Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

Android Wi-Fi Direct Architecture: From Protocol
Implementation to Formal Specification

Rémy Maxime Mbala?, Jean Michel Nlong?, Jean Robert Kala Kamdjoug?®
! The University of Ngaoundéré, Ngaoundéré, Cameroon
2 Cameroon-Congo Inter-State University, Sangmelima, Cameroon
3 Catholic University of Central Africa, Yaoundé, Cameroun

Abstract —~With the proliferation of Android smart phones, it
should be possible to set up Mobile Ad-hoc Networks
(MANETS) to share information anywhere, anytime. To
achieve this goal, it is necessary to have a good wireless
communication technology capable of responding to the
characteristics of MANETs. Wi-Fi Direct could be a good
candidate not only because it allows direct communication
between devices without the need for a fixed infrastructure
but also because it is present in most smart phones with at
least Android 4.0. The study of Wi-Fi Direct has been the
subject of several works that denounce the limitations of the
technology in terms of construction of large-scale mobile
networks. In this paper, we make a detailed technical study of
the Wi-Fi Direct framework on Android Operating System to
understand how it works and its implementation in order to
really overcome their network restrictions. We also provide a
formal specification of Wi-Fi Direct on Android by using Z
and Object-Z specification languages. This study allows us to
understand the functions and the classes of the framework
and see at what level changes can be make to implement other
solutions.

Keywords: Wi-Fi Direct, Peer-to-Peer, Android, Ad-hoc
Network,  WifiP2pManager, = Wpa_supplicant, Formal
Specification, Z, Object-Z.

l. INTRODUCTION

Since the early announcement of Wi-Fi Direct
specifications by the Wi-Fi Alliance!, the promise of its
advertised features and use-cases has motivated a lot of
projects, in the aim of exploiting this technology for
general network communications. Indeed, the deployment
of large-scale, self-organized and self-managed mobile ad-
hoc network is a key enabler of many field applications,
ranging from military operations to catastrophe
management, passing by game and infotainment. Wi-Fi
Direct was intended to allow concrete peer-to-peer mobile
ad-hoc network deployment, based on smart phones and
other handheld equipments, and is embedded in almost all
the smart phones sold these past five years.

An ad hoc network consists of a set of geographically
distributed equipments, potentially mobile and sharing a
radio channel. Equipments can play the role of source,
destination or router for communications; they must be able
to play these roles at any time, thus exhibiting a peer-to-
peer network organization. An Ad Hoc network is
opportunistic, self-created, self-organized and self
configured [29]. Self-creation means that when the
facilities are put together in a neighbourhood, the network
is created in an "opportunistic" way such that each

equipment is able to communicate with all the others to a
hop or hop by hop. Self-organization means that only the
interactions between devices are used to provide the
necessary control and administrative functions to maintain
the network. Nodes cooperate to organize themselves by
distributing different roles if necessary. The auto-
configuration implies that the nodes must be able to
quickly perform certain functions to always respect the
defined topology and allow for flexibility, robustness and
transition to network wide.

The specifications of Wi-Fi Direct were developed by Wi-
Fi Alliance consortium, and are published in [6]. This
technology allows connecting two compatible devices for
data transfer streaming. Being a modification of classical
Wi-Fi, it offers the same performances in terms of range
and bandwidth. Wi-Fi Direct differs from classical Wi-Fi in
the sense that it directly connects two equipments, with no
third party. Android smart phones from version 4.0 are
natively equipped with this technology (the API is called
Wi-Fi Peer-to-Peer [6]), and can opportunistically create
Ad Hoc groups in a neighborhood for sharing information.
With Wi-Fi Direct, the group formation process is divided
into four phases: discovery, negotiation of the group owner,
the WPS provisioning and configuration of addresses [6].
Taking advantage of these capabilities, several studies [2,
3, 8, 15, 26, 30] have been carried out to evaluate this
technology and to study the feasibility of building a true
mobile Ad Hoc network as presented above. These works
are mainly experimental, and highlight the difficulties of
putting into practice all the interesting features
commercially announced. It then appears important to well
circumscribe the purpose and the commercial aspects of the
technology, and its concrete operational capacities. Given
the lack of a native specification for Wi-Fi Direct, this
work aims to study its operational functioning, formalize
the use scenarios and to provide the formal specification by
using Z and Object-Z specification languages, for Android.
Formal specification helps build more robust and
maintainable software with fewer defects than systems
developed without using formal methods [36]. We choose
Z and Object-Z languages because they are the formal
specification languages predominantly used in model based
specification and they have an important feature over other
languages: powerful semantic and calculus (predicate
calculus and set theory), strong support of objects and its
specification style corresponds directly to object oriented
programming constructs, while UML-B weakly supports
the concepts object and VDM++ does not have exact
formal calculus [36, 37, 38].

IJERTV9I S020036

www.ijert.org 30

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org

I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

The remainder of this paper is organized as follows.
Section Il provides some background on Wi-Fi Direct
standard and specification, along with advertised features
and performances. In section 111 we present related works
on the usability of Android Wi-Fi Direct stack, and the
results and conclusions obtained. The overall architecture
of the Android Wi-Fi Direct implementation is presented in
Section 1V, which formal specification is derived in
Section V, along with a discussion on its capabilities.
Section VI concludes the paper.

Il. WI-FI DIRECT GROUP FORMATION
PROCESS
In Wi-Fi Direct, the group formation is divided into four
different phases namely discovery, Group Owner (GO)
negotiation, Wi-Fi Protected Setup (WPS) provisioning and
address configuration [2, 6].

a. Discovery: The Wi-Fi Direct device discovery
process is used to search for and locate the devices
that are intending to participate in a specific
service. The device that turns on the Wi-Fi Direct
mode initiates scan, listen, and search phases to
find other WLAN-based D2D-enabled devices in
the currently used frequency. Specifically, a Wi-Fi
Direct device can first conduct 802.11 scanning
defined in 802.11 standard [7] in order to identify
surrounding Peer to Peer groups. The specification

Device 1 Scan ELI'STen Search

is based on the 2.4-GHz frequency used in
802.11b/g/n, but it can also be extended in the
future to 5.0 GHz, which is used in 802.11a/n/ac.
In the scanning process, the device periodically
switches its channel and transmits a probe request
message in each channel. If the channel of another
WLAN-based D2D device is timely matched with
the scanning device at a specific moment, the
probe request can be received by another device,
which can respond with a probe response. After
scanning, the device enters the find phase, in
which the default channel is listened to and the
mainly used channels of the frequency (e.g. social
channels of 2.4 GHz) are searched for. In the find
phase, the devices alternates between listen and
search states [7, 9]. A device in search state
conducts active scanning sequentially at three
social channels (channels 1, 6 and 11 of 2.4 GHz)
by transmitting a probe response frames. In listen
state, the device conducts idle listening at listen
channel for a random duration, during which it
replies to probe request frame by transmitting a
probe response frame. The example in Fig. 1
shows how two devices with Wi-Fi Direct
capabilities progress through their device
discovery process to discover each other.

_|_|_|_|. ché [ cnl [ eh6 [ehll

<13y 200y
o b3y 2qoug-
<ty qout

Device 2

Listen
ch & chl

. H
i >
H =]
H L=
H )
H s
a m
1 £
: v
P
& =
[EE Y
o= A
@
=
= 5
Pom

F N ; Fy

or o

i i

(== (==

@ @

=] =]

[=] [=]

T+ T

- chl

ulu | .-:hG |chi1i

Scan : Listen

Search

Fig. 1 : Device Discovery process in Wi-Fi Direct [9]

b. GO negotiation: Once the devices share the probe
messages, the association process is initiated to

establish Peer to Peer connection and select a C.

Group Owner (GO). This is done by using a three-
way handshake association messages in the
channel that they used to share the probe
messages. The role of Group Owner is given to a
single device, which becomes responsible for
transmission of periodical beacon messages for
maintaining connection with group clients. To
elect a GO, each node is given an intent value
ranging from 0 to 15. This intent value is

with the highest intent value becomes the GO? [2,
6, 15].

WPS provisioning: Wi-Fi Direct uses Wi-Fi
Protected Setup (WPS) for initial set up and
authentication. WPS is based on WPA-2 security
and uses Advanced Encryption Standard (AES)-
CCMP as cypher and randomly generated pre-
shared key for mutual authentication [6]. The
Group Owner takes the role of registrar; the key
responsibilities of the registrar are granting and
revoking network access for the client devices. It

compared between the devices, and the device

2In case both P2P devices send equal GO Intent values, a
tie breaker bit is used for decision and the device with tie
breaker bit set to 1 shall become GO.

I JERTV9I S020036 www.ijert.org

31

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

is also responsible for passing on the necessary
information such as group ID, the operating
channel, and the pre shared key to the client
devices. WPS provisioning is also divided into
two phases: in the first phase the security keys are
generated by the internal registrar and in the
second phase the devices disconnect and
reconnect using the key that is generated in the
first phase [2, 3, 6, 26].

d. Address configuration: Finally, DHCP is used to
assign IP addresses to the Peer to Peer devices.
The Group Owner acts as the DHCP server and
assigns the clients IP addresses. In order to obtain
an IP address, the client and the DHCP server
exchange DHCP discover offer, request and
acknowledgement messages [6].

Il. RELATED WORKS ON THE WI-FI DIRECT
Several works were done on Wi-Fi Direct with different
objectives. The works focus on experimental evaluation of
the protocol’s features as well as the development of novel
services using Wi-Fi Direct. We present a number of these
works in this section. The presentation is not exhaustive, it
aims to showing the different lines of research on which the
scientific community has looked and the difficulties that
people have encountered while experimenting with Wi-Fi
Direct. An extensive survey on Wi-Fi Direct technology
and comprehensive review of state-of-the-art are presented
in [1].

The works done in Wi-Fi Direct can be categorized into
four areas according to the research lines and the expected
objectives. Some are looking at the evaluation of the
performances of the technology, others on the device
discovery, the group formation and scalability for
communication or on the energy management.

1. Performance evaluation
This is to evaluate the performance of Wi-Fi Direct
according to certain parameters: the time of device
discovery and group formation, the bandwidth actually
used, the transmission distance, multimedia delivery, etc.
In [2] and [3], authors presented performance evaluation of
the device discovery and the group formation delay using
standard, persistent and autonomous group formation
mode. In these works, the autonomous mode takes about 1s
to discover other equipment, while the discovery times in
the standard mode and the persistent mode are in the ranges
[1.48s, 15.35s] and [1.5s, 15.9s] respectively. For the group
formation, times are 3 to 6 seconds in the autonomous
mode and 5 to 9s in the standard and persistent mode. The
performance evaluation of Wi-Fi Direct for multimedia
delivery and streaming applications is presented in [4]. The
authors choose the Round Trip Time (RTT) and bandwidth
as performance metrics; they make a comparison between
Wi-Fi Direct and Bluetooth networks. In addition they
evaluate the impact of increasing number of P2P devices.
The connection establishment overhead and delay were
evaluated in [5] where authors developed “Electrical
Business Card Communication over Wi-Fi Direct (EriCC-
W)”, a Wi-Fi Direct based data transfer system, to identify

smart phones using gestures and transforms the gestures
into frequency spectrum to authenticate devices. These
works revealed that the Wi-Fi Direct has shorter
transmission delays than the Bluetooth and can maintain
connections over long distances (between 150 and 200
meters). Thus Wi-Fi Direct could be an interesting
technology to share information in a certain range but the
discovery and the group formation times still remain an
obstacle especially for multimedia applications.

2. Device discovery

Empirical measurement results in [2, 3] show that device
discovery accounts for the largest portion of the overall
time required completing P2P group formation procedure.
From these measurements, we can notice that the device
discovery may take over ten seconds in the worst case. It
implies that reducing device discovery time is most critical
issue for satisfactory service start-up.

In order to tackle this problem, authors in [8] proposed
Listen Channel Randomization (LCR) scheme to reduce
device discovery delay. They developed an elaborate
Markov model in order to analyze the legacy find phase
based on the channel status of the three social channels.
The proposed scheme was tested using NS3 simulations
which revealed that LCR can significantly reduce the
device discovery, yielding up to 72% delay reduction
compared to the legacy find phase [8]. J. Feng and al. [10]
sat up the experiments connecting two mobile devices
using Wi-Fi Direct and performed the loss channel
analysis. They also proposed a new loss model scheme
based on Gilbert Elliot model which can facilitate the
theoretical analysis when designing or optimizing wireless
networks. In [9], authors proposed also a scheme to reduce
the delay induced in the association process of Wi-Fi
Direct. They designed a so called “client-aided search” of
Group Owners where the mobile clients can share the
information of Group Owners that they have associated
with in the past. In this scheme, channel and location
information of multiple Group Owners can be shared by
client devices, which can reduce the delay in the
forthcoming association process. The proposed solution
was also tested using NS3 simulation.

3. Energy management
According to the Wi-Fi Direct specification [6], the Group
Owner is the central device of the group, he is sometimes
called Soft Access Point since it interconnects all devices
present in the group and it manages all theirs
communications. Because of this, it is important for the
Group Owner to have built-in mechanisms to better
manage energy since it is a mobile device. Two
mechanisms are presented in [6]: Notice of Absence
(NoA); the Group Owner announce time intervals where
clients are not allowed to access to the communication
channel regardless of whether they are in power saving
mode or not, and Opportunistic Power Save (OppPS); it is
about taking advantage of the sleep periods of P2P Clients.
The OppPS and NoA are considered insufficient in services
which are using periodic data transmissions such as video
streaming, screen sharing, multi-user on-line gaming [1].

IJERTV9I S020036

www.ijert.org 32

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

Then several other solutions have been proposed to
optimize these two first mechanisms.

Adaptive Single Presence Period (ASPP) and Adaptive
Multiple Presence Periods (AMPP) [14] are the two first
algorithms proposed to improving the performance of
OppPS and NoA schemes. They allow a portable device
implementing Wi-Fi Direct (e.g. a mobile phone) to offer
access to an external network (e.g. a cellular network)
while addressing the trade-off between performance and
energy consumption in a configurable manner. The ASPP
scheme can be used with both OppPS and NoA, whereas
the AMPP scheme can be used only with NoA however
AMPP can also improve the performance of ASPP. In
ASPP scheme, the P2P GO computes a single presence
period in each beacon interval based on the amount of
traffic at the up-link of the P2P GO. The presence period is
shortened if the up-link is congested and vice versa. In
contrast to ASPP, the AMPP uses multiple presence
periods in a beacon interval and hence it can be used only
with NoA scheme. Algorithms running on P2P GO
estimate the raw bandwidth on the up-link external network
and accordingly adjust the number of presence periods [1].
The simulations show that ASPP and AMPP can manage to
reduce the power consumption of Wi-Fi Direct devices
acting as Access Points (50-90%) without introducing
major user experience degradation.

In the same order or ideas, two others approaches to
compute absence periods for energy saving using NoA
scheme are proposed in [2]: A static policy, where the P2P
GO advertises a fixed duration presence window after each
Beacon frame and a dynamic policy, where the P2P GO
adjusts the duration of the presence window based on the
traffic conditions using Adaptive Single Presence Period
(ASPP) algorithm. The results of this work are not very far
from those of [14].

Dynamically Synchronized Power Management (DSPM)
scheme is proposed in [12] to dynamically synchronize the
active time slots with the data transmission time slot to
further enhance the energy efficiency of OppPS and NoA.
In [13], Dynamic Power Save (DPS) is proposed; A P2P
Group Owner which implements DPS mechanism toggles
between OppPS and NOA base on traffic characteristics.
Therefore the Group Owner must be capable to decide and
switch the power save mode if the applications in the
network are changed. To dynamically adjust the parameters
for OppPS and NoA schemes to improve the performance
of Wi-Fi Direct network, H. Yoo and al. [11] proposed a
Traffic Aware Parameter Tuning Scheme (TAPS). TAPS
consumes less energy when the maximum values for
OppPS and NoA are used whereas no improvement in
throughput. However for improve throughput lowest values
are used and TAPS consume more energy.

4. Group formation
The technical specification states that Wi-Fi Direct can
permit to build a large-scale wireless network by
interconnecting groups, but it does not specify how it is
possible. So several works have been done to find out how
this can be done. Most of these works focused on the
experimental evaluation of basic standard features (with a

limited number of nodes), others trying to overcome Wi-Fi
Direct limitations encountered through hacks and/or by
rooting the devices. Related works can be divided
depending on their main optimization target: (i) selection of
the best GO, (ii) autonomous group formation (bypassing
the user’s authorization and intra group communication),
and (iii) inter-group communication.

e  Group Owner selection
As we said above, the Group Owner election is performed
in GO Negotiation phase where devices negotiate together
to which will act as Soft Access Point by declaring their
intents. Several studies have been made in order to propose
more optimal solutions for the choice of the GO.
WD2 [15] aimed at automatically selecting Group Owner
based on the Received Signal Strength Indication (RSSI)
measurements. Each device collects the RSSI reading from
nearby devices and the Group Owner Intent is computed
based on such collected measurements. Their prototype
experiments indicate that WD2 increases the average
throughput by 45% over conventional Wi-Fi Direct.
For Menegato et al. [16], the device who act as GO should
change dynamically, and the choice of a new GO should be
based on the residual energy of the candidates. With the
same idea, [17] proposed an Efficient Multi-group
formation and Communication (EMC) which exploits the
battery specifications to compute the rank which will
permit the devices to qualify potential Group Owners. In
[18], authors proposed Wi-Fi Direct Group Manager
(WFD-GM), a middleware layer protocol for the
configuration of Wi-Fi Direct groups to enable to select the
best Group Owner and the creation of opportunistic
network. They combine several features such as the level
and the capacity of the battery and the number of
discovered equipments, to evaluate the suitability of a node
to act as Group Owner in a specific context. Three other
different approaches to choose Group Owner are presented
in [19]: the device with the highest ID in the surroundings,
the device that has the shortest average distance from the
other nodes, the node with less mobility with respect to its
neighbors. Authors in [20] proposed a combined metric
approach to select the Group Owner based on several
parameters such as the mobility degree, the distance, the
residual energy of the battery, and the number of
discovered neighbors. The parameters are normalized and
weighted to compute Intent Values of each device. An
election algorithm is then used to select the P2P Group
Owner.
The most part of the results of these works are presented by
simulations and they could permit to select the optimal
Group Owner but could also increase the group formation
times for more complex algorithms.

e Intra group communication
The main objective of the research in this part is to improve
the communication protocol in a group, for example by
modifying the initial topology. Typically, the topology
used is similar to that of clusters where the Group Owner
plays almost the same roles as the Cluster Head [16]. Once
the Group Owner is elected, it becomes the central device
through which all communications in the group are routed.

IJERTV9I S020036

www.ijert.org 33

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 9 Issue 02, February-2020

Devices are all connected to the Group Owner and not
between them.
The problem with this topology is that the Group Owner is
the central equipment of the group, and if it leaves the
group for some reasons (mobility, battery down, etc.), the
group is destroyed and the negotiations must start again to
elect a new one.
Thus, A. A Shahin et al. [21] introduced a framework that
enables devices in one Wi-Fi Direct group to communicate
by managing the topology changes in the group as well as
the data exchange between devices. In [22], authors
introduced the concept nominating Backup Group Owner
that can replace the Group Owner, if he leaves the group,
and permit to acceleration the group reconstitution.
Lombera et al. [23] proposed iTrust, a peer management
over Wi-Fi Direct that enable peers to form a mobile ad hoc
network for decentralized information sharing while Park et
al. [24] proposed DirectSpace, a framework for
collaboration between devices, which provides a mean for
sharing workspaces users over Wi-Fi Direct. [16], [17],
[18] and [19] also presented mechanisms for managing
intra group communications. These proposed frameworks
were validated through the implementation of chat
applications over multiple Android based devices and show
that the initial topology of Wi-Fi Direct groups, as define in
his specification, can be changed to manage intra group
communications better.

e Inter group communication
Inter group communication is not introduced in Wi-Fi
Direct specification. It is said that it is possible to
interconnect multiple groups; the specification does not
clearly address this issue. Several researches proposed
solutions in order to have a large-scale network by
interconnecting several groups.
According to [6], the group members are all connected to
the Group Owner and cannot belong in many groups. The
Group Owner is the only device that can belong to several

groups; in this case it will be owner in one group and client
in the other.

There are several solutions in the literature which tackle
this problem. In [25], Duan et al. proposed a method for
establishing multi-group communication in Wi-Fi Direct by
letting the Group Owner to connect as a legacy client in
another group using WLAN interface. In the same logic, C.
Casseti et al. [26] exploit tunneling in the transport layer to
overcome the physical limitations that prevent multiple
groups’ interconnection. In the defined topology, the Group
Owner uses his P2P interface to connect to devices in the
same group and his WLAN interface to connect to another
Group Owner in another group. It is also the basis of the
ideas of the authors in [27] who use the multicast to permit
the communication between groups. In [28], authors
implemented a proactive routing protocol using off-the-
shelf smart phones to enable efficient message delivery
over a multi-hop mobile ad hoc network.

IV.  ARCHITECTURE OF THE ANDROID WI-FI
DIRECT IMPLEMENTATION

In this section we make a detailed technical study of the
Wi-Fi Direct framework on Android Operating System to
understand how it works and its implementation with the
aim of improving it and to offer a mobile large-scale
wireless network infrastructure. So we have downloaded
the source code of Android from the 4.0 version Ice-Cream
Sandwich (API level 14) and higher from Android Open
Source Project (AOSP) [31] and we study the connectivity
and the connection system of Wi-Fi Peer to Peer on
Android. This study leads us to understand the functions
and the classes of the framework of the wireless peer-to-
peer on Android and see at what level changes can be make
to implement other solutions like [32] who has dive into
Android networking by adding Ethernet connectivity.

LT I T
mo | wike | o e
Cwnem wowow eweess

e s o

| Bionic ‘ | VPA Supplicant |

Fig. 2: Layer structure of Wi-Fi and Wi-Fi Peer to Peer on Android [32]

IJERTV9I S020036

www.ijert.org 34

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 9 Issue 02, February-2020

The Android operating system is divided into five main
layers [33]: the kernel, in which are developing the
hardware drivers; the Hardware Abstraction Layer (HAL),
which provides interfaces that expose device hardware
capabilities to the higher-level java APl framework; Native
CI/C++ libraries, which permits to built many core Android
system components and services; the java API framework,
which allows developers to write applications for users and
systems Apps, which provides a set of core apps for email,
SMS messaging, calendars, contacts, etc.

As shown in Figure 2, the Wi-Fi Direct connectivity system
is spread into several layers of the Android system: The
hardware level where the chipset reside; the kernel that
contains the Wi-Fi drivers; system libraries among which is
the WPA supplicant; the Hardware Abstraction Layer
which are the C++ functions that allow applications to

communicate with hardware; and the java framework
which provides the Software Development Kit (SDK). The
package that contains the Wi-Fi Direct framework is the
Wi-Fi P2P Manager which uses the same low level
functions that the standard Wi-Fi package (Wi-Fi
Manager). By further studying the Wi-Fi P2P Manager
package, we came up with the following figure 3 which
shows the architecture of Wi-Fi Peer-to-Peer mode in
Android and interactions between the different functions in
these levels and how it works.

Typically, we can divide the architecture of Wi-Fi Direct in
three parts or levels: the Software Development Kit (SDK),
the Java Native Interface (JNI) and the kernel space. The
SDK and the JNI are part of user space because users can
access and custom them for it specific uses.

3rd-party Apps I

! SDK

+

SDK

I WwWifiP2pConfig " w:ﬁPZpDewce "

l w-ﬁPszerv.cexnfo "w-rPZpUpnpServ.ce:nfol

| attributes(SDK) l

e
Iw-ﬁpzpcroup " WifiP2pInfo "w.f.pz " “ " |

atted butes(soh‘.)

|axxnbut5(sDK) l

o — e — | o—

AsyncChannel (start/stop p2p)

AsyncChannel

WIFI P2P Service !!
as a GC WifiP2pService as a GO

DhcpStateMachine

NetworkManageService

s aa——

| wifiNative

| [ WifiMonitor |}

attrivutes

NativeDaemonConnector

| attributes I

ufix socket

funcn!n call
§
i
v

Dhcpcd

unix socket

Dnsmasq
s —w—l

sodket  socket(type=0x888E,0x887C)

—k

generic netlink ( s

User space

cfg80211 |ops |function call

Kernel space

‘ ‘net device_ops
contains elhernet header

netif_rx / netif_rx_ni

e e »
control flow source code file

~ event flow

native module/app

- kernel module

——a data flow
................. » interrupt
........ -» launch

<=———=> binder

java class

rfkillops|
interrupt
dev_pm_ops

APl in sdio_func.h

interrupt

Fig. 3: The interactions between the components of Wi-Fi Direct on Android

IJERTV9I S020036

www.ijert.org 35

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

As shown the legend in figure 3, the yellow arrows represent the flow of events from the kernel to the upper layers while the red
arrows represent the flow of control that go from the upper layers to the kernel and the green arrows represent the flow of data.
The SDK layer is the java framework that is split into two main parts: the SDK which allows programmers to write applications
and the WIFI P2P Service which manages the services. In the SDK, WiFiP2pManager?® is the main class that should first be
called by the program and that uses other classes to get specific information. For example, it will use the WifiP2pConfig class to
get Wi-Fi P2p configuration after setting up a connection; the WifiP2pDevice class to get information of a Wi-Fi P2p device;
WifiP2pInfo class to get connection information about a P2p group. The WifiP2pManager class interacts with the
WifiP2pService via the AsyncChannel binder. AsyncChannel binder is an asynchronous channel between two handlers which
may be in the same process as with the WifiStateMachine class or in another process as with the WifiP2pManager class. The
WifiP2pService* class includes a state machine to perform Wi-Fi P2P operations. Applications communicate with this service to
issue device discovery and connectivity requests through the WifiP2pManager class. The state machine (WifiStateMachine
class) communicates with the Wi-Fi driver through wpa_supplicant and handles the event responses through WifiMonitor class.
So WifiMonitor class is used to monitor wpa_supplicant status change and notify Android framework. It listens for events from
the wpa_supplicant, and passes them to the state machine for handling. WifiNative class provides native calls for start/stop the
supplicant daemon and sending requests (various commands) to the supplicant daemon. The WifiStateMachine class® tracks the
state of Wi-Fi connectivity, all events handling and all changes in connectivity. It extends the StateMachine class® which defines
a Hierarchical State Machine (HSM). The HSM processes messages and arranges states hierarchically. In the HSM, when the
transition is made, the common ancestor state that is closest to current state is firstly found; then exit from current state and all
ancestors state up to but not include the closest common ancestor, finally enter all of new states below the closest common
ancestor down to the new state. The figure 4 presents the state for P2P operations defined in the WifiP2pService file. On
Android, if the device supports P2P operations, the initial state will be the P2pDisabledState state and the
P2pNotSupportedState state on the other hand. Assume that we want to transit from WaitForUserActionState state to
UserAuthorizinglnvitationState State, since the closest common ancestor for the two states is the DefaultState state,
WaitForUserActionState.exit(),  P2pDisabledState.exit(), = P2pEnabledState.enter(), = GroupCreatingState.enter(), and
UserAuthorizinglnvitationState.enter() commands will be called in sequence.

DefaultState
3 — WaitForlJserActionState
—1 P2plisabledState  #— —
- —— WatWifiDesableState
P2pEnabledState e | GroupCreatedState  +—— UserAuthorizingJoinState
GroupCreatingState

—  P2pEnablingState i

i UserfuthorizinglnvitationState |
—  P2pDisablingState

i ProvisionDiscoveryState |
— PZ2pMotSupportedState

| GroupMegotiationState
Fig. 4: P2P state machine defined in WifiP2pService.java file

The WifiSateMachine class supports state machine for Soft Ap and Client operations while WifiP2pService handles state
machine for p2p operation. These two classes co-ordinate to ensure that only one operation exists at a certain time. The
WifiP2pService controls also the state machines that interact with the native DHCP client (DhcpStateMachine class) or the
network manager service (NetworkManagementService class) depending on whether the device is a Group Client or the Group
Owner respectively. The DhcpStateMachine’ class extends also the StateMachine class and defines the state machine that
interacts with the native DHCP client and can communicate to a controller. It permits to wakeup or renewal the DCHP using the
native DCHP client and provides notification right before DHCP request or renewal is started. The
NetworkManagementService® is an interface for android framework to access to the network interface in the kernel. It works
with Netd to give commands to network driver. The NetworkManagementService communicates with Netd
(NativeDeamonConnector®) via sockets for sending commands. To handle the requests, NativeDeamonConnector wraps
commands as command objects.

3Defined in frameworks/base/wifi/java/android/net/wifi/p2p/ within AOSP source tree
4Defined in frameworks/base/wifi/java/android/net/wifi/p2p

> Defined in frameworks/base/wifi/java/android/net/wifi/ within AOSP source tree.

& In frameworks/base/core/java/java/com/android/internal/util/stateMachine.java

’In frameworks/base/core/java/android/net/DhcpStateMachine.java

8In frameworks/base/services/java/com/android/server/NetworkManagementService.java
Inframeworks/base/services/java/com/server/NativeDeamonConnector.java

IJERTV9I S020036 www.ijert.org 36
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

The Java Native Interface (JNI) is an interface software library that allows Java SDK codes to call or to be called by native
applications (i.e., hardware and OS specific programs), or with Native C/C++ libraries. The JNI code written in
android_net_wifi_Wifi.cpp® communicates with HAL layer by function calls. The HAL layer code is written in the wifi.c file
which communicates with wpa_supplicant over control interface (wpa_ctrl.c) by using UNIX sockets. The wpa_supplicant
accesses the wireless driver in the kernel via the file nl80211.c; but this depends on the driver implementation. So if the wireless
driver is implemented using NL80211 interface, the device can use wpa_supplicant_8 in Android.

The following sections provide details on the operations of the Wi-Fi Direct in the SDK and in the wpa_supplicant.

1.  Wi-Fi Direct API in the Software Development Kit (SDK)
The Android API level 14 and higher incorporates the opportunity for applications to discover, connect and communicate by the
use of Wi-Fi Direct. WifiP2pManager is the primary class, which is composed of the following three main parts: Listeners,
Request methods, Intent actions.

e Listeners
The message passing for Wi-Fi Direct in Android is asynchronous and the API specifies listener callback methods that are
responsible for reacting to requests from the application. The following five different interfaces represent the various listeners:
ActionListener, ChannelListener, ConnectionInfoListener, GroupInfoListener and PeerListListener. Each of these interfaces has
callback methods which are triggered when a response is sent. The ActionListener’s callback methods inform whether the
operation was successful or not. In case of a failure, the callback will convey a constant to point out the reason. This reason can
be one of the following: ERROR denotes that the reason was due to an internal failure, P2P_UNSUPPORTED indicates that Wi-
Fi Direct is not supported by the current device and BUSY means that the framework is busy, and therefore unable to serve the
request. The ChannelListener’s callback will be triggered if the channel gets disconnected from the framework. The remaining
listeners are triggered when some specific requested information is available.

e Request methods
The API has defines nine different request methods. Some of them are required to be implemented, while others are optional.
By using these methods, the application will be able to request the operating system to perform specific actions. Each of them
will trigger asynchronous message requests and they should therefore be able to react when responses are sent. This is why each
method includes a listener for callbacks.
In order to implement Wi-Fi Direct functionality in an application, a registration to the Wi-Fi framework is required. This is
realized by executing the initialize. All other request methods in the Wi-Fi Direct APl depend on this registration. Hence, this
must be the first Wi-Fi Direct operation to be performed. The figure 4 following shows a proposed state machine of the
initialization process. When the application enters the initialized state it should be able to discover other peer devices.

Initialize

(" Initialized )

Channel disconnected |

k 4

/ WIFI_P2P_STATE_CHANGED_ACTION /

w

/WIFI_P2P_THIS_DEVICE_CHANGED_ACTION /

¥

/ WIFI_P2P_CONNECTION_CHANGED_ACTION

Fig. 5: The initialization process

To be able of finding peer devices, the application must execute the discover_Peers method. This operation initiates a peer
discovery, which involves sending a request to the framework to scan for available peer devices. If the request is successfully
achieved, the discovery procedure will stay active until a P2P group is formed or a successful connection request is initiated.
When the application knows that peer devices are discovered, it can request for the current list of devices from the framework
by calling the requestPeers method. The figure 5 following shows a proposed state machine of the discovery process with a
suggested sequence of the related request methods

%1n frameworks/base/core/jni/android_net_wifi_Wifi.cpp

IJERTV9I S020036 www.ijert.org 37
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

_Initialized <

Discaover peers
(botton)

m—‘ Discovering Peers —>| Failure ‘

[ Wait for peers changed —- WIFI_P2P_PEERS_CHANGED_ACTION

[ Wait for available peers | RequestPeers

|

Current list peers received I—N Peers discovered |

Fig. 6: The discover peers process

When the current list of peer devices has been received and the application enters the peers discovered state, a connection
request can be initiated with one of the devices in the list. This is done by executing the connect method. If the current device is
not already part of a P2P group, this request will initiate a group negotiation with the peer device. A group negotiation is
required in order to decide which device that is going to act as the group owner. If the current device is already part of a group,
an invitation to join this group is sent. If an ongoing group negotiation ought to be cancelled, the cancelConnect method must be
executed. Upon a successful group negotiation and when the application knows that the connection has been changed, it can
detect if network connectivity exists. If so, a request for connection info can be inquired by executing the
requestConnectioninfo method. By doing so, the application will be able to attain the following details: if a group has been
formed; the group owner’s IP address; if the current device is the group owner.

If a group has been formed, a request for group info can be inquired by executing the requestGrouplnfo method. The following
information will be received by the application: the list of client devices that are currently part of the P2P group; the name of the
interface the group is using; the Service Set Identifier (SSID) of the group; the details of the group owner in a WifiP2pDevice
object; the group’s passphrase; if the current device is the group owner.

[ Peers discovered )

( Connecting

Success Failure | Cancel (button)

Wait for connection i:.lnitialized .‘_ ( Cancelli_ng ._
—_changed o - __connection ./
_l..-":WIFI_PEP_CONNECTION_CHANGED_ACTION_..-": 4‘ Success ‘ ‘ Failu_re_‘
‘ RequestConnectioninfo ‘ Wait for connection

l ‘. changed
( Wait for connection infu.:‘b!m‘—b{ RequestGrouplnfo |
. . received

| Conected '4—‘ Group info _n_e;eiv_e_d__|<—: Wait for group info

Fig. 7: The connection process

The createGroup method causes the current device to create an empty P2P group with itself acting as the group owner. This
method is only intended to be used in circumstances where the peer devices are legacy equipment, and will normally not be
used in ordinary Wi-Fi Direct operations.

IJERTV9I S020036 www.ijert.org 38
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

In order to perform a disconnection request to a connected group, the removeGroup method must be executed. By using the
method’s callback listener, the application will be able to know whether the request was successful or not. The removeGroup
method should be able of being triggered in the following states: wait for connection changed, wait for connection info, wait for
group info, connected.

e Intents and intent actions
An Android Intent is an abstract description of an operation to be performed. To achieve this operation, broadcast receivers with
intent filters need to be registered at the application. The following intent actions are relevant for Wi-Fi Direct:
WIFI_P2P_STATE_CHANGED_ACTION, WIFI_P2P_PEERS_CHANGED_ACTION,
WIFI_P2P_CONNECTION_CHANGED_ACTION, WIFI_P2P_THIS_DEVICE_CHANGED_ACTION.
To be able to initiate a discovery process and connect with peer devices, the Wi-Fi Direct mode must be enabled on the current
device. This information will be broadcasted by the Android system. By registering a broadcast receiver with an intent filter that
contains the WIFI_P2P_STATE_CHANGED_ACTION intent action, the application can be informed if the Wi-Fi Direct mode
is enabled on the current device. Every time the users turn on or off the Wi-Fi Direct mode, intent will be broadcasted causing
the application to always be updated on the Wi-Fi Direct mode’s status.
If the WIFI_P2P_PEERS_CHANGED_ACTION intent action is added to the filter, the application can be notified when peers
are discovered. This will most likely occur after a peer discovery process has been initiated. However, the application will
always be ready to receive this type of notification as long as the broadcast receiver is registered.
In order  for the  application to detect any  changes in its  Wi-Fi connectivity, the
WIFI_P2P_CONNECTION_CHANGED_ACTION intent action must be added to the filter. By adding the
WIFI_P2P_THIS_DEVICE_CHANGED_ACTION intent to the filter, the application will be informed when a change in the
device’s P2P properties has occurred. This could for instance happen when the devices status changes from being available to
be connected. When the intent action is triggered, the user interfaces of the application should be updated in order to give back
information of the device’s current status to the users.

2. Wi-Fi Direct API in the wpa supplicant
In wpa_supplicant, P2P module API! consists of functions for requesting operations and for providing event notifications.
Similar set of callback functions are configured with p2p_config data structure to provide callback functions that P2P module
can use to request operations and to provide event notifications. In addition, there are number of generic helper functions that
can be used for P2P related operations.
These are the main functions for an upper layer management entity to request P2P operations:
- p2p_find(): start P2P find for device discovery phase;
- p2p_stop_find(): for stopping find in the device discovery phase;
- p2p_listen(): start Listen state for specified duration. This function can also be used to request the P2P module to keep
the device discoverable on the listen channel for an extended set of time;
- p2p_connect(): start the Group Owner negotiation for the group formation;
- p2p_reject(): explicitly block connection attempts and reject the peer device;
- p2p_prov_disc_req(): send provision discovery request;
- p2p_sd_request(): schedule a service discovery query;
- p2p_sd_cancel_request(): cancel a pending service discovery query;
- p2p_sd_response(): send response to a service discovery query;
- p2p_sd_service_update(): need to be called whenever there is a change in availability of the local services. It indicates
a change in local services;
- p2p_invite(): invite a P2P device into a group.
These are the main callback functions for P2P module to provide event notifications to the upper layer management entity:
- p2p_config::dev_found(): is used to notify that a new P2P device has been found during a search state or listen state;
- p2p_config::go_neg_req_rx(): is used to notify that a P2P device is requesting group owner negotiation and notify of a
receive Group Owner negotiation request;
- p2p_config::go_neg_completed(): notify that Group Owner negotiation has been completed;
- p2p_config::sd_request(): indicate the reception of a service discovery request;
- p2p_config::sd_response(): indicate the reception of a service discovery response;
- p2p_config::prov_disc_req(): indicate the reception of a Provision discovery request frame that the P2P module
accepted;
- p2p_config::prov_disc_resp(): indicate reception of a provision discovery response frame for a pending request
schedule with prov_disc_req();
- p2p_config::invitation_process(): can be used to implement persistent reconnect by allowing automatic restating for
persistent groups without user interaction. It is an optional callback for processing invitation;
- p2p_config::invitation_received(): is used to indicate sending of an Invitation response for a received Invitation
request;

"Defined in /external/wpa_supplicant_8/src/p2p/p2p.hwithin AOSP source tree.

IJERTV9I S020036 www.ijert.org 39
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

- p2p_config::invitation_result(): indicate result of an invitation procedure started by calling p2p_invite().
The P2P module uses following functions to request lower layer driver operations:
- p2p_config::p2p_scan(): request a p2p scan or search operation to be completed;
- p2p_config::send_probe_resp(): transmit a probe response frame. It is used to reply to probe request frames that were
indicated with a call to p2p_probe_req_rx();
- p2p_config::send_action(): transmit an action frame;
- p2p_config::send_action_done(): notify that Action frame sequence was completed;
- p2p_config::start_listen(): start listen state. Once the listen state has started, p2p_listen_cb() must be called to notify
the p2p module
- p2p_config::stop_listen(): stop listen state. It can be used a listen state operation that was previously requested with
start_listen().
Events from lower layer driver operations are delivered to the P2P module with following functions:
- p2p_probe_req_rx(): report reception of a probe request frame;
- p2p_rx_action(): report received action frame;
- p2p_scan_res_handler(): indicates a p2p scan results;
- p2p_scan_res_handled(): indicate end scan results;
- p2p_send_action_ch(): is used to indicate the result of an Action frame transmission that was requested with struct
p2p_config::send_action() callback;
- p2p_listen_ch(): indicate the start of a requested Listen state.
In addition to the per-device state, the P2P module maintains per-group state for group owners. This is initialized with a call to
p2p_group_init() when a group is created and deinitialized with p2p_group_deinit(). The upper layer GO management entity
uses following functions to interact with the P2P per-group state:
- p2p_group_notif_assoc(): notification of P2P client association with Group Owner;
- p2p_group_notif_disassoc(): notification of P2P client disassociation from Group Owner;
- p2p_group_notif formation_done(): notification of completed group formation;
- p2p_group_match_dev_type(): match device types in group with requested type.

In the following we present how these functions are put together to guarantee the functionalities defined in the specification.

e Device Discovery
Device Discovery is a mandatory procedure to be supported by all P2P devices. It enables P2P devices to quickly find each
other and form a connection. It provided medium access scheme, channels management, time duration on each channel and
neighbours discovery. A P2P Device runs the Device Discovery procedure to detect the presence of other P2P Devices to which
the connection will be attempted in its wireless range. Two distinct phases are using namely Scan and Find. Device Discovery
uses Probe Request (PREQ) and Probe Response (PRESP) frames to exchange device information.

Before beginning the Scan phase, the global P2P module context is initialized by calling the p2p_init() function. This function
permits to keep a copy of the configuration data in the p2p_config structure. The initialization permit to configure some
parameters like the list of supported channels (p2p_channels structure), the maximum number of discovered peers to remember
(max_peers), whether concurrent operations are supported (concurrent_operations), the discoverable interval, etc. After the
initialization, the P2P Device begins the scan phase. The scan phase may be used to find other P2P Devices or P2P Groups and
to locate the best potential Operating Channel to establish a P2P Group. The p2p_scan() function is used to request a p2p scan
or search operation to be completed. Type arguments specify which type of scan is to be done: P2P_SCAN_FULL indicates that
all channels are to be scanned; P2P_SCAN_SOCIAL indicates that only the social channels should be scanned,;
P2P_SCAN_SPECIFIC request a scan of a single channel that the frequency is known; P2P_SCAN_SOCIAL_PLUS ONE
request a scan of all the social channels plus one extra channel that the frequency is known. The full scan type is used for the
initial scan because the P2P Device performs traditional Wi-Fi scan through all supported channels in the p2p_channels
structure defined in IEEE std 802.11 — 2012 Annex J [7] in order to collect information about the surrounding devices. The scan
is processing by sending or receiving Probe Request or Probe Response frames; this is done by the using of p2p_probe_req_rx()
and send_probe_resp() functions respectively. The results of the scan will be reported by calling p2p_scan_res_handler(), and
then calling p2p_scan_res_handled() to indicate that all scan results have been indicated and to terminate the process. The
following figure (fig.7) presents the scan phase process on Android.

IJERTV9I S020036 www.ijert.org 40
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

p2p_init) —' P2P_SCAN_FULL /

I
SCAN Il * ]
PHASE ‘ p2p_scan() ‘

|: p2p_probe_req_rx() = «—

< s.'e'nrd_probe_resp(),

l

p2p_scan_res_handler()
= J']iorrie channels tors'éa:n, —VYES
NO
¥

p2p_scan_res_handled()

Fig. 8: Scan process

Once the Scan phase is completed, the device enters into the Find phase. In the Find phase, the P2P Device alternates between
two states: Search and Listen. The find phase is initiated by the calling of the p2p_find() function, where the device will choose
the type of the find: P2P_FIND_START WITH_FULL indicates that the find will be done on all channels present in the
p2p_channels structure; P2P_FIND_ONLY_SOCIAL indicates that the find will be done only on the social channels (channels 1,
6 and 11 in the 2,4 GHz band) and P2P_FIND_PROGRESSIVE indicates that the find will be done progressively in some
channels that the frequencies are known. The p2p_listen_in_find() function is called to pick a random dwell time for the listen
and the p2p_channel_to_freq() function permit to choose a listen channel and to convert it in the equivalent frequency. The
duration of each Listen phase shall be a random integer of 100 TU intervals. This random number shall be no greater than the
maxDiscoverablelnterval (max_disc_int) value and no less than the minDiscoverablelnterval (min_disc_int). On Android the
formula to compute the Listen duration is:

TU = (r % ((max_disc_int — min_disc_int) + 1) + min_disc_int) x 100

The defaults values of max_disc_int and min_disc_int are 3 and 1 respectively; these values are fixed in the initialization phase.
The start_listen() function initiate the listen with the frequency converted with p2p_channel_to_freq() function and (1024 x TU)
/ 1000 in parameters. In the Listen phase (p2p_listen() function) the P2P Device may receive Probe Request
(p2p_probe_req_rx()), send Probe Response (send_probe_resp()), receive a service discovery request (sd_request()), or send a
service discovery response (p2p_sd_response()) on the listen channel chosen previously.

P2P Devices in the Search phase shall invoke p2p_search() function to initiate that phase and shall make a P2P Scan with one
of these 3 types of scan: P2P_SCAN_SPECIFIC where the device scan only the known listen frequency of the peer during
Group Owner Negotiation start, P2P_SCAN_SOCIAL_PLUS_ONE where the device only scan the known listen frequency of
the peer during Invite start or P2P_SCAN_SOCIAL where the device only scan the socials frequencies to discover new devices.
In the Search phase, one or more Probe Request frames could be transmitted and the device shall not reply to these frames.
Service Discovery is an optional procedure. The procedure starts after the Device Discovery and prior to the Group Formation
procedure. It allows a P2P Device to connect to other P2P Devices by sending a service discovery request (p2p_sd_request()
function) and receiving a service discovery response (sd_response() function) only if the latter device offers the intended
service. The figure 8 following presents the Find phase process on Android.

IJERTV9I S020036 www.ijert.org 41
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

p2p_find()
X , I n ¥
/ P2P_FIND_START_WITH_FULL P2P_FIND_ONLY_SOCIAL // P2P_FIND_PROGESSIVE
: a 3 ;

| p2p_listen_in_find()
3

p2p_channel_to_freq()
v

start_listen()
LISTEN PHASE =
p2p_listen()
¥ - I B ©
p2p_probe_req_rx() send_probe_resp() sd_request() p2p_sd_response()
| | I
v :
p2p_search() | SEARCH PHASE
¥ —— s ¥
P2P_SCAN_SPECIFIC // P2P_SCAN_SOCIAL_PLUS_ONE P2P_SCAN_SOCIAL
C T = ]
| p2p_scan() — -

£3
p2p_sd_request() I i_response() I

FITRI PR WU S
1

L SERVICE DISCOVERY PHASE

Fig. 9: Find phase process

e Group Formation
Following a successful Device Discovery, P2P Devices can establish the P2P Group by using Group Formation Procedures.
These procedures provide self organization and topology organization mechanisms to build a group. During the Group
Formation, the device that will act as Group Owner (GO) is determined in GO Negotiation phase in order to define the topology
used. The Invitation phase permits to invite others devices into the persistent group. On Android, two types of P2P Group
Formation schemes are possible: Standard Group Formation and Persistent Group Formation. To start the group formation, the
P2P Device invoke the p2p_connect() function in which the p2p_stop_find() function is executed in order to stop the Find
phase. After that, the p2p_go_neg_start() function is called to initiate the Group Owner Negotiation phase to decide which
device will become the owner of the group in case of standard group formation; or the p2p_invite_start() function to begin the
Invitation phase in case of persistent group formation.
The GO Negotiation is a three way handshake and the p2p_connect_send() function is used to initiate this handshake. During
the handshake, the two devices exchange their intent to become GO by processing to the GO Negotiation Request
(p2p_process_go_neg_req() function) or to the GO Negotiation Response (p2p_process_go_neg_resp()). In these exchanges,
the devices send to each other a randomly chosen numeric value called “intent value”. The Intent value ranges from 0 to 15, and
it measures the desire of the P2P Device to be the P2P GO. The P2P Device sending the higher Intent value shall become GO.
In case bath P2P devices send equal GO Intent values, a tie breaker bit is used for decision and the device with tie breaker bit set
to 1 shall become GO. This mechanism is achieve in the p2p_go_det() function inside the GO Negotiation Request or the GO
Negotiation Response processes. The GO Negotiation Request or Response frames are send using the go_neg_req_rx() function.
Once the two devices are agree, the GO Negotiation Confirmation is process using p2p_process_go_neg_conf() function in
order to configure the GO, to send back the confirmation and to complete the GO Negotiation phase.
In Persistent Group Formation, a P2P Device sends an invitation to another P2P Device in order to instantiate the P2P Group,
this is done by using the p2p_invite_send() function. The P2P Invitation Request (process into the p2p_process_invitation_req()
function) and the P2P Invitation Response (process into the p2p_process_invitation_resp() function) frames are exchanged to
establish a persistent group. The following figure presents the Group Formation phase process on Android

p2p_connect()

p2p_stop_find()
1 e e i o
i I

P2p_go_neg_start() | p2p_invite_start()

P2p_connect_send()

I

GO NEGOCIATION
PHASE

I

|

p2p_invite_send() I
I

I

I

* . I -
P2p_process_go_neg_req() | | | p2p_process_invitation_req() I

L p2p_prooess_?o_neg_rsp() I P2p_process_invitation_resp() |
T e ————— |

go_neg_req_rx()
-

p2p_process_go_neg_conf()

Fig. 10: Group Owner Negotiation and Group formation process

IJERTV9I S020036 www.ijert.org 42

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

After a successful GO negotiation, the Group Owner runs the DHCP to assign IP addresses to itself as well as to the Peer to Peer
clients or legacy clients in its group. The assigned addressing range is defined into the WifiP2pService file. These addresses are
declared as constants: SERVER_ADDRESS for the server (GO of the group) and DHCP_RANGE is the address range for
group clients.

V. WI-FI DIRECT TECHNICAL SPECIFICATION ON ANDROID OS
After the technical study of Wi-Fi Direct on Android, we propose in this section a formal specification. This formal
specification will permit to verify if it can really take into account certain MANET needs such as channel access, routing, auto
organisation, addressing and scaling. We analyzed the different java classes and C codes mentioned in the previous section to
highlight the formal specification using the Z and Object-Z (object-oriented version of Z) languages.
e Initialization and channel access

As we explained above, the application needs to do an initialization in the WifiP2pManager() class with initialize before doing
any p2p operation. In the initialization, a channel that connects the application to the Wi-Fi p2p framework is instanced. It
registers the application with the framework. This function initializes the Asyncchannel binder and must be the first to be called.
The WifiP2pManager() class presents a set of operations which are in fact methods of this class. These methods take the context
of the Asyncchannel binder and the listener as input parameters. The context of the Asyncchannel binder (some time called
Channel) is obtained after the initialization and the listener listen events on the Channel. Each operation sends a message (with
the same name as the operation) to the WifiP2pService() which will activate one or more states corresponding to the action. The
message is sent to the destination handler by using sendMessage method.
Message is the set of message sent to the WifiP2pService(),MsgFailed and MsgSucceeded are sets of failure and success
messages respectively corresponding to each message in the set Message and MsgResponse is the set of response messages
whose corresponding to the response of the request type messages.
Message = = ENABLE_P2P | DISABLE_P2P | DISCOVER_PEERS | CONNECT | CANCEL_CONNECT | CREATE_GROUP |
REMOVE_GROUP | REQUEST_PEERS | REQUEST_CONNECTION_INFO | REQUEST_GROUP_INFO
MsgFailed = = ENABLE_P2P_FAILED | DISABLE_P2P_FAILED | DISCOVER_PEERS_FAILED | CONNECT_FAILED |
CANCEL_CONNECT_FAILED | CREATE_GROUP_FAILED | REMOVE_GROUP_FAILED | REQUEST_PEERS_FAILED |
REQUEST_CONNECTION_INFO_FAILED | REQUEST_GROUP_INFO_FAILED
MsgSucceeded = = ENABLE_P2P_SUCCEEDED | DISABLE_P2P_SUCCEEDED | DISCOVER_PEERS_SUCCEEDED |
CONNECT_SUCCEEDED | CANCEL_CONNECT_SUCCEEDED | CREATE_GROUP_SUCCEEDED |
REMOVE_GROUP_SUCCEEDED | REQUEST_PEERS_SUCCEEDED | REQUEST_CONNECTION_INFO_SUCCEEDED |
REQUEST_GROUP_INFO_SUCCEEDED
MsgResponse = = RESPONSE_PEERS | RESPONSE_CONNECTION_INFO | RESPONSE_GROUP_INFO
GlobalMessage = Message U MsgFailed U MsgSucceeded v MsgResponse
A set of failure reason: FailureReason = = ERROR | P2P_UNSUPORTED | BUSY
[Context] and [Looper] are sets of context and looper respectively while [ChannelListener], [ActionListener],
[PeerListListener], [ConnectionInfoListener] and [GrouplnfoListener] are sets of listeners obtain after performing respectively
channelListener, actionListener, peerListListener, connectioninfoListener and grouplnfoListener methods. The following
schema present the initialize method, it return the channel which is the context of the AsyncChannel binder whose looper
correspond to not null ChannelListener provide by the channelListener method.
_Initialize

A[Context]

CI?: ChannelListener
Looper?: Looper
ChlLooper: [Looper] = [ChannelListener]

AsyncChannelState = STATUS_SUCCESFUL
C! = cont: Context «(CI? #NULL) A (Looper ? —CI ?) € ChlLooper
Cc'=C!

The success of this initialization makes it possible to launch p2p_init() function which allows to configure the device by
initializing the variables of the p2p_config structure in the wpa_supplicant. The schema following present some parameters of
the p2p_config structure:

IJERTV9I S020036 www.ijert.org 43
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

_P2p_config
Channel?, channel_forced,op_channel: u8

Channels?: [p2p_channels]
Pref_chan?: [p2p_channel*]
Max_peers?. N*
Max_listen?: N*

The channel and the op_channel parameters are respectively the own listen channel and the own operational channel of the
device, while the channel_forced is the listen channel was forced by configuration or by control interface and cannot be
overridden.Channels is the own supported regulatory classes and channels of the device; it is the list of supported channels per
regulatory class.Pref _chan is the preferred channels for GO Negotiation. Max_peers is the number of discovered peers to
remember by the device. If there are peers to discover, older entries will be removed to make room for the new ones and
max_listen is the maximum listen duration in milliseconds. Once initialized, the parameters of the channels will be converted
into the corresponding frequency (in MHz) by using p2p_channel_to_freq()function; this frequency will be used as input in
other functions such as: p2p_find(), start_listen(), p2p_search(), etc.
The channel method checks the status of the previously initialized channel and defines the messages to be returned to the
application after the response of the wifiP2pService().

_Channelinit
CI? : ChannelListener, Al? : ActionListener, PII? : PeerListListener

Cil? : ConnectionInfoListener, Gil? : GrouplnfoListener
RcvF : [Message] = [MsgFailed], RevS : [Message] = [MsgSucceeded]
RcvRep : [Message] = [MsgResponse]

AsyncChannelState #£CMD_CHANNEL_DISCONNECTED
CI? #NULL

_Failed
Al? #2NULL

3 x : MsgFailed «((m? + x) ERcvF) A (m edomRcvF)
Al' = actionListener.onFailure

_Success
Al? #NULL

3y : MsgSucceeded «((m? ~y) €RcvS) A (m edomRcvS)
Al’ = actionListener.success

_Peers
Rep?: MsgResponse

PII? £NULL

Rep? = RESPONSE_PEERS

((m? »Rep?) eRcvRep) A (M? edomRcvRep)
PII’ = peerListListener.onPeersAvailable

IJERTV9I S020036 www.ijert.org 44
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

_Connectionlnfo
Rep?: MsgResponse

Cil? #NULL

Rep? = RESPONSE_CONNECTION_INFO

((m? —»Rep?) €RcvRep) A (M? € domRcvRep)

Cil’ = connectionInfoListener.onConnectioninfoAvailable

_Grouplnfo
Rep?: MsgResponse

Gil? #NULL

Rep? = RESPONSE_GROUP_INFO

((m? »Rep?) €RcvRep) A (M? edomRcvRep)
Gil’ = grouplInfoListener.onGrouplnfoAvailable

ChannelaChannellnitA (FailedvSuccessvPeersvConnectioninfovGrouplnfo)

The operations performed are represented by the following schemas.
_Operationlnit

C?: Context; M?. Message

Al?: ActionListener; PI1?: PeerListListener
Cil?: ConnectioninfoListener; Gil?: GrouplnfoListener

C? 2NULL

_EnableP2p
(M? = ENABLE_P2P)= sendMessage(M?)

DisableP2p
(M? = DISABLE_P2P)= sendMessage(M?)

DiscoverPeers
(M? = DISCOVER_PEERS)= sendMessage(M?, Al?)

_Connect
Conf?: Config

Conf? #£NULL
(M? = CONNECT) =sendMessage(M?, Al?, Conf?)

CancelConnect
(M? = CANCEL_CONNECT)= sendMessage(M?, Al?)

IJERTV9I S020036 www.ijert.org 45
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

CreateGroup
(M? = CREATE_GROUP)= sendMessage(M?, Al?)

RemoveGroup
(M? = REMOVE_GROUP)= sendMessage(M?, Al?)

RequestPeers
(M? = REQUEST_PEERS)= sendMessage(M?, PII?)

RequestConnectioninfo
(M? = REQUEST_CONNECTION_INFO)= sendMessage(M?, Cil?)

RequestGrouplnfo
(M? = REQUEST_GROUP_INFO)= sendMessage(M?, Gil?)

Then Operation2OperationlnitA (EnableP2p v DisableP2p v DiscoverPeers v Connect v CancelConnect v CreateGroup v
RemoveGroup V' RequestPeers ¥ RequestConnectioninfo v RequestGrouplinfo)
The schema of INIT initializes the parameters used in the WifiP2pManager() class to provide theirs operations.
INIT
| M?: Message, Rang = = {1, 4, 7, 10, 13, 16, 19, 22, 24, 26}
BASE?, BASE_WIFI_P2P_MANAGER? : N
Mrang: [Message] »Rang

BASE? = BASE_WIFI_P2P_MANAGER

(M? 1) € Mrang =(((M? = = ENABLE_P2P) A (M? = BASE + 1)) A(M? —X) €RcvF

= ((x ==ENABLE_P2P_FAILED) A (x = BASE + 2))) A ((M? »y) €RcvS =((y = = ENABLE
_P2P_SUCCEEDED) A (y = BASE + 3))))

(M? »4) € Mrang =(((M? = = DISABLE_P2P) A (M? = BASE + 4)) A((M? -X) ERcvF

= ((x = =DISABLE_P2P_FAILED) A (x = BASE + 5))) A (M? »y) €RcvS =((y = = DISABLE
_P2P_SUCCEEDED) A (y = BASE + 6))))

(M? -7) € Mrang =(((M? = = DISCOVER_PEERS) A (M? = BASE + 7)) A((M? =X) €RcvF

= ((x = =DISCOVER_PEERS_FAILED) A (x = BASE + 8))) A (M? »Y) €RcvS =((y = = DISCOVER
_PEERS_SUCCEEDED) A (y = BASE +9))))

(M? ~10) € Mrang =(((M? == CONNECT) A (M? = BASE + 10)) A((M? —Xx) €RcvF

= ((x ==CONNECT_FAILED) A (x = BASE + 11))) A ((M? -Y) €RcvS =((y = = CONNECT
_SUCCEEDED) A (y = BASE + 12))))

(M? »13) € Mrang =(((M? = = CANCEL_CONNECT) A (M? = BASE + 13)) A((M? —Xx) €RcvF

= ((x ==CANCEL_CONNECT_FAILED) A (x = BASE + 14))) A ((M? »y) €RcvS =((y = = CANCEL
_CONNECT_SUCCEEDED) A (y = BASE + 15))))

(M? 16) € Mrang =(((M? = = CREATE_GROUP) A (M? = BASE + 16)) A((M? X) ERcvF

= ((x = =CREATE_GROUP_FAILED) A (x = BASE + 17))) A ((M? »y) €RcvS =((y = = CREATE
_GROUP_SUCCEEDED) A (y = BASE + 18))))

(M? 19) € Mrang =(((M? = = REMOVE_GROUP) A (M? = BASE + 19)) A((M? X) ERcvF

= ((x ==REMOVE_GROUP_FAILED) A (x = BASE + 20))) A ((M? =y) €RcvS =((y == REMOVE
_GROUP_SUCCEEDED) A (y = BASE + 21))))

(M? »22) eMrang =(((M? = = REQUEST_PEERS) A (M? = BASE + 22)) A (M ? —X) ERcvRep
=((x == RESPONSE_REQUEST_PEERS) A (x = BASE + 23)))

(M? »24) eMrang =(((M? = = REQUEST_CONNECTION_INFO) A (M? = BASE + 24)) A

(M ? =x) eRcvRep =((x = = RESPONSE_CONNECTION_INFO) A (x = BASE + 25)))

(M? -26) eMrang =(((M? = = REQUEST_GROUP_INFO) A (M? = BASE + 26)) A (M ? =X) ERcvRep
=((x == RESPONSE_GROUP_INFO) A (x = BASE + 27)))

IJERTV9I S020036 www.ijert.org 46
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

Finally the specification of WifiP2pManager is given by:
WifiP2pManager 2INIT A Initialize 2 Channel 2 Operation

e Auto organization and group created state
Applications communicate with WifiP2pService to issues device and connectivity requests through the WifiP2pManager
interface. The state machine communicates with the Wi-Fi driver through wpa_supplicant and handles the event responses
through wifiMonitor. The methods of this java class are the different states of the state machine. Each state implements three
main methods: enter() to activate the state, processMessage() that processes actions related to the reception of either message
from the WifiP2pManager through the binder or event from wpa_supplicant through the WifiMonitor and exit() to close and exit
to the state. The states implemented in the p2p state machine are presented in figure 4. We present here the formal specification
of the groupCreatedState method which corresponds to the GroupCreatedState state.
We define WMEvent, a set of events sent by the WifiMonitor and MsgWFManager, a set of message sent par WifiP2pManager.
WMEvent = = AP_STA_CONNECTED_EVENT | AP_STA_DISCONNECTED_EVENT |
P2P_GROUP_REMOVED_EVENT | P2P_DEVICE_LOST_EVENT | P2P_INVITATION_RESULT_EVENT |
P2P_PROV_DISC_PBC_REQ_EVENT | P2P_PROV_DISC_ENTER_PIN_EVENT | P2P_GROUP_STARTED_EVENT
MsgWFManager = = CONNECT | REMOVE_GROUP; MsgWFManagercMessage
The following schema present the enter() method for the GroupCreatedState state.

_Enter
STATUS: N

Role == GO | Client
DevRole : [Device] =»Role
D?: Device;

D?.STATUS = CONNECTED

(D? ~r) € DevRole A(r = GO)

D?.Addr = SERVER_ADDRESS

Rep! = sendP2pConnectionChangedBroadcast

In the GroupCreatedState state, any element of WMEvent or MsgWFManager received, messages are processed according to the
events.

If a device connects in the group, which corresponds to the receipt of the AP_STA CONNECTED_EVENT event sent by the
WifiMonitor.It should be noted that a new device can connect to the group only if the number of peers currently present in the
group is still less than themax_peersof the GO.

_ConnectedEvent,
Wrfe? : WMEvent

Wfe? = AP_STA_CONNECTED_EVENT
D?.Addr # NULL

D?.STATTUS = CONNECTED

D? ¢ Group A DevRole(D?) GO
Group’ = Group U{D?}

#Group’ =#Group + 1

Rep? = sendP2pPeersChangedBroadcast

Or if a device leaves the group, which corresponds to the receipt of the AP_STA DISCONNECTED_EVENT event, the
schema is the following.

IJERTV9I S020036 www.ijert.org 47
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

_DisconnectEvent
Wfe?: WMEvent
[iface]; p2pGroupRemove : [iface] ={T, F}
If? : iface

Wfe? = AP_STA_DISCONNECTED_EVENT
D?.Addr # NULL

D?.STATUS = AVAILABLE

D? € Group A DevRole(D?) #GO

Group’ = Group \{D?}

#Group’ = #Group -1

(Group’ = @) = (D?.1f2-T) €p2pGroupRemove

_DeviceLostEvent

Wfe? = p2p_DEVICE_LOST_EVENT
D?.Addr # NULL
DevRole(D?) = GO A D? eGroup
Group \{D?} = (D?.If » T)

If the CONNECT message is received from the WifiP2pManager, we have the two following schemas

_ConnectT
Wpm?: MsgWFManager
P2plnvite : [Device] - {T, F}

Wpm? = CONNECT

D?.Addr # NULL

(P2pinvite(D?) #F) =D?.STATUS = INVITED
Rep! = sendP2pPeersChangedBroadcast
wifiP2pManager = CONNECT_SUCCEEDED

_ConnectF
(P2plnvite(D?) = F) =>wifiP2pManager = CONNECT_FAILFED

And Connect2ConnectTvConnectF
If the group is destroyed:

_RemoveGroup
1f?: Iface

Wpm? = REMOVE_GROUP
P2pGroupRemove (If?) = F
wifiP2pManager = REMOVE_GROUP_SUCCEEDED

So we have the following schema

IJERTV9I S020036 www.ijert.org 48
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

ProcessMessage2 ConnectEventvDisconnectEventvConnectvRemoveGroup
The exit() method of the state is represent by:

_Exit
STATUS:N
Role = = GO |Client
DevRole: [Device] —»Role
D?: Device

D?.STATUS = AVAILABLE

D ? eGroup

(DevRole(D ?) = GO) = (D ?.Addr =Null)
Rep! = sendP2pConnectionChangedBroadcast

Then groupCreatedState 2 Enter v ProcessMessage Vv Exit

e Addressing
To allow communications in the group, each device must have an address. Wi-Fi Direct uses class C IPv4 addresses in the
192.168.49.x, x € [1, 254]; with the mask on 3 bytes. The addressing of devices in the group is as follows:

_GOAddressing
=Device
XI:N
D?: Device
DevRole: [Device]—-Role

(D?€Group)A (DevRole (D?) = GO)
Xi=1

_ClientAddressing
=Device
CA: PN
XI.CA
D?: Device
DevRole: [Device] =Role

(D? eGroup) A (DevRole (D?) = Client)
X'e CA

X'22

X'<254)

X=X

The in the group Addressing 2 GOAddressing A ClientAddressing

VI. DISCUSSION
The detailed study of the Wi-Fi Implementation on Android and the formal specification reveal that

IJERTV9I S020036 www.ijert.org 49
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

Wi-Fi Direct is an interesting and suitable candidate technology for ad hoc communication in several applications, but his

implementation on the Android OS has some limits on several levels relatively to the formation of a large scale Ad hoc network:

e In terms of connection and association: the scan, listen, and search processes may consume considerable amount of

time in Wi-Fi Direct. Two devices attempting a peer discovery can share probe messages only if a search phase and a

listen phase is met on the same channel. However, these phases are randomized; as each listen phase of a device can

vary from a random multiplier of 100 time units. Therefore, two devices could attempt multiple discoveries before

actually synchronizing their channels, which could consume time in scales of seconds. Moreover, this delay can be

relatively high if several P2P Devices are simultaneously performing Device Discovery in the same wireless range.

Another limit comes from access to the communication channel: it is impossible for a device to have several

communication channels at the same time since the p2p_init() function just permit to reserve a specific random channel

(a frequency) on which the p2p group formation process will be initiated. So each p2p group can only work on one

communication channel. However only the devices supporting concurrent operations can also be connected to a BSS of

Wi-Fi while connected to the P2P Group. A device supports concurrent operations when the concurrent_operations
parameter was initialized during the configuration.

e At the topology and mobility: In Android, upper-layer applications can specify a Group Owner Intent; otherwise the
Wi-Fi Direct framework simply sets it with a random value. The Group Owner election mode based on the Intent value
is not optimal enough, since based on a single criterion. It can happen that after GO Negotiation, equipment having
reduced performances becomes Group Owner at the expense of another which has higher performances. Once the
group is created, all communication goes through the Group Owner. Clients cannot communicate directly without pass
to the GO. So the GO acts as a router within the group, but he cannot communicate simultaneously with Clients that
are belonging in the group. Moreover, the number of devices that can be associated in a P2P Group depends on the
maximum number of discovered peers the GO can remember, which limits the scale of the group and if the GO is
leaving the group, the group is destroyed making the GO the central equipment of the group.

e At the addressing and routing: In Android devices, once a Wi-Fi Direct connection is established, the Group Owner

will always have 192.168.49.1 IP address and Clients in the group will have different addresses (192.168.49.x /24,
where X is a random number € [2, 254]) according to GO assignments. This method of assigning addresses can cause
conflicts in case the Group Owner is part of several groups.
In fact the Peer to Peer interfaces of all Group Owners have the same IP address, namely 192.168.49.1. The Wi-Fi
interfaces of the Group Owners that act as legacy clients in another group are assigned an IP address in the format
192.168.49.x/24. Similarly, Peer to Peer interfaces of clients are assigned different IP addresses in the format
192.168.49.x/24. This provides the address conflicts for Peer to Peer interface of the Group Owners. Thus even if there
is a way to allow multi-group membership, the devices in different groups may not be able to reach each other
especially since no routing mechanism is defined.

VII. CONCLUSION

Wi-Fi Direct is one of the promising technologies to establish MANET among mobile devices because of its high popularity in
Android OS, high data rate and long communication range. The protocol has also the potential to be used in several applications
such as files transferring, sharing resources, online gaming, alert dissemination, social networking, etc. Most of research work is
focused on the performance evaluation Wi-Fi Direct. Providing efficient group formation techniques and supporting multi-hop
communication are part of the key research issues highlighted in the literature. In this paper, we presented a technical overview
of Wi-Fi Direct technology on Android in order to well understand its implementation. We took out the layer structure of the
Wi-Fi Direct framework on Android by presenting the different classes and their interactions in each layer. The main
components of the Wi-Fi Direct framework on Android are the WifiP2pManager() class found in the SDK and the
wpa_supplicant package in the HAL. We showed how the WifiP2pManager() class works for discovery and connection to
peers. We have explained and presented the group formation and group owner election mechanisms in the wpa_supplicant. We
provide also the formal specification of some classes by using Z and Object-Z specification languages. Which leads us raise the
limits of Wi-Fi Direct implementation on Android in terms of the development of large-scale networks. These limits are of
several orders: in the connection and association, in topology and mobility and in the addressing and routing. To implement new
solutions on Android with Wi-Fi Direct, we can make changes in the WifiP2pManager()and WifiP2pService() classes and in
some functions of the wpa_supplicant; e.g. p2p_connect(),p2p_invite() for MANETS functionalities or p2p_find(), p2p_listen()
for implementing new device discovery mechanisms.

REFERENCES

[1] M. Asif Khan, W. Cherif, F. Filali, and R. Hamila, “Wi-Fi Direct Research — Current status and Future perspectives,” Journal of Network and
Computer Applications, Vol. 93, pp 245-258, 2017.

[2] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-Device Communications with Wi-Fi Direct: Overview and
Experimentation,”|EEE Wireless Communications, vol. 20, no. 3, pp.96-104, 2013.

[3] M. Conti, F. Delmastro, G. Minutiello, and R. Paris, “Experimenting opportunistic networks with Wi-Fi Direct,” Wireless Days (WD), 2013
IFIP, pp. 1-6, 2013.

[4] H. Je, D. Kwon, H. Kim, and H. Ju, “Mobile Network Configuration for Large-scale Multimedia delivery on a single WLAN,” 2014.

[5] R. Kanaoka and Y. Tobe, “Design of Data Transfer System on Smartphones using Wi-Fi Direct and Accelometers,” IEEE 3™ Global
Conference on Consumer Electronics, GCCE 2014, pp.71-75, 2014.

IJERTV9I S020036 www.ijert.org 50
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 9 lssue 02, February-2020

[6] “Wi-fi peer-to-peer (p2p) technical specification V1.7, WiFi Alliance, Tech. Rep., 2016.

[7] IEEE 802.11-2012 IEEE Standard for Information technology — Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications, Mar. 2012.

[8] W. Sun, C. Yang, S. Jin, and S. Choi, “Listen Channel Randomization for Faster Wi-Fi Direct Device Discovery,” The 35" Annual IEEE
International Conference on Computer Communications. IEEE INFOCOM. 2016.

[9] J. Han, K. W. Lim, and Y. B. Ko, “Fast Location-based Association of Wi-Fi Direct for Distributed Wireless Docking Services,” International
Conference on Green and Human Information Technology (ICGHIT), 2014.

[10] J. Feng, Z. Liu, and Y. Ji, “Wireless Channel Loss Analysis — A Case Study Using Wi-Fi Direct,” International Wireless Communications and
Mobile Computing Conference (IWCMC), 2014.

[11] H. Yoo, S.Kim, S. Lee, J. Y. Hwang, and D. Kim, “Traffic-aware Parameter tuning for Wi-Fi Direct Power Saving,” International Conference
on Ubiquitous and Future Networks (ICUFN), 2014.

[12] K. W. Lim, Y.Seo, Y. B. Ko, J. Kim, and J. Lee, “Dynamic Power Management in Wi-Fi Direct for Future Wireless Serial Bus,” Wireless
Networks, vol.20, no.7, pp.1777-1793, 2014.

[13] K. W.Lim, W. S. Jung, and Y. B. Ko, “Energy Efficient Quality-of-Service for WLAN-Based D2D Communications,” Ad Hoc Networks, vol.
25, pp.102-116, 2015.

[14] D. Camps-Mur, X. Pérez-Costa, and S. Sallent-Ribes, “Designing energy efficient access points with Wi-Fi Direct,” Computer Networks,
vol.55, no. 13, pp 2838-2855, 2011.

[15] H. Zhang, Y. Wang, and C. C. Tan, “Wd2: An improved wi-fi-direct group formation protocol,” in Proceedings of the 9" ACM MobiCom
workshop on Challenged networks. ACM, 2014, pp. 55-60.

[16] U. Botrel Menegato, L. Souza Cimino, S. E. Delabrida Silva, F. A. Medeiros Silva, J. Castro Lima, and R. A. R. Oliveira, “Dynamic clustering
in wifi direct technology,” in Proceedings of the 12" ACM international symposium on Mobility management and wireless access. ACM, 2014,
pp. 25-29.

[17] A. A. Shahin, and M. Younis, “Efficient multi-group formation and communication protocol for wi-fi direct,” in Local Computer Networks
(LCN), 2015 IEEE 40™ Conference on. IEEE, 2015, pp. 233-236.

[18] V. Arnaboldi, M. G. Campana, and F. Delmastro, “Context-Aware Configuration and Management of WiFi Direct Groups for Real
Opportunistic Networks,” IEEE 14" International Conference on Mobile Ad hoc and Sensors Systems (MASS), 2017.

[19] A. Laha, X. Cao, W. Shen, X. Tian, and Y. Cheng, “An Energy Efficient Routing Protocol for Device-to-Device Based Multihop Smartphone
Networks,” IEEE International Conference on Communications (ICC), 2015.

[20] M. A. Khan, W. Cherif, and F. Filali, “Group Owner Election in Wi-Fi Direct,” IEEE 7" Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), 2016.

[21] A. A Shahin, and M. Younis, “A Framework for P2P Networking of Smart Devices Using Wi-Fi Direct,” IEEE 25" International Symposium
on Personal, Indoor and Mobile Radio Communications, 2014.

[22] W. Cherif, M. A. Khan, F. Felali, S. Sharafedine, and Z. Dawy, “P2P Group Formation Enhancement for Opportunistic Networks with Wi-Fi
Direct,” IEEE Wireless Communications and Networking Conference (WCNC), 2017.

[23] I. M. Lombera, L. E. Moser, P. M. Melliar-Smith, and Y. T. Chuang, “Peer Management for iTrust over Wi-Fi Direct,” International
Symposium on Wireless Personal Multimedia Communications, 2013.

[24] J. E. Park, J. Park, and M. J. Lee, “DirectSpace: A Collaborative Framework for Supporting Group Workspaces over Wi-Fi Direct,” 4"
International Conference on Mobile, Ubiquitous, and Intelligent Computing (MUSIC), 2013.

[25] Y. Duan, et al. “Wi-Fi Direct Multi-group Data Dissemination for public Safety,” World Telecommunications Congress (WTC), 2014.

[26] C. Casetti, C. F. Chiasserini, L. C. Pelle, C. Del Valle, Y. Duan, and P. Giaccone, “Content-centric routing in wi-fi direct multi-group
networks,” in 2015 IEEE 16th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2015,
pp. 1-9.

[27] Z. Wang, F. Li, X.Wang, T. Li, and T. Hong, “A Wi-Fi Direct Based Local Communication System,” [IEEE IWQoS, 2018.

[28] K. Liu, W. Shen, B. Yin, X. Cao, L. X. Cai, and Y. Cheng, “Development of Mobile Ad-hoc with Off-the-Shelf Android Phones,” Ad-hoc and
Sensor Networking Symposium, IEEE ICC, 2016.

[29] J.Loo,J. L. Mauri, and J. H. Ortiz “Mobile Ad Hoc Networks: Current Status and Future Trends” CRC Press, 2011.

[30] L. Van Hoang and H. Ogawa, “A platform for building ad hoc social networks based on Wi-Fi Direct,” IEEE 3rd Glob. Conf. Consum.
Electron., pp. 626-629, 2014.

[31] Downloading Android source tree: https://source.android.com/setup/build/downloading. Visited on 17 December 2018.

[32] B. Zores, “Dive Into Android Networking: Adding Ethernet Connectivity,” ABS, 2013 available on line https://speakerdeck.com/gxben/dive-
into-android-networking-adding-ethernet-connectivity-1. Visited on 15 December 2018.

[33] Android Platform Architecture: https://developer.android.com/guide/platform/ visited on 17 December 2018.

[34] Android API reference: https://developer.android.com/reference/ visited on 12 December 2018.

[35] Wi-Fi Direct innovation: http://www.wi-fi.org/discover-wi-fi/wi-fi-direct, visited on 29 November 2018.

[36] S. Ranakarthik and C Zang, “Generating Java Skeletel code with Design Contracts from Specifications in a Subset of Object-Z”International
Conference on Computer and Information Science (ACIS) 2006.

[37] A. F. Al Azzawi, M. Bettaz, and H. M. Al-Refai, “Generating Python Code from Object-Z Specifications” International Journal of Software
Engineering & Applications (1JSEA), vol8. N°4. July 2017.

[38] M. Najafi and H. Haghighi, “An Approach to animate Object-Z Specifications using C++”, Scientia Iranica, April 2012.

IJERTV9I S020036 www.ijert.org 51
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


https://source.android.com/setup/build/downloading
https://speakerdeck.com/gxben/dive-into-android-networking-adding-ethernet-connectivity-1
https://speakerdeck.com/gxben/dive-into-android-networking-adding-ethernet-connectivity-1
https://developer.android.com/guide/platform/
https://developer.android.com/reference/
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
www.ijert.org
www.ijert.org
www.ijert.org

