the motors on the right 

side (Green) are slowed down this causes an increased 

coefficient of lift on the left side as compared to the right side 

of the copter, hence rolling the copter towards right. If we 

want to roll the copter left it is vice versa. The amount of 

increase or decreases in motor speeds directly controls the 

difference in lift generated on either side of the copter and 

thereby the speed of rotation or angular rate along the roll axis 

[2]. A similar method is used to make the copter pitch up and 

down depending on controls applied by the pilot. As shown in 

fig. 6 when the motors on the rear (Red) of the copter are sped 

up and the motors on the front of the copter (Green) are 

slowed down, there is more lift generated on the rear half of 

the copter as compared to front half, this difference in lift 

exerts a force on the copter causing it to pitch forward. If the 

copter has to be pitched backwards we just switch the motors 

being sped up with the ones being slowed down. The amount 

of increase or decrease in motor speeds decides the difference 

in lift generated on either side of the copter and hence the 

speed of rotation or angular rate along the pitch axis [2].         

  
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝐹𝑖𝑔𝑢𝑟𝑒 3, 𝑖𝑓 𝑤𝑒 𝑎𝑠𝑠𝑢𝑚𝑒 

 
𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑢𝑠𝑡 𝐹 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4                         (1) 
𝑓1 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐵𝑦 𝑀𝑜𝑡𝑜𝑟 1 

𝑓2 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐵𝑦 𝑀𝑜𝑡𝑜𝑟 2 

𝑓3 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑀𝑜𝑡𝑜𝑟 4 

𝑓4 = 𝑇ℎ𝑟𝑢𝑠𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑀𝑜𝑡𝑜𝑟 5 
 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟𝑠 𝑢𝑠𝑒𝑑 𝑎𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝑝𝑖𝑡𝑐ℎ 
𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝑝𝑖𝑡𝑐ℎ 

 

𝑇ℎ𝑟𝑢𝑠𝑡 ∝ 𝑀𝑜𝑡𝑜𝑟 𝑆𝑝𝑒𝑒𝑑                                     (2) 

 
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑎𝑙𝑙 𝑚𝑜𝑡𝑜𝑟𝑠 𝑎𝑟𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 

 𝑡ℎ𝑟𝑢𝑠𝑡 𝑜𝑓 500 𝑔𝑚𝑠 𝑒𝑎𝑐ℎ 

 
𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 500 𝑔𝑚𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠 
 

𝑇𝑜 𝑦𝑎𝑤 𝑡ℎ𝑒 𝑐𝑜𝑝𝑡𝑒𝑟 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒, 
  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔, 

  𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑡𝑜𝑟 𝑡ℎ𝑟𝑢𝑠𝑡𝑠 
 

𝑓1 = 300 𝑓2 = 700 𝑓3 = 300 𝑓4 = 700 

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠 
 

     𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑓𝑜𝑟 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡, 
  𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔, 

  𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑚𝑜𝑡𝑜𝑟 𝑡ℎ𝑟𝑢𝑠𝑡𝑠 
 

𝑓1 = 700 𝑓2 = 300 𝑓3 = 300 𝑓4 = 700 

𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠 
 

        𝐹𝑖𝑛𝑎𝑙𝑙𝑦 𝑓𝑜𝑟 𝑝𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 

  𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑡𝑜𝑟 

 𝑡ℎ𝑟𝑢𝑠𝑡𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 
 

𝑓1 = 300 𝑓2 = 300 𝑓3 = 700 𝑓4 = 700 

          𝑇𝑜𝑡𝑎𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 2000 𝑔𝑚𝑠   
   

Here the thrust increase/decrease of 200gms is completely 

arbitrary, in the practical implementation this value will be 
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Fig. 6. Pitch control [1] 

Fig. 5        Roll Control [1] 

influenced by the desired angular rate and output of the control 

loop, nevertheless these equations tell us that for any 

manoeuver even though the individual motor thrusts change 

corresponding to the axis of motion but the total thrust 

generated by the system remains same. This is to ensure that 

the copter always generates the same lift for a certain throttle 

level and the copter does not descend or ascend due to 

application of control input. Though after the copter tilts the 

magnitude of thrust in the downward direction reduces 

causing the copter to descend, but this scheme is important to 

have symmetric control over all axes of rotation [2].  

Here 500 grams is the base thrust and the motor speed signal 

corresponding to the base speed is called the collective. The 

value of this collective is specified by the pilot’s throttle 

signal. Also complimentary control helps when the motors are 

saturated. For example when the motor are operating close to 

90% of their achievable thrust and the pilot demands a roll rate 

of 400 degrees per second at that point some motors will be 

required to spin at 110% while others will be required to spin 

at 70% of their achievable speeds but since the motors cannot 

spin at more than 100% speed the response of the system 

suffers, even then the system is still maneuverable considering 

that the rest of the motors can slow down to 70 % speed and 

produce a rotation rate close to the desired rate. To work 

around this problem the maximum collective applied to the 

motors is limited to 85% of the total motor output signal, this 

way there is enough headroom for accommodating rate 

requests of close to 300 degrees per seconds without 

compromising on system response [3].  

This is even more useful when the collective is close to zero 

i.e. if the collective is at 30% and the controller demands a rate 

of 360 degrees per seconds on the pitch axis, in this case two 

of the motors will have to spin at 0% speed while the other 

two will have to spin at 60% speed. This might be fine to do 

theoretically but when a brushless motor stops, it can be 

difficult to restart it, this is because the way BLDC motors are 

driven they do not produce a lot of starting torque and with air 

flowing through the propellers the motor might fail to restart 

in air and lead to a crash. Hence the software should ensure 

that it never lets the motor speeds fall below a certain 

minimum value to protect against motor stalling. This 

minimum value is close to 15% of the throttle signal. In this 

case as well because the motor speeds cannot be decreased 

beyond a certain value, the complimentary thrust mechanism 

helps the flight controller to comply with the pilot’s desired 

commands while flying at very low throttle levels, all of this 

without compromising on flight integrity [3]. 

A. Abbreviations and Acronyms 

IMU inertial measurement unit; VTOL vertical take-off 

and landing; MAV micro aerial vehicle; UAV unmanned 

Aerial vehicle; MEMS micro electro-mechanical sensors; 

GPS global positioning system; GNSS global navigation 

satellite subsystem; BLDC brushless direct current. 

 

III. IMPLEMENTATION 

For the purpose of this implementation an AVR 

microcontroller will be used; however this scheme can be 

diversified so that it can be implemented using 

microcontrollers with more powerful architectures. 

Specifications of the test system are as follows.  

  

A. AVR Atmega328 16Mhz 5V TTL on an Arduino 

Nano. 

B. Invensense ITG-3200 3-Axis MEMS Gyro connected 

over the I2C bus 

 

IV. CHARACTERISTICS OF INPUTS AND OUTPUTS 

Inputs to the system include a MEMS gyroscope connected on 

the I2C bus and a radio control receiver connected to the port 

pins which support pin change interrupts. The I2C bus is 

configured to communicate at 400 KHz, it is externally pulled 

up to 3.3 volts so that both the micro-controller as well as the 

sensor can communicate without damaging each other. The 

receiver has four wires each corresponding to four channels of 

roll, pitch, yaw and collective control connected to pins PB0-

PB3 of the controller these four signals communicate at 50Hz 

on a protocol based on PWM which is shown in figure 7, 

decoding this signal has been described in the focuses ahead. 

Output of the system is in the form of four 400Hz PWM 

signals, one for each motor of the quadcopter. This signal 

communicates the speed of motors as commanded by the 

flight controller to the electronic speed controllers which spin 

the motors at this desired target speed. The number of signals 

depends on the number of motors for the configuration of 

multicopter being controlled. This signal protocol is identical 

to the one used by the radio receiver to communicate position 

of sticks on the pilot’s radio transmitter module to the flight 

controller, but this operates at a much higher frequency of 400 

Hz to provide a higher refresh rate of motor speeds [3]. The 

speed controllers are connected to pins PD0-PD5. This 

controller is able to control multicopter configurations having 

up to 6 motors.      
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Fig. 7        PPM and PWM signal waveform [4] 

Fig. 8      PPM signal decoder 
 

V. THE RC COMMUNICATION PROTOCOL 

While the MEMS gyroscope communicates through the 

standard Phillips I2C protocol, the radio receiver 

communicates using a protocol which is called PPM or pulse 

position modulation in the RC hobby community; in reality 

this is in fact a PWM signal where the width of pulse gives us 

the value of signal. This signal is illustrated in the fig. 7. The 

figure shows that each individual PWM signal corresponds to 

one channel of control, with regard to this implementation 

there are only four channels and hence four PWM signals to 

decode. Each PWM signal operates at a base frequency of 50 

Hz and hence the period of this signal is 20 milliseconds. Out 

of this entire time period of 20 milliseconds the signal is 

always ON for the first 1000 microseconds and changes in 

width only happen between 1~2 milliseconds, while for the 

remaining 18 milliseconds the signal is always off. During this 

time the signal does not carry any information. When width of 

the pulse is 1 millisecond or 1000 microseconds this means 

that the value of signal it represents is 0 % and when width of 

the pulse is 2 milliseconds or 2000 microseconds the value of 

signal is 100%. Different radio manufacturers use the same 

protocol but the pulse widths corresponding to 0% and 100% 

signal might be different. For example the radio used here has 

a minimum pulse width of 828 microseconds and a maximum 

pulse width of 2172 microseconds. This necessitates that 

whenever a new brand of receiver is connected to the system, 

the user should first calibrate the radio to ascertain the 

maximum and minimum pulse widths. These values are saved 

in the EEPROM of the AVR controller and it is not required to 

repeat this calibration procedure every time the system is 

powered up [3].  

The output pins of the flight controller communicate desired 

motor speeds to the speed controllers using this same protocol 

but in their case the unusable pulse width of 18 milliseconds is 

reduced to only 0.5 milliseconds this way the maximum 

period of this pulse is reduced to 2.5 milliseconds instead of 

20 milliseconds thereby increasing the frequency to 400 Hz 

instead of 50 Hz. One important consideration when choosing 

the electronic speed controllers is that they should support a 

400 Hz refresh rate. The distinction between speed controllers 

which support fast update and those who don’t is very 

essential to understand because the effects on flight 

performance are significant [3].  

Output from the flight controller has a maximum pulse width 

of 2000 microseconds corresponding to 100% signal and a 

minimum width of 1000 microseconds corresponding to 0% 

signal. The speed controllers are unaware of the pulse widths 

corresponding to 0% and 100% signal generated by the flight 

controller. To make speed controllers compatible with 

different pulse widths generated by different manufacturers of 

radio control equipment they have a calibration routine built in 

to them which lets the user program the maximum and 

minimum pulse widths generated by any receiver or flight 

controller. The user has to invoke this subroutine to let the 

speed controllers know the maximum and minimum pulse 

widths to be expected from the flight controller. 

VI. INITIALIZATION 

The code begins by initializing the gyroscope. It sets the range 

of the gyro at +- 2000 degrees per second on each axis, the 

internal sample rate is set at 8K samples per second and the 

internal LPF is set to band limit the gyro data to below 256 

Hz. The first 50 filtered gyro readings on each axis are fed to a 

moving average filter. The output is checked to see if resultant 

angular rate is not more than 30 degrees per second on each 

axis, if this is not the case then either the aircraft is moving or 

the sensor is unhealthy. 

Timer modules within the AVR controller are used to measure 

the pulse widths of signals coming from the radio receiver. 

They are also used for calculating delays and for generating 

required pulses to instruct the speed controllers to spin motors 

at their designated speeds.  

Timer0 is programmed with a prescaler of 8 this ensures that 

the time elapsed per tick is 0.5 microseconds. This way time 

required for the timer to count 256 steps and overflow is 128 

microseconds, an overflow counter is maintained which keeps 

track of number of overflows since start-up. To find the 

current time since power up the number of overflows is 

multiplied with 128, then the current value of timer0 is divided 

by 2 and added to this product. This gives us the exact time 

elapsed in microseconds. This timer is used for calculating 

delays and also for measuring pulse widths for the receiver 

signals. 

Timer1 is programmed in fast PWM mode with a prescaler of 

8 to ensure one timer tick happens after 0.5 microseconds, 

Fig. 7 
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Fig. 9      RC transmitter stick configuration [5] 

frequency of PWM is decided by the top of counter which is 

specified by the value of the input capture register. The value 

of ICR1 is set to 3999 to generate a wave with frequency of 

400Hz. Values within the output compare match registers and 

the output compare interrupt handler is used to generate up to 

6 simultaneous PWM signals for sending motor commands to 

the motor speed controllers.          

Input channel pulse widths from the radio control receiver are 

sanity-checked for errors, if this is not checked then it might 

lead to uncertain values being fed into the rate controller, if the 

sanity checker produces an error then either the receiver is 

disconnected or some inputs are disconnected. In both cases 

the initialization will fail and the controller will generate a 

specific beep sequence to warn the user of an initialization 

error. Prerequisites for initialization are that the platform is set 

motionless and receiver is connected on power up. 

VII. START-UP 

During the start-up sequence the gyroscope is calibrated. As a 

part of this sequence the gyro data is averaged over 3 seconds 

and the gyro bias per axis is calculated, these values are used 

during flight for estimating the real gyro angular rate sans 

error due to gyro drift. Temperature readings from the gyro 

sensor are used to make small adjustments to the estimated 

gyro bias. Once the gyroscope is calibrated, the platform is 

ready to allow its control loop to take over. 

VIII. ARMING 

As a safety feature arming is a sequence which is enforced 

upon by the flight controller, this way the pilot has to 

explicitly specify when the motor outputs are enabled thus 

allowing actuation of the propellers. 

IX. INPUT CONVERSION TO THEIR PHYSICAL    

 REPRESENTATIONS 

The data from the radio receiver is decoded by using a pin 

change interrupt method. As shown in fig. 7 the receiver 

channel pulse widths appear in a staggered fashion such that 

no two channels have pulses occurring at the same time. The 

pulses appear one after the other and therefore the signals are 

decoded in the order of their occurrence. When all four 

channels have been decoded, it is implied that a new data 

frame has arrived. Fig. 8 shows the how receiver channel 

widths are measured by the software. The receiver pulse 

widths ideally range from 1000~2000 microseconds but the 

practical pulse widths in this test case range from 828~2172 

microseconds, from this measured value, the value of pulse 

width which corresponds to 0% signal value is subtracted. In 

the ideal case 0% signal is represented by 1000 microseconds 

so the resultant pulse width range after subtraction is reduced 

to 0~1000 microseconds. In the test case the 0% signal 

corresponds to a pulse width of 828 microseconds so after 

subtraction the range is 0~1344 microseconds. The code 

constrains values of the pulse widths from 0~1344 so that 

values falling out of this range are limited to a maximum of 

1344 and a minimum of 0. These constrained values are 

subtracted from their respective pre-constrained counterparts. 

The difference between the two should be zero at all times, if 

the difference is greater or less than zero then this indicates 

that invalid signals are being received from the receiver and 

can be ignored. Each time an invalid signal is detected the 

code increments an error counter variable, if the value if this 

variable reaches 100, this means that the signal has been 

invalid for 2 seconds and there is some problem with the RC 

communication link. In which case the all the motors are 

shutdown as a safety feature. This error variable is reset to 

zero every 10 seconds, just so that small receiver errors don’t 

accumulate and reset the system.     

Now the code has data corresponding to the stick positions on 

the pilot’s radio transmitter module. Fig. 9 shows a typical 

layout of the pilot’s transmitter module, it has two sticks 

which can move in the up/down and right/left directions. The 

pulse widths are converted to their corresponding stick 

positions. This is done by mapping the signal pulse widths. 

For the throttle stick, the pulse width range of 0~1344 is 

mapped to 0~1000, since it is not spring loaded and does not 

return to the center when released. Similarly this is repeated 

for all the other channels but since all these sticks are spring 

loaded the pulse widths of 0~1344 are mapped from -500~500 

to denote positive as well as negative stick deflections [5]. By 

using this method the position of any stick can be estimated 

within 1/1000 of its range. The gyroscope data which is 

acquired over the I2C bus is in the form of three 16-bit 

integers, one each for X, Y and Z axes is converted to angular 

rate in degrees per second by multiplying it with the 

sensitivity scale factor of 14.375. After this the software has 

raw angular rate data in degrees per second for the roll, pitch 

and yaw axes. Now there are two decoded data inputs to the 

system in the form of stick position and gyro rate. Before 

feeding these values into the control loop, the code has to 

specify what each individual stick position stands for. Since 

the code aims to implement rate control, the position of roll, 

pitch and yaw sticks are converted into the desired angular rate 

measured in millidegrees per second. The throttle stick 

position value specifies the amount of collective from 0~1000. 

The yaw stick position specifies the desired yaw angular rate 

in +-2000 millidegrees per second, likewise the roll and pitch 

stick positions specify the desired roll and pitch angular rate in 

+-3600 millidegrees per second. These ranges can be changed 

depending on the pilot’s preferences of agility; making them 

these ranges higher will make the copter more agile while 

decreasing them will make it more docile.  This is called stick 
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Fig. 11       Derivative kick [6] 

Fig. 12       Integral windup mitigation [6] 

Fig. 10      PI controller    

Fig. 13       Effects of proportional term on system response [8] 

response scaling and is achieved by mapping the stick position 

ranges with the desired range of angular velocities.  

Mapping is a function used frequently for rescaling data 

ranges, this function is derived from the Arduino libraries and 

this is the function definition. 

 

𝐿𝑜𝑛𝑔 𝑚𝑎𝑝 (
𝑙𝑜𝑛𝑔 𝑥, 𝑙𝑜𝑛𝑔 𝑜𝑙𝑑𝑚𝑖𝑛,

 𝑙𝑜𝑛𝑔 𝑜𝑙𝑑𝑚𝑎𝑥, 𝑙𝑜𝑛𝑔 𝑛𝑒𝑤𝑚𝑖𝑛, 𝑙𝑜𝑛𝑔 𝑛𝑒𝑤𝑚𝑎𝑥
) 

𝑥 =  (𝑥 − 𝑜𝑙𝑑𝑚𝑖𝑛) ∗
𝑛𝑒𝑤𝑚𝑎𝑥 − 𝑛𝑒𝑤𝑚𝑖𝑛

𝑜𝑙𝑑𝑚𝑎𝑥 − 𝑜𝑙𝑑𝑚𝑖𝑛
+ 𝑛𝑒𝑤𝑚𝑖𝑛          (3) 

 

Another frequently used function from the Arduino libraries is 

the constrain function defined below 

 
 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛 (𝑙𝑜𝑛𝑔 𝑥, 𝑙𝑜𝑛𝑔 𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒, 𝑙𝑜𝑛𝑔 𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒) 

𝑖𝑓 (𝑥 < 𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒) → 𝑥 = 𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒  
𝑖𝑓(𝑥 > 𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒)  →  𝑥 = 𝑚𝑎𝑥𝑣𝑎𝑙𝑢𝑒 

𝑟𝑒𝑡𝑢𝑟𝑛 (𝑥)                                                    (4) 

X. THE MAIN CONTROL LOOP 

We use a Proportional Integral (PI) controller for controlling 

the angular rates along the 3 axes of motion; this requires the 

code to run 3 separate instances of the control algorithm, one 

for each axis. The outputs of all three controllers are converted 

to 3 motor speed signals and applied together. Fig. 10 shows 

how the PI controller works. The proportional gain takes care 

of the impulse response of the system. Using only a 

proportional controller for this system would be enough for 

stability, making it the most important parameter which 

decides if a system is flyable or not, but the controller might 

not be able to compensate for the steady state error, this is 

because the proportional controller generates a constant output 

for constant error and under external forces like winds, the 

constant output of the controller might not be enough to 

counteract these forces. To reduce this steady state error to 

zero we use the integral gain constant which accelerates the 

system towards the set point and acts to reduce the steady state 

error. The derivative term is not used in this controller since 

the transient response of this system isn’t very large, also 

introduction of a derivative term can introduce instability in 

the system due the characteristic derivative kick whenever a 

step change in set point is provided to the system, this kick can 

cause momentary saturation of the motors and excessive 

current draw. Fig. 11 shows the derivative kick phenomenon 

[6][7].  

In a PI controller of this kind we have to protect against 

integral windup, this is done by constraining the I term 

between two values so that system does not get saturated at 

any point due to a longer lasting error signal [6][7], windup 

mitigation is illustrated in fig. 12.  

One very important assumption is that the loop time of the 

controller is small enough that three rotations can be fused in 

to one; this ensures that we compensate for any rate error on 

all three axes at the same time, without violating the non-

commutative property of 3D rotations. Further as a part of the 

control loop the gyro data which is in degrees per seconds is 

converted to millidegrees. The reason why we increase the 

range of input data by converting the units into smaller units is 

because we want to avoid computing floating point data, 

which can take longer for the processor. This also gives us 

more resolution to work with. Also the rate at which the 

controller completes an iteration is not affected by the speed at 

which the inputs and outputs of the system are generated. The 

process of getting the inputs and generating the outputs are 

completely decoupled from the main loop, this ensures that the 

input signal from the pilot appearing every 50Hz along with 

the gyro signal at 256Hz and motor outputs being generated at 

400Hz do not cause unwanted control loop delays or over-

runs. To make these three signal frequencies work with the 

main loop in stable manner we perform scheduling using timer 

interrupts, this ensures that multiple subroutines are serviced 

while having minimal impact on the rate of execution of the 

main code. Next the rate error is calculated by subtracting the 

actual rate measured by the gyro from the desired rate 

calculated from the pilot’s input. There will be three errors 
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Fig. 16        Desired output [10]  

Fig. 14      Effects of integral term on system response [9] 

Fig. 15       Motor signal generation 

Fig. 17       Software flow diagram 

calculated on the roll, pitch, and yaw axes. These errors will 

be given as inputs to the PI algorithm. The rate error is 

multiplied by the proportional gain this constitutes the P-term. 

Further the current error is added to the last error which was 

measured during the previous iteration, this accumulated error 

value is multiplied by the loop time to calculate the integration 

of the error signal. This integrated error value is multiplied by 

the I-gain constant to calculate the I-term. The addition of P 

and I terms forms the output of the PI controller [8].   

              
𝐏𝐈 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 

 

  𝐜(𝐭) = 𝐏 ∗ 𝐞(𝐭) + 𝐈 ∗ ∫ 𝐞(𝐭)
𝐭𝟐

𝐭𝟏
𝐝𝐭                                          (5) 

𝑃 −  𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐺𝑎𝑖𝑛  
𝐼 −  𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐺𝑎𝑖𝑛  
𝑡2 −  𝑇𝑖𝑚𝑒 𝑎𝑡 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 𝑜𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  
𝑡1 −  𝑇𝑖𝑚𝑒 𝑎𝑡 𝑒𝑛𝑑 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑑𝑡 −  𝐿𝑜𝑜𝑝 𝑇𝑖𝑚𝑒  
𝑒(𝑡) −  𝑅𝑎𝑡𝑒 𝐸𝑟𝑟𝑜𝑟  
𝑐(𝑡) −  𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 

 

Fig. 13 shows the effect of only P term on the output, fig. 14 

shows the effect of I term on the output and fig. 16 shows the 

desired response from the combination of PI terms.  

Output of the controller is converted to corresponding motor 

speed signals which act to reduce the error and providing 

accurate control. The fig. 15 shows how motor output PWM 

signals are generated using timer interrupts. Equations 

governing the motor speed changes as a result of the output of 

the controller are shown below; here the quadcopter shown in 

fig. 3 is taken as reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

      
  

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV5IS010048

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 5 Issue 01, January-2016

63 



Fig. 14       Effects of integral term on system response 

𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑀𝑜𝑡𝑜𝑟 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑌𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟              (6) 
 

𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑌𝑎𝑤 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 

 

𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑀𝑜𝑡𝑜𝑟 𝑂𝑢𝑝𝑢𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑃𝑖𝑡𝑐ℎ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟              (7) 
 

𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑖𝑡𝑐ℎ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 

  

 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑀𝑜𝑡𝑜𝑟 𝑂𝑢𝑝𝑢𝑡𝑠 𝑏𝑦 𝑡ℎ𝑒 𝑅𝑜𝑙𝑙 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟                (8) 
 

𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 1 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 2 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 3 𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 
𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑀𝑜𝑡𝑜𝑟 4 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝑅𝑜𝑙𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 

 

The motor outputs from the PI controller are constrained to 

protect against motor saturation as well as stalling. The motor 

speeds are sent to the motor speed controllers at the next 

update of the 400Hz loop. This process is repeated 

continuously to ensure that the desired and actual rates follow 

each other on the roll pitch and yaw axes up until the time that 

the system is not disarmed by the pilot. Tuning of the PI 

controller on each of the three axes is done experimentally, 

such that the pilot is comfortable with the response. This helps 

different pilots customize the feel of the aircraft in accordance 

with their requirements. 

XI. RESULTS AND CONCLUSION 

The control algorithm described in the above text was 

implemented using the prior mentioned test bed and the flight 

characteristics were tested. Implementation using an 8-bit 

controller helps keep the cost down at the same time it allows 

pilots to showcase their flying capabilities. Higher levels of 

control can be ported on top of this controller for use with 

SWARM applications, the kind being used at the flying 

machine arena at ETH Zurich in Switzerland. The 

performance of this controller has been showcased in the 

video below     

 

The controller compensates well given the imperfections in 

this homemade frame. This demonstrates the robustness of this 

controller. Fig. 17 illustrates the main control loop 
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