

Android Wi-Fi Direct Architecture: From Protocol

Implementation to Formal Specification

Rémy Maxime Mbala1, Jean Michel Nlong2, Jean Robert Kala Kamdjoug3
1 The University of Ngaoundéré, Ngaoundéré, Cameroon

2 Cameroon-Congo Inter-State University, Sangmelima, Cameroon
3 Catholic University of Central Africa, Yaoundé, Cameroun

Abstract –With the proliferation of Android smart phones, it

should be possible to set up Mobile Ad-hoc Networks

(MANETs) to share information anywhere, anytime. To

achieve this goal, it is necessary to have a good wireless

communication technology capable of responding to the

characteristics of MANETs. Wi-Fi Direct could be a good

candidate not only because it allows direct communication

between devices without the need for a fixed infrastructure

but also because it is present in most smart phones with at

least Android 4.0. The study of Wi-Fi Direct has been the

subject of several works that denounce the limitations of the

technology in terms of construction of large-scale mobile

networks. In this paper, we make a detailed technical study of

the Wi-Fi Direct framework on Android Operating System to

understand how it works and its implementation in order to

really overcome their network restrictions. We also provide a

formal specification of Wi-Fi Direct on Android by using Z

and Object-Z specification languages. This study allows us to

understand the functions and the classes of the framework

and see at what level changes can be make to implement other

solutions.

Keywords: Wi-Fi Direct, Peer-to-Peer, Android, Ad-hoc

Network, WifiP2pManager, Wpa_supplicant, Formal

Specification, Z, Object-Z.

I. INTRODUCTION

Since the early announcement of Wi-Fi Direct

specifications by the Wi-Fi Alliance1, the promise of its

advertised features and use-cases has motivated a lot of

projects, in the aim of exploiting this technology for

general network communications. Indeed, the deployment

of large-scale, self-organized and self-managed mobile ad-

hoc network is a key enabler of many field applications,

ranging from military operations to catastrophe

management, passing by game and infotainment. Wi-Fi

Direct was intended to allow concrete peer-to-peer mobile

ad-hoc network deployment, based on smart phones and

other handheld equipments, and is embedded in almost all

the smart phones sold these past five years.

An ad hoc network consists of a set of geographically

distributed equipments, potentially mobile and sharing a

radio channel. Equipments can play the role of source,

destination or router for communications; they must be able

to play these roles at any time, thus exhibiting a peer-to-

peer network organization. An Ad Hoc network is

opportunistic, self-created, self-organized and self

configured [29]. Self-creation means that when the

facilities are put together in a neighbourhood, the network

is created in an "opportunistic" way such that each

equipment is able to communicate with all the others to a

hop or hop by hop. Self-organization means that only the

interactions between devices are used to provide the

necessary control and administrative functions to maintain

the network. Nodes cooperate to organize themselves by

distributing different roles if necessary. The auto-

configuration implies that the nodes must be able to

quickly perform certain functions to always respect the

defined topology and allow for flexibility, robustness and

transition to network wide.

The specifications of Wi-Fi Direct were developed by Wi-

Fi Alliance consortium, and are published in [6]. This

technology allows connecting two compatible devices for

data transfer streaming. Being a modification of classical

Wi-Fi, it offers the same performances in terms of range

and bandwidth. Wi-Fi Direct differs from classical Wi-Fi in

the sense that it directly connects two equipments, with no

third party. Android smart phones from version 4.0 are

natively equipped with this technology (the API is called

Wi-Fi Peer-to-Peer [6]), and can opportunistically create

Ad Hoc groups in a neighborhood for sharing information.

With Wi-Fi Direct, the group formation process is divided

into four phases: discovery, negotiation of the group owner,

the WPS provisioning and configuration of addresses [6].

Taking advantage of these capabilities, several studies [2,

3, 8, 15, 26, 30] have been carried out to evaluate this

technology and to study the feasibility of building a true

mobile Ad Hoc network as presented above. These works

are mainly experimental, and highlight the difficulties of

putting into practice all the interesting features

commercially announced. It then appears important to well

circumscribe the purpose and the commercial aspects of the

technology, and its concrete operational capacities. Given

the lack of a native specification for Wi-Fi Direct, this

work aims to study its operational functioning, formalize

the use scenarios and to provide the formal specification by

using Z and Object-Z specification languages, for Android.

Formal specification helps build more robust and

maintainable software with fewer defects than systems

developed without using formal methods [36]. We choose

Z and Object-Z languages because they are the formal

specification languages predominantly used in model based

specification and they have an important feature over other

languages: powerful semantic and calculus (predicate

calculus and set theory), strong support of objects and its

specification style corresponds directly to object oriented

programming constructs, while UML-B weakly supports

the concepts object and VDM++ does not have exact

formal calculus [36, 37, 38].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

30

www.ijert.org
www.ijert.org
www.ijert.org

The remainder of this paper is organized as follows.

Section II provides some background on Wi-Fi Direct

standard and specification, along with advertised features

and performances. In section III we present related works

on the usability of Android Wi-Fi Direct stack, and the

results and conclusions obtained. The overall architecture

of the Android Wi-Fi Direct implementation is presented in

Section IV, which formal specification is derived in

Section V, along with a discussion on its capabilities.

Section VI concludes the paper.

II. WI-FI DIRECT GROUP FORMATION

PROCESS

In Wi-Fi Direct, the group formation is divided into four

different phases namely discovery, Group Owner (GO)

negotiation, Wi-Fi Protected Setup (WPS) provisioning and

address configuration [2, 6].

a. Discovery: The Wi-Fi Direct device discovery

process is used to search for and locate the devices

that are intending to participate in a specific

service. The device that turns on the Wi-Fi Direct

mode initiates scan, listen, and search phases to

find other WLAN-based D2D-enabled devices in

the currently used frequency. Specifically, a Wi-Fi

Direct device can first conduct 802.11 scanning

defined in 802.11 standard [7] in order to identify

surrounding Peer to Peer groups. The specification

is based on the 2.4-GHz frequency used in

802.11b/g/n, but it can also be extended in the

future to 5.0 GHz, which is used in 802.11a/n/ac.

In the scanning process, the device periodically

switches its channel and transmits a probe request

message in each channel. If the channel of another

WLAN-based D2D device is timely matched with

the scanning device at a specific moment, the

probe request can be received by another device,

which can respond with a probe response. After

scanning, the device enters the find phase, in

which the default channel is listened to and the

mainly used channels of the frequency (e.g. social

channels of 2.4 GHz) are searched for. In the find

phase, the devices alternates between listen and

search states [7, 9]. A device in search state

conducts active scanning sequentially at three

social channels (channels 1, 6 and 11 of 2.4 GHz)

by transmitting a probe response frames. In listen

state, the device conducts idle listening at listen

channel for a random duration, during which it

replies to probe request frame by transmitting a

probe response frame. The example in Fig. 1

shows how two devices with Wi-Fi Direct

capabilities progress through their device

discovery process to discover each other.

Fig. 1 : Device Discovery process in Wi-Fi Direct [9]

b. GO negotiation: Once the devices share the probe

messages, the association process is initiated to

establish Peer to Peer connection and select a

Group Owner (GO). This is done by using a three-

way handshake association messages in the

channel that they used to share the probe

messages. The role of Group Owner is given to a

single device, which becomes responsible for

transmission of periodical beacon messages for

maintaining connection with group clients. To

elect a GO, each node is given an intent value

ranging from 0 to 15. This intent value is

compared between the devices, and the device

with the highest intent value becomes the GO2 [2,

6, 15].
c. WPS provisioning: Wi-Fi Direct uses Wi-Fi

Protected Setup (WPS) for initial set up and

authentication. WPS is based on WPA-2 security

and uses Advanced Encryption Standard (AES)-

CCMP as cypher and randomly generated pre-

shared key for mutual authentication [6]. The

Group Owner takes the role of registrar; the key

responsibilities of the registrar are granting and

revoking network access for the client devices. It

2In case both P2P devices send equal GO Intent values, a

tie breaker bit is used for decision and the device with tie

breaker bit set to 1 shall become GO.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

31

www.ijert.org
www.ijert.org
www.ijert.org

is also responsible for passing on the necessary

information such as group ID, the operating

channel, and the pre shared key to the client

devices. WPS provisioning is also divided into

two phases: in the first phase the security keys are

generated by the internal registrar and in the

second phase the devices disconnect and

reconnect using the key that is generated in the

first phase [2, 3, 6, 26].

d. Address configuration: Finally, DHCP is used to

assign IP addresses to the Peer to Peer devices.

The Group Owner acts as the DHCP server and

assigns the clients IP addresses. In order to obtain

an IP address, the client and the DHCP server

exchange DHCP discover offer, request and

acknowledgement messages [6].

III. RELATED WORKS ON THE WI-FI DIRECT

Several works were done on Wi-Fi Direct with different

objectives. The works focus on experimental evaluation of

the protocol’s features as well as the development of novel

services using Wi-Fi Direct. We present a number of these

works in this section. The presentation is not exhaustive, it

aims to showing the different lines of research on which the

scientific community has looked and the difficulties that

people have encountered while experimenting with Wi-Fi

Direct. An extensive survey on Wi-Fi Direct technology

and comprehensive review of state-of-the-art are presented

in [1].

The works done in Wi-Fi Direct can be categorized into

four areas according to the research lines and the expected

objectives. Some are looking at the evaluation of the

performances of the technology, others on the device

discovery, the group formation and scalability for

communication or on the energy management.

1. Performance evaluation

This is to evaluate the performance of Wi-Fi Direct

according to certain parameters: the time of device

discovery and group formation, the bandwidth actually

used, the transmission distance, multimedia delivery, etc.

In [2] and [3], authors presented performance evaluation of

the device discovery and the group formation delay using

standard, persistent and autonomous group formation

mode. In these works, the autonomous mode takes about 1s

to discover other equipment, while the discovery times in

the standard mode and the persistent mode are in the ranges

[1.48s, 15.35s] and [1.5s, 15.9s] respectively. For the group

formation, times are 3 to 6 seconds in the autonomous

mode and 5 to 9s in the standard and persistent mode. The

performance evaluation of Wi-Fi Direct for multimedia

delivery and streaming applications is presented in [4]. The

authors choose the Round Trip Time (RTT) and bandwidth

as performance metrics; they make a comparison between

Wi-Fi Direct and Bluetooth networks. In addition they

evaluate the impact of increasing number of P2P devices.

The connection establishment overhead and delay were

evaluated in [5] where authors developed “Electrical

Business Card Communication over Wi-Fi Direct (EriCC-

W)”, a Wi-Fi Direct based data transfer system, to identify

smart phones using gestures and transforms the gestures

into frequency spectrum to authenticate devices. These

works revealed that the Wi-Fi Direct has shorter

transmission delays than the Bluetooth and can maintain

connections over long distances (between 150 and 200

meters). Thus Wi-Fi Direct could be an interesting

technology to share information in a certain range but the

discovery and the group formation times still remain an

obstacle especially for multimedia applications.

2. Device discovery

Empirical measurement results in [2, 3] show that device

discovery accounts for the largest portion of the overall

time required completing P2P group formation procedure.

From these measurements, we can notice that the device

discovery may take over ten seconds in the worst case. It

implies that reducing device discovery time is most critical

issue for satisfactory service start-up.

In order to tackle this problem, authors in [8] proposed

Listen Channel Randomization (LCR) scheme to reduce

device discovery delay. They developed an elaborate

Markov model in order to analyze the legacy find phase

based on the channel status of the three social channels.

The proposed scheme was tested using NS3 simulations

which revealed that LCR can significantly reduce the

device discovery, yielding up to 72% delay reduction

compared to the legacy find phase [8]. J. Feng and al. [10]

sat up the experiments connecting two mobile devices

using Wi-Fi Direct and performed the loss channel

analysis. They also proposed a new loss model scheme

based on Gilbert Elliot model which can facilitate the

theoretical analysis when designing or optimizing wireless

networks. In [9], authors proposed also a scheme to reduce

the delay induced in the association process of Wi-Fi

Direct. They designed a so called “client-aided search” of

Group Owners where the mobile clients can share the

information of Group Owners that they have associated

with in the past. In this scheme, channel and location

information of multiple Group Owners can be shared by

client devices, which can reduce the delay in the

forthcoming association process. The proposed solution

was also tested using NS3 simulation.

3. Energy management

According to the Wi-Fi Direct specification [6], the Group

Owner is the central device of the group, he is sometimes

called Soft Access Point since it interconnects all devices

present in the group and it manages all theirs

communications. Because of this, it is important for the

Group Owner to have built-in mechanisms to better

manage energy since it is a mobile device. Two

mechanisms are presented in [6]: Notice of Absence

(NoA); the Group Owner announce time intervals where

clients are not allowed to access to the communication

channel regardless of whether they are in power saving

mode or not, and Opportunistic Power Save (OppPS); it is

about taking advantage of the sleep periods of P2P Clients.

The OppPS and NoA are considered insufficient in services

which are using periodic data transmissions such as video

streaming, screen sharing, multi-user on-line gaming [1].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

32

www.ijert.org
www.ijert.org
www.ijert.org

Then several other solutions have been proposed to

optimize these two first mechanisms.

Adaptive Single Presence Period (ASPP) and Adaptive

Multiple Presence Periods (AMPP) [14] are the two first

algorithms proposed to improving the performance of

OppPS and NoA schemes. They allow a portable device

implementing Wi-Fi Direct (e.g. a mobile phone) to offer

access to an external network (e.g. a cellular network)

while addressing the trade-off between performance and

energy consumption in a configurable manner. The ASPP

scheme can be used with both OppPS and NoA, whereas

the AMPP scheme can be used only with NoA however

AMPP can also improve the performance of ASPP. In

ASPP scheme, the P2P GO computes a single presence

period in each beacon interval based on the amount of

traffic at the up-link of the P2P GO. The presence period is

shortened if the up-link is congested and vice versa. In

contrast to ASPP, the AMPP uses multiple presence

periods in a beacon interval and hence it can be used only

with NoA scheme. Algorithms running on P2P GO

estimate the raw bandwidth on the up-link external network

and accordingly adjust the number of presence periods [1].

The simulations show that ASPP and AMPP can manage to

reduce the power consumption of Wi-Fi Direct devices

acting as Access Points (50-90%) without introducing

major user experience degradation.

In the same order or ideas, two others approaches to

compute absence periods for energy saving using NoA

scheme are proposed in [2]: A static policy, where the P2P

GO advertises a fixed duration presence window after each

Beacon frame and a dynamic policy, where the P2P GO

adjusts the duration of the presence window based on the

traffic conditions using Adaptive Single Presence Period

(ASPP) algorithm. The results of this work are not very far

from those of [14].

Dynamically Synchronized Power Management (DSPM)

scheme is proposed in [12] to dynamically synchronize the

active time slots with the data transmission time slot to

further enhance the energy efficiency of OppPS and NoA.

In [13], Dynamic Power Save (DPS) is proposed; A P2P

Group Owner which implements DPS mechanism toggles

between OppPS and NoA base on traffic characteristics.

Therefore the Group Owner must be capable to decide and

switch the power save mode if the applications in the

network are changed. To dynamically adjust the parameters

for OppPS and NoA schemes to improve the performance

of Wi-Fi Direct network, H. Yoo and al. [11] proposed a

Traffic Aware Parameter Tuning Scheme (TAPS). TAPS

consumes less energy when the maximum values for

OppPS and NoA are used whereas no improvement in

throughput. However for improve throughput lowest values

are used and TAPS consume more energy.

4. Group formation

The technical specification states that Wi-Fi Direct can

permit to build a large-scale wireless network by

interconnecting groups, but it does not specify how it is

possible. So several works have been done to find out how

this can be done. Most of these works focused on the

experimental evaluation of basic standard features (with a

limited number of nodes), others trying to overcome Wi-Fi

Direct limitations encountered through hacks and/or by

rooting the devices. Related works can be divided

depending on their main optimization target: (i) selection of

the best GO, (ii) autonomous group formation (bypassing

the user’s authorization and intra group communication),

and (iii) inter-group communication.

• Group Owner selection

As we said above, the Group Owner election is performed

in GO Negotiation phase where devices negotiate together

to which will act as Soft Access Point by declaring their

intents. Several studies have been made in order to propose

more optimal solutions for the choice of the GO.

WD2 [15] aimed at automatically selecting Group Owner

based on the Received Signal Strength Indication (RSSI)

measurements. Each device collects the RSSI reading from

nearby devices and the Group Owner Intent is computed

based on such collected measurements. Their prototype

experiments indicate that WD2 increases the average

throughput by 45% over conventional Wi-Fi Direct.

For Menegato et al. [16], the device who act as GO should

change dynamically, and the choice of a new GO should be

based on the residual energy of the candidates. With the

same idea, [17] proposed an Efficient Multi-group

formation and Communication (EMC) which exploits the

battery specifications to compute the rank which will

permit the devices to qualify potential Group Owners. In

[18], authors proposed Wi-Fi Direct Group Manager

(WFD-GM), a middleware layer protocol for the

configuration of Wi-Fi Direct groups to enable to select the

best Group Owner and the creation of opportunistic

network. They combine several features such as the level

and the capacity of the battery and the number of

discovered equipments, to evaluate the suitability of a node

to act as Group Owner in a specific context. Three other

different approaches to choose Group Owner are presented

in [19]: the device with the highest ID in the surroundings,

the device that has the shortest average distance from the

other nodes, the node with less mobility with respect to its

neighbors. Authors in [20] proposed a combined metric

approach to select the Group Owner based on several

parameters such as the mobility degree, the distance, the

residual energy of the battery, and the number of

discovered neighbors. The parameters are normalized and

weighted to compute Intent Values of each device. An

election algorithm is then used to select the P2P Group

Owner.

The most part of the results of these works are presented by

simulations and they could permit to select the optimal

Group Owner but could also increase the group formation

times for more complex algorithms.

• Intra group communication

The main objective of the research in this part is to improve

the communication protocol in a group, for example by

modifying the initial topology. Typically, the topology

used is similar to that of clusters where the Group Owner

plays almost the same roles as the Cluster Head [16]. Once

the Group Owner is elected, it becomes the central device

through which all communications in the group are routed.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

33

www.ijert.org
www.ijert.org
www.ijert.org

Devices are all connected to the Group Owner and not

between them.

The problem with this topology is that the Group Owner is

the central equipment of the group, and if it leaves the

group for some reasons (mobility, battery down, etc.), the

group is destroyed and the negotiations must start again to

elect a new one.

Thus, A. A Shahin et al. [21] introduced a framework that

enables devices in one Wi-Fi Direct group to communicate

by managing the topology changes in the group as well as

the data exchange between devices. In [22], authors

introduced the concept nominating Backup Group Owner

that can replace the Group Owner, if he leaves the group,

and permit to acceleration the group reconstitution.

Lombera et al. [23] proposed iTrust, a peer management

over Wi-Fi Direct that enable peers to form a mobile ad hoc

network for decentralized information sharing while Park et

al. [24] proposed DirectSpace, a framework for

collaboration between devices, which provides a mean for

sharing workspaces users over Wi-Fi Direct. [16], [17],

[18] and [19] also presented mechanisms for managing

intra group communications. These proposed frameworks

were validated through the implementation of chat

applications over multiple Android based devices and show

that the initial topology of Wi-Fi Direct groups, as define in

his specification, can be changed to manage intra group

communications better.

• Inter group communication

Inter group communication is not introduced in Wi-Fi

Direct specification. It is said that it is possible to

interconnect multiple groups; the specification does not

clearly address this issue. Several researches proposed

solutions in order to have a large-scale network by

interconnecting several groups.

According to [6], the group members are all connected to

the Group Owner and cannot belong in many groups. The

Group Owner is the only device that can belong to several

groups; in this case it will be owner in one group and client

in the other.

There are several solutions in the literature which tackle

this problem. In [25], Duan et al. proposed a method for

establishing multi-group communication in Wi-Fi Direct by

letting the Group Owner to connect as a legacy client in

another group using WLAN interface. In the same logic, C.

Casseti et al. [26] exploit tunneling in the transport layer to

overcome the physical limitations that prevent multiple

groups’ interconnection. In the defined topology, the Group

Owner uses his P2P interface to connect to devices in the

same group and his WLAN interface to connect to another

Group Owner in another group. It is also the basis of the

ideas of the authors in [27] who use the multicast to permit

the communication between groups. In [28], authors

implemented a proactive routing protocol using off-the-

shelf smart phones to enable efficient message delivery

over a multi-hop mobile ad hoc network.

IV. ARCHITECTURE OF THE ANDROID WI-FI

DIRECT IMPLEMENTATION
In this section we make a detailed technical study of the

Wi-Fi Direct framework on Android Operating System to

understand how it works and its implementation with the

aim of improving it and to offer a mobile large-scale

wireless network infrastructure. So we have downloaded

the source code of Android from the 4.0 version Ice-Cream

Sandwich (API level 14) and higher from Android Open

Source Project (AOSP) [31] and we study the connectivity

and the connection system of Wi-Fi Peer to Peer on

Android. This study leads us to understand the functions

and the classes of the framework of the wireless peer-to-

peer on Android and see at what level changes can be make

to implement other solutions like [32] who has dive into

Android networking by adding Ethernet connectivity.

Fig. 2: Layer structure of Wi-Fi and Wi-Fi Peer to Peer on Android [32]

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

34

www.ijert.org
www.ijert.org
www.ijert.org

The Android operating system is divided into five main

layers [33]: the kernel, in which are developing the

hardware drivers; the Hardware Abstraction Layer (HAL),

which provides interfaces that expose device hardware

capabilities to the higher-level java API framework; Native

C/C++ libraries, which permits to built many core Android

system components and services; the java API framework,

which allows developers to write applications for users and

systems Apps, which provides a set of core apps for email,

SMS messaging, calendars, contacts, etc.

As shown in Figure 2, the Wi-Fi Direct connectivity system

is spread into several layers of the Android system: The

hardware level where the chipset reside; the kernel that

contains the Wi-Fi drivers; system libraries among which is

the WPA supplicant; the Hardware Abstraction Layer

which are the C++ functions that allow applications to

communicate with hardware; and the java framework

which provides the Software Development Kit (SDK). The

package that contains the Wi-Fi Direct framework is the

Wi-Fi P2P Manager which uses the same low level

functions that the standard Wi-Fi package (Wi-Fi

Manager). By further studying the Wi-Fi P2P Manager

package, we came up with the following figure 3 which

shows the architecture of Wi-Fi Peer-to-Peer mode in

Android and interactions between the different functions in

these levels and how it works.

Typically, we can divide the architecture of Wi-Fi Direct in

three parts or levels: the Software Development Kit (SDK),

the Java Native Interface (JNI) and the kernel space. The

SDK and the JNI are part of user space because users can

access and custom them for it specific uses.

Fig. 3: The interactions between the components of Wi-Fi Direct on Android

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

35

www.ijert.org
www.ijert.org
www.ijert.org

As shown the legend in figure 3, the yellow arrows represent the flow of events from the kernel to the upper layers while the red

arrows represent the flow of control that go from the upper layers to the kernel and the green arrows represent the flow of data.

The SDK layer is the java framework that is split into two main parts: the SDK which allows programmers to write applications

and the WIFI P2P Service which manages the services. In the SDK, WiFiP2pManager3 is the main class that should first be

called by the program and that uses other classes to get specific information. For example, it will use the WifiP2pConfig class to

get Wi-Fi P2p configuration after setting up a connection; the WifiP2pDevice class to get information of a Wi-Fi P2p device;

WifiP2pInfo class to get connection information about a P2p group. The WifiP2pManager class interacts with the

WifiP2pService via the AsyncChannel binder. AsyncChannel binder is an asynchronous channel between two handlers which

may be in the same process as with the WifiStateMachine class or in another process as with the WifiP2pManager class. The

WifiP2pService4 class includes a state machine to perform Wi-Fi P2P operations. Applications communicate with this service to

issue device discovery and connectivity requests through the WifiP2pManager class. The state machine (WifiStateMachine

class) communicates with the Wi-Fi driver through wpa_supplicant and handles the event responses through WifiMonitor class.

So WifiMonitor class is used to monitor wpa_supplicant status change and notify Android framework. It listens for events from

the wpa_supplicant, and passes them to the state machine for handling. WifiNative class provides native calls for start/stop the

supplicant daemon and sending requests (various commands) to the supplicant daemon. The WifiStateMachine class5 tracks the

state of Wi-Fi connectivity, all events handling and all changes in connectivity. It extends the StateMachine class6 which defines

a Hierarchical State Machine (HSM). The HSM processes messages and arranges states hierarchically. In the HSM, when the

transition is made, the common ancestor state that is closest to current state is firstly found; then exit from current state and all

ancestors state up to but not include the closest common ancestor, finally enter all of new states below the closest common

ancestor down to the new state. The figure 4 presents the state for P2P operations defined in the WifiP2pService file. On

Android, if the device supports P2P operations, the initial state will be the P2pDisabledState state and the

P2pNotSupportedState state on the other hand. Assume that we want to transit from WaitForUserActionState state to

UserAuthorizingInvitationState State, since the closest common ancestor for the two states is the DefaultState state,

WaitForUserActionState.exit(), P2pDisabledState.exit(), P2pEnabledState.enter(), GroupCreatingState.enter(), and

UserAuthorizingInvitationState.enter() commands will be called in sequence.

Fig. 4: P2P state machine defined in WifiP2pService.java file

The WifiSateMachine class supports state machine for Soft Ap and Client operations while WifiP2pService handles state

machine for p2p operation. These two classes co-ordinate to ensure that only one operation exists at a certain time. The

WifiP2pService controls also the state machines that interact with the native DHCP client (DhcpStateMachine class) or the

network manager service (NetworkManagementService class) depending on whether the device is a Group Client or the Group

Owner respectively. The DhcpStateMachine7 class extends also the StateMachine class and defines the state machine that

interacts with the native DHCP client and can communicate to a controller. It permits to wakeup or renewal the DCHP using the

native DCHP client and provides notification right before DHCP request or renewal is started. The

NetworkManagementService8 is an interface for android framework to access to the network interface in the kernel. It works

with Netd to give commands to network driver. The NetworkManagementService communicates with Netd

(NativeDeamonConnector9) via sockets for sending commands. To handle the requests, NativeDeamonConnector wraps

commands as command objects.

3Defined in frameworks/base/wifi/java/android/net/wifi/p2p/ within AOSP source tree
4Defined in frameworks/base/wifi/java/android/net/wifi/p2p
5 Defined in frameworks/base/wifi/java/android/net/wifi/ within AOSP source tree.
6 In frameworks/base/core/java/java/com/android/internal/util/stateMachine.java
7In frameworks/base/core/java/android/net/DhcpStateMachine.java
8In frameworks/base/services/java/com/android/server/NetworkManagementService.java
9Inframeworks/base/services/java/com/server/NativeDeamonConnector.java

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

36

www.ijert.org
www.ijert.org
www.ijert.org

The Java Native Interface (JNI) is an interface software library that allows Java SDK codes to call or to be called by native

applications (i.e., hardware and OS specific programs), or with Native C/C++ libraries. The JNI code written in

android_net_wifi_Wifi.cpp10 communicates with HAL layer by function calls. The HAL layer code is written in the wifi.c file

which communicates with wpa_supplicant over control interface (wpa_ctrl.c) by using UNIX sockets. The wpa_supplicant

accesses the wireless driver in the kernel via the file nl80211.c; but this depends on the driver implementation. So if the wireless

driver is implemented using NL80211 interface, the device can use wpa_supplicant_8 in Android.

The following sections provide details on the operations of the Wi-Fi Direct in the SDK and in the wpa_supplicant.

1. Wi-Fi Direct API in the Software Development Kit (SDK)

The Android API level 14 and higher incorporates the opportunity for applications to discover, connect and communicate by the

use of Wi-Fi Direct. WifiP2pManager is the primary class, which is composed of the following three main parts: Listeners,

Request methods, Intent actions.

• Listeners

The message passing for Wi-Fi Direct in Android is asynchronous and the API specifies listener callback methods that are

responsible for reacting to requests from the application. The following five different interfaces represent the various listeners:

ActionListener, ChannelListener, ConnectionInfoListener, GroupInfoListener and PeerListListener. Each of these interfaces has

callback methods which are triggered when a response is sent. The ActionListener’s callback methods inform whether the

operation was successful or not. In case of a failure, the callback will convey a constant to point out the reason. This reason can

be one of the following: ERROR denotes that the reason was due to an internal failure, P2P_UNSUPPORTED indicates that Wi-

Fi Direct is not supported by the current device and BUSY means that the framework is busy, and therefore unable to serve the

request. The ChannelListener’s callback will be triggered if the channel gets disconnected from the framework. The remaining

listeners are triggered when some specific requested information is available.

• Request methods

The API has defines nine different request methods. Some of them are required to be implemented, while others are optional.

By using these methods, the application will be able to request the operating system to perform specific actions. Each of them

will trigger asynchronous message requests and they should therefore be able to react when responses are sent. This is why each

method includes a listener for callbacks.

In order to implement Wi-Fi Direct functionality in an application, a registration to the Wi-Fi framework is required. This is

realized by executing the initialize. All other request methods in the Wi-Fi Direct API depend on this registration. Hence, this

must be the first Wi-Fi Direct operation to be performed. The figure 4 following shows a proposed state machine of the

initialization process. When the application enters the initialized state it should be able to discover other peer devices.

Fig. 5: The initialization process

To be able of finding peer devices, the application must execute the discover_Peers method. This operation initiates a peer

discovery, which involves sending a request to the framework to scan for available peer devices. If the request is successfully

achieved, the discovery procedure will stay active until a P2P group is formed or a successful connection request is initiated.

When the application knows that peer devices are discovered, it can request for the current list of devices from the framework

by calling the requestPeers method. The figure 5 following shows a proposed state machine of the discovery process with a

suggested sequence of the related request methods

10In frameworks/base/core/jni/android_net_wifi_Wifi.cpp

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

37

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 6: The discover peers process

When the current list of peer devices has been received and the application enters the peers discovered state, a connection

request can be initiated with one of the devices in the list. This is done by executing the connect method. If the current device is

not already part of a P2P group, this request will initiate a group negotiation with the peer device. A group negotiation is

required in order to decide which device that is going to act as the group owner. If the current device is already part of a group,

an invitation to join this group is sent. If an ongoing group negotiation ought to be cancelled, the cancelConnect method must be

executed. Upon a successful group negotiation and when the application knows that the connection has been changed, it can

detect if network connectivity exists. If so, a request for connection info can be inquired by executing the

requestConnectionInfo method. By doing so, the application will be able to attain the following details: if a group has been

formed; the group owner’s IP address; if the current device is the group owner.

If a group has been formed, a request for group info can be inquired by executing the requestGroupInfo method. The following

information will be received by the application: the list of client devices that are currently part of the P2P group; the name of the

interface the group is using; the Service Set Identifier (SSID) of the group; the details of the group owner in a WifiP2pDevice

object; the group’s passphrase; if the current device is the group owner.

Fig. 7: The connection process

The createGroup method causes the current device to create an empty P2P group with itself acting as the group owner. This

method is only intended to be used in circumstances where the peer devices are legacy equipment, and will normally not be

used in ordinary Wi-Fi Direct operations.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

38

www.ijert.org
www.ijert.org
www.ijert.org

In order to perform a disconnection request to a connected group, the removeGroup method must be executed. By using the

method’s callback listener, the application will be able to know whether the request was successful or not. The removeGroup

method should be able of being triggered in the following states: wait for connection changed, wait for connection info, wait for

group info, connected.

• Intents and intent actions

An Android Intent is an abstract description of an operation to be performed. To achieve this operation, broadcast receivers with

intent filters need to be registered at the application. The following intent actions are relevant for Wi-Fi Direct:

WIFI_P2P_STATE_CHANGED_ACTION, WIFI_P2P_PEERS_CHANGED_ACTION,

WIFI_P2P_CONNECTION_CHANGED_ACTION, WIFI_P2P_THIS_DEVICE_CHANGED_ACTION.

To be able to initiate a discovery process and connect with peer devices, the Wi-Fi Direct mode must be enabled on the current

device. This information will be broadcasted by the Android system. By registering a broadcast receiver with an intent filter that

contains the WIFI_P2P_STATE_CHANGED_ACTION intent action, the application can be informed if the Wi-Fi Direct mode

is enabled on the current device. Every time the users turn on or off the Wi-Fi Direct mode, intent will be broadcasted causing

the application to always be updated on the Wi-Fi Direct mode’s status.

If the WIFI_P2P_PEERS_CHANGED_ACTION intent action is added to the filter, the application can be notified when peers

are discovered. This will most likely occur after a peer discovery process has been initiated. However, the application will

always be ready to receive this type of notification as long as the broadcast receiver is registered.

In order for the application to detect any changes in its Wi-Fi connectivity, the

WIFI_P2P_CONNECTION_CHANGED_ACTION intent action must be added to the filter. By adding the

WIFI_P2P_THIS_DEVICE_CHANGED_ACTION intent to the filter, the application will be informed when a change in the

device’s P2P properties has occurred. This could for instance happen when the devices status changes from being available to

be connected. When the intent action is triggered, the user interfaces of the application should be updated in order to give back

information of the device’s current status to the users.

2. Wi-Fi Direct API in the wpa supplicant

In wpa_supplicant, P2P module API11 consists of functions for requesting operations and for providing event notifications.

Similar set of callback functions are configured with p2p_config data structure to provide callback functions that P2P module

can use to request operations and to provide event notifications. In addition, there are number of generic helper functions that

can be used for P2P related operations.

These are the main functions for an upper layer management entity to request P2P operations:

- p2p_find(): start P2P find for device discovery phase;

- p2p_stop_find(): for stopping find in the device discovery phase;

- p2p_listen(): start Listen state for specified duration. This function can also be used to request the P2P module to keep

the device discoverable on the listen channel for an extended set of time;

- p2p_connect(): start the Group Owner negotiation for the group formation;

- p2p_reject(): explicitly block connection attempts and reject the peer device;

- p2p_prov_disc_req(): send provision discovery request;

- p2p_sd_request(): schedule a service discovery query;

- p2p_sd_cancel_request(): cancel a pending service discovery query;

- p2p_sd_response(): send response to a service discovery query;

- p2p_sd_service_update(): need to be called whenever there is a change in availability of the local services. It indicates

a change in local services;

- p2p_invite(): invite a P2P device into a group.

These are the main callback functions for P2P module to provide event notifications to the upper layer management entity:

- p2p_config::dev_found(): is used to notify that a new P2P device has been found during a search state or listen state;

- p2p_config::go_neg_req_rx(): is used to notify that a P2P device is requesting group owner negotiation and notify of a

receive Group Owner negotiation request;

- p2p_config::go_neg_completed(): notify that Group Owner negotiation has been completed;

- p2p_config::sd_request(): indicate the reception of a service discovery request;

- p2p_config::sd_response(): indicate the reception of a service discovery response;

- p2p_config::prov_disc_req(): indicate the reception of a Provision discovery request frame that the P2P module

accepted;

- p2p_config::prov_disc_resp(): indicate reception of a provision discovery response frame for a pending request

schedule with prov_disc_req();

- p2p_config::invitation_process(): can be used to implement persistent reconnect by allowing automatic restating for

persistent groups without user interaction. It is an optional callback for processing invitation;

- p2p_config::invitation_received(): is used to indicate sending of an Invitation response for a received Invitation

request;

11Defined in /external/wpa_supplicant_8/src/p2p/p2p.hwithin AOSP source tree.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

39

www.ijert.org
www.ijert.org
www.ijert.org

- p2p_config::invitation_result(): indicate result of an invitation procedure started by calling p2p_invite().

The P2P module uses following functions to request lower layer driver operations:

- p2p_config::p2p_scan(): request a p2p scan or search operation to be completed;

- p2p_config::send_probe_resp(): transmit a probe response frame. It is used to reply to probe request frames that were

indicated with a call to p2p_probe_req_rx();

- p2p_config::send_action(): transmit an action frame;

- p2p_config::send_action_done(): notify that Action frame sequence was completed;

- p2p_config::start_listen(): start listen state. Once the listen state has started, p2p_listen_cb() must be called to notify

the p2p module

- p2p_config::stop_listen(): stop listen state. It can be used a listen state operation that was previously requested with

start_listen().

Events from lower layer driver operations are delivered to the P2P module with following functions:

- p2p_probe_req_rx(): report reception of a probe request frame;

- p2p_rx_action(): report received action frame;

- p2p_scan_res_handler(): indicates a p2p scan results;

- p2p_scan_res_handled(): indicate end scan results;

- p2p_send_action_cb(): is used to indicate the result of an Action frame transmission that was requested with struct

p2p_config::send_action() callback;

- p2p_listen_cb(): indicate the start of a requested Listen state.

In addition to the per-device state, the P2P module maintains per-group state for group owners. This is initialized with a call to

p2p_group_init() when a group is created and deinitialized with p2p_group_deinit(). The upper layer GO management entity

uses following functions to interact with the P2P per-group state:

- p2p_group_notif_assoc(): notification of P2P client association with Group Owner;

- p2p_group_notif_disassoc(): notification of P2P client disassociation from Group Owner;

- p2p_group_notif_formation_done(): notification of completed group formation;

- p2p_group_match_dev_type(): match device types in group with requested type.

In the following we present how these functions are put together to guarantee the functionalities defined in the specification.

• Device Discovery

Device Discovery is a mandatory procedure to be supported by all P2P devices. It enables P2P devices to quickly find each

other and form a connection. It provided medium access scheme, channels management, time duration on each channel and

neighbours discovery. A P2P Device runs the Device Discovery procedure to detect the presence of other P2P Devices to which

the connection will be attempted in its wireless range. Two distinct phases are using namely Scan and Find. Device Discovery

uses Probe Request (PREQ) and Probe Response (PRESP) frames to exchange device information.

Before beginning the Scan phase, the global P2P module context is initialized by calling the p2p_init() function. This function

permits to keep a copy of the configuration data in the p2p_config structure. The initialization permit to configure some

parameters like the list of supported channels (p2p_channels structure), the maximum number of discovered peers to remember

(max_peers), whether concurrent operations are supported (concurrent_operations), the discoverable interval, etc. After the

initialization, the P2P Device begins the scan phase. The scan phase may be used to find other P2P Devices or P2P Groups and

to locate the best potential Operating Channel to establish a P2P Group. The p2p_scan() function is used to request a p2p scan

or search operation to be completed. Type arguments specify which type of scan is to be done: P2P_SCAN_FULL indicates that

all channels are to be scanned; P2P_SCAN_SOCIAL indicates that only the social channels should be scanned;

P2P_SCAN_SPECIFIC request a scan of a single channel that the frequency is known; P2P_SCAN_SOCIAL_PLUS_ONE

request a scan of all the social channels plus one extra channel that the frequency is known. The full scan type is used for the

initial scan because the P2P Device performs traditional Wi-Fi scan through all supported channels in the p2p_channels

structure defined in IEEE std 802.11 – 2012 Annex J [7] in order to collect information about the surrounding devices. The scan

is processing by sending or receiving Probe Request or Probe Response frames; this is done by the using of p2p_probe_req_rx()

and send_probe_resp() functions respectively. The results of the scan will be reported by calling p2p_scan_res_handler(), and

then calling p2p_scan_res_handled() to indicate that all scan results have been indicated and to terminate the process. The

following figure (fig.7) presents the scan phase process on Android.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

40

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 8: Scan process

Once the Scan phase is completed, the device enters into the Find phase. In the Find phase, the P2P Device alternates between

two states: Search and Listen. The find phase is initiated by the calling of the p2p_find() function, where the device will choose

the type of the find: P2P_FIND_START_WITH_FULL indicates that the find will be done on all channels present in the

p2p_channels structure; P2P_FIND_ONLY_SOCIAL indicates that the find will be done only on the social channels (channels 1,

6 and 11 in the 2,4 GHz band) and P2P_FIND_PROGRESSIVE indicates that the find will be done progressively in some

channels that the frequencies are known. The p2p_listen_in_find() function is called to pick a random dwell time for the listen

and the p2p_channel_to_freq() function permit to choose a listen channel and to convert it in the equivalent frequency. The

duration of each Listen phase shall be a random integer of 100 TU intervals. This random number shall be no greater than the

maxDiscoverableInterval (max_disc_int) value and no less than the minDiscoverableInterval (min_disc_int). On Android the

formula to compute the Listen duration is:

TU = (r % ((max_disc_int – min_disc_int) + 1) + min_disc_int) x 100

The defaults values of max_disc_int and min_disc_int are 3 and 1 respectively; these values are fixed in the initialization phase.

The start_listen() function initiate the listen with the frequency converted with p2p_channel_to_freq() function and (1024 x TU)

/ 1000 in parameters. In the Listen phase (p2p_listen() function) the P2P Device may receive Probe Request

(p2p_probe_req_rx()), send Probe Response (send_probe_resp()), receive a service discovery request (sd_request()), or send a

service discovery response (p2p_sd_response()) on the listen channel chosen previously.

P2P Devices in the Search phase shall invoke p2p_search() function to initiate that phase and shall make a P2P Scan with one

of these 3 types of scan: P2P_SCAN_SPECIFIC where the device scan only the known listen frequency of the peer during

Group Owner Negotiation start, P2P_SCAN_SOCIAL_PLUS_ONE where the device only scan the known listen frequency of

the peer during Invite start or P2P_SCAN_SOCIAL where the device only scan the socials frequencies to discover new devices.

In the Search phase, one or more Probe Request frames could be transmitted and the device shall not reply to these frames.

Service Discovery is an optional procedure. The procedure starts after the Device Discovery and prior to the Group Formation

procedure. It allows a P2P Device to connect to other P2P Devices by sending a service discovery request (p2p_sd_request()

function) and receiving a service discovery response (sd_response() function) only if the latter device offers the intended

service. The figure 8 following presents the Find phase process on Android.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

41

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 9: Find phase process

• Group Formation

Following a successful Device Discovery, P2P Devices can establish the P2P Group by using Group Formation Procedures.

These procedures provide self organization and topology organization mechanisms to build a group. During the Group

Formation, the device that will act as Group Owner (GO) is determined in GO Negotiation phase in order to define the topology

used. The Invitation phase permits to invite others devices into the persistent group. On Android, two types of P2P Group

Formation schemes are possible: Standard Group Formation and Persistent Group Formation. To start the group formation, the

P2P Device invoke the p2p_connect() function in which the p2p_stop_find() function is executed in order to stop the Find

phase. After that, the p2p_go_neg_start() function is called to initiate the Group Owner Negotiation phase to decide which

device will become the owner of the group in case of standard group formation; or the p2p_invite_start() function to begin the

Invitation phase in case of persistent group formation.

The GO Negotiation is a three way handshake and the p2p_connect_send() function is used to initiate this handshake. During

the handshake, the two devices exchange their intent to become GO by processing to the GO Negotiation Request

(p2p_process_go_neg_req() function) or to the GO Negotiation Response (p2p_process_go_neg_resp()). In these exchanges,

the devices send to each other a randomly chosen numeric value called “intent value”. The Intent value ranges from 0 to 15, and

it measures the desire of the P2P Device to be the P2P GO. The P2P Device sending the higher Intent value shall become GO.

In case bath P2P devices send equal GO Intent values, a tie breaker bit is used for decision and the device with tie breaker bit set

to 1 shall become GO. This mechanism is achieve in the p2p_go_det() function inside the GO Negotiation Request or the GO

Negotiation Response processes. The GO Negotiation Request or Response frames are send using the go_neg_req_rx() function.

Once the two devices are agree, the GO Negotiation Confirmation is process using p2p_process_go_neg_conf() function in

order to configure the GO, to send back the confirmation and to complete the GO Negotiation phase.

In Persistent Group Formation, a P2P Device sends an invitation to another P2P Device in order to instantiate the P2P Group,

this is done by using the p2p_invite_send() function. The P2P Invitation Request (process into the p2p_process_invitation_req()

function) and the P2P Invitation Response (process into the p2p_process_invitation_resp() function) frames are exchanged to

establish a persistent group. The following figure presents the Group Formation phase process on Android

Fig. 10: Group Owner Negotiation and Group formation process

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

42

www.ijert.org
www.ijert.org
www.ijert.org

After a successful GO negotiation, the Group Owner runs the DHCP to assign IP addresses to itself as well as to the Peer to Peer

clients or legacy clients in its group. The assigned addressing range is defined into the WifiP2pService file. These addresses are

declared as constants: SERVER_ADDRESS for the server (GO of the group) and DHCP_RANGE is the address range for

group clients.

V. WI-FI DIRECT TECHNICAL SPECIFICATION ON ANDROID OS

After the technical study of Wi-Fi Direct on Android, we propose in this section a formal specification. This formal

specification will permit to verify if it can really take into account certain MANET needs such as channel access, routing, auto

organisation, addressing and scaling. We analyzed the different java classes and C codes mentioned in the previous section to

highlight the formal specification using the Z and Object-Z (object-oriented version of Z) languages.

• Initialization and channel access

As we explained above, the application needs to do an initialization in the WifiP2pManager() class with initialize before doing

any p2p operation. In the initialization, a channel that connects the application to the Wi-Fi p2p framework is instanced. It

registers the application with the framework. This function initializes the Asyncchannel binder and must be the first to be called.

The WifiP2pManager() class presents a set of operations which are in fact methods of this class. These methods take the context

of the Asyncchannel binder and the listener as input parameters. The context of the Asyncchannel binder (some time called

Channel) is obtained after the initialization and the listener listen events on the Channel. Each operation sends a message (with

the same name as the operation) to the WifiP2pService() which will activate one or more states corresponding to the action. The

message is sent to the destination handler by using sendMessage method.

Message is the set of message sent to the WifiP2pService(),MsgFailed and MsgSucceeded are sets of failure and success

messages respectively corresponding to each message in the set Message and MsgResponse is the set of response messages

whose corresponding to the response of the request type messages.

Message = = ENABLE_P2P | DISABLE_P2P | DISCOVER_PEERS | CONNECT | CANCEL_CONNECT | CREATE_GROUP |

REMOVE_GROUP | REQUEST_PEERS | REQUEST_CONNECTION_INFO | REQUEST_GROUP_INFO

MsgFailed = = ENABLE_P2P_FAILED | DISABLE_P2P_FAILED | DISCOVER_PEERS_FAILED | CONNECT_FAILED |

CANCEL_CONNECT_FAILED | CREATE_GROUP_FAILED | REMOVE_GROUP_FAILED | REQUEST_PEERS_FAILED |

REQUEST_CONNECTION_INFO_FAILED | REQUEST_GROUP_INFO_FAILED

MsgSucceeded = = ENABLE_P2P_SUCCEEDED | DISABLE_P2P_SUCCEEDED | DISCOVER_PEERS_SUCCEEDED |

CONNECT_SUCCEEDED | CANCEL_CONNECT_SUCCEEDED | CREATE_GROUP_SUCCEEDED |

REMOVE_GROUP_SUCCEEDED | REQUEST_PEERS_SUCCEEDED | REQUEST_CONNECTION_INFO_SUCCEEDED |

REQUEST_GROUP_INFO_SUCCEEDED

MsgResponse = = RESPONSE_PEERS | RESPONSE_CONNECTION_INFO | RESPONSE_GROUP_INFO

GlobalMessage = Message ∪ MsgFailed ∪ MsgSucceeded ∪ MsgResponse

A set of failure reason: FailureReason = = ERROR | P2P_UNSUPORTED | BUSY

[Context] and [Looper] are sets of context and looper respectively while [ChannelListener], [ActionListener],

[PeerListListener], [ConnectionInfoListener] and [GroupInfoListener] are sets of listeners obtain after performing respectively

channelListener, actionListener, peerListListener, connectionInfoListener and groupInfoListener methods. The following

schema present the initialize method, it return the channel which is the context of the AsyncChannel binder whose looper

correspond to not null ChannelListener provide by the channelListener method.

 Initialize

Δ[Context]

Cl?: ChannelListener

Looper?: Looper

ChlLooper: [Looper] → [ChannelListener]

AsyncChannelState = STATUS_SUCCESFUL

C! = cont: Context ⦁(Cl? ≠NULL) ∧ (Looper ? ↦Cl ?) ∈ ChlLooper

C′ = C!

The success of this initialization makes it possible to launch p2p_init() function which allows to configure the device by

initializing the variables of the p2p_config structure in the wpa_supplicant. The schema following present some parameters of

the p2p_config structure:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

43

www.ijert.org
www.ijert.org
www.ijert.org

 P2p_config

Channel?, channel_forced,op_channel: u8

Channels?: [p2p_channels]

Pref_chan?: [p2p_channel*]

Max_peers?: ℕ*

Max_listen?: ℕ*

The channel and the op_channel parameters are respectively the own listen channel and the own operational channel of the

device, while the channel_forced is the listen channel was forced by configuration or by control interface and cannot be

overridden.Channels is the own supported regulatory classes and channels of the device; it is the list of supported channels per

regulatory class.Pref_chan is the preferred channels for GO Negotiation. Max_peers is the number of discovered peers to

remember by the device. If there are peers to discover, older entries will be removed to make room for the new ones and

max_listen is the maximum listen duration in milliseconds. Once initialized, the parameters of the channels will be converted

into the corresponding frequency (in MHz) by using p2p_channel_to_freq()function; this frequency will be used as input in

other functions such as: p2p_find(), start_listen(), p2p_search(), etc.

The channel method checks the status of the previously initialized channel and defines the messages to be returned to the

application after the response of the wifiP2pService().

 ChannelInit

Cl? : ChannelListener, Al? : ActionListener, Pll? : PeerListListener

Cil? : ConnectionInfoListener, Gil? : GroupInfoListener

RcvF : [Message] ↣ [MsgFailed], RcvS : [Message] ↣ [MsgSucceeded]

RcvRep : [Message] ↣ [MsgResponse]

AsyncChannelState ≠CMD_CHANNEL_DISCONNECTED

Cl? ≠NULL

 Failed

Al? ≠NULL

∃ x : MsgFailed ⦁((m? ↦ x) ∈RcvF) ∧ (m ∈domRcvF)

Al′ = actionListener.onFailure

 Success

Al? ≠NULL

∃ y : MsgSucceeded ⦁((m? ↦y) ∈RcvS) ∧ (m ∈domRcvS)

Al′ = actionListener.success

 Peers

Rep?: MsgResponse

Pll? ≠NULL

Rep? = RESPONSE_PEERS

((m? ↦Rep?) ∈RcvRep) ∧ (m? ∈domRcvRep)

Pll′ = peerListListener.onPeersAvailable

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

44

www.ijert.org
www.ijert.org
www.ijert.org

 ConnectionInfo

Rep?: MsgResponse

Cil? ≠NULL

Rep? = RESPONSE_CONNECTION_INFO

((m? ↦Rep?) ∈RcvRep) ∧ (m? ∈ domRcvRep)

Cil′ = connectionInfoListener.onConnectionInfoAvailable

 GroupInfo

Rep?: MsgResponse

Gil? ≠NULL

Rep? = RESPONSE_GROUP_INFO

((m? ↦Rep?) ∈RcvRep) ∧ (m? ∈domRcvRep)

Gil′ = groupInfoListener.onGroupInfoAvailable

Channel≙ChannelInit∧ (Failed∨Success∨Peers∨ConnectionInfo∨GroupInfo)

The operations performed are represented by the following schemas.

 OperationInit

C?: Context; M?: Message

Al?: ActionListener; Pll?: PeerListListener

Cil?: ConnectionInfoListener; Gil?: GroupInfoListener

C? ≠NULL

 EnableP2p

(M? = ENABLE_P2P)⇒ sendMessage(M?)

DisableP2p

(M? = DISABLE_P2P)⇒ sendMessage(M?)

DiscoverPeers

(M? = DISCOVER_PEERS)⇒ sendMessage(M?, Al?)

 Connect

Conf?: Config

Conf? ≠NULL

(M? = CONNECT) ⇒sendMessage(M?, Al?, Conf?)

CancelConnect

(M? = CANCEL_CONNECT)⇒ sendMessage(M?, Al?)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

45

www.ijert.org
www.ijert.org
www.ijert.org

CreateGroup

(M? = CREATE_GROUP)⇒ sendMessage(M?, Al?)

RemoveGroup

(M? = REMOVE_GROUP)⇒ sendMessage(M?, Al?)

RequestPeers

(M? = REQUEST_PEERS)⇒ sendMessage(M?, Pll?)

RequestConnectionInfo

(M? = REQUEST_CONNECTION_INFO)⇒ sendMessage(M?, Cil?)

RequestGroupInfo

(M? = REQUEST_GROUP_INFO)⇒ sendMessage(M?, Gil?)

Then Operation≙OperationInit∧ (EnableP2p ∨ DisableP2p ∨ DiscoverPeers ∨ Connect ∨ CancelConnect ∨ CreateGroup ∨

RemoveGroup ∨ RequestPeers ∨ RequestConnectionInfo ∨ RequestGroupInfo)

The schema of INIT initializes the parameters used in the WifiP2pManager() class to provide theirs operations.
 INIT

M?: Message, Rang = = {1, 4, 7, 10, 13, 16, 19, 22, 24, 26}

BASE?, BASE_WIFI_P2P_MANAGER? : ℕ

Mrang: [Message] ↣Rang

BASE? = BASE_WIFI_P2P_MANAGER

(M? ↦1) ∈ Mrang ⇒(((M? = = ENABLE_P2P) ∧ (M? = BASE + 1)) ∧((M? ↦x) ∈RcvF

⇒ ((x = =ENABLE_P2P_FAILED) ∧ (x = BASE + 2))) ∧ ((M? ↦y) ∈RcvS ⇒((y = = ENABLE

_P2P_SUCCEEDED) ∧ (y = BASE + 3))))

(M? ↦4) ∈ Mrang ⇒(((M? = = DISABLE_P2P) ∧ (M? = BASE + 4)) ∧((M? ↦x) ∈RcvF

⇒ ((x = =DISABLE_P2P_FAILED) ∧ (x = BASE + 5))) ∧ ((M? ↦y) ∈RcvS ⇒((y = = DISABLE

_P2P_SUCCEEDED) ∧ (y = BASE + 6))))

(M? ↦7) ∈ Mrang ⇒(((M? = = DISCOVER_PEERS) ∧ (M? = BASE + 7)) ∧((M? ↦x) ∈RcvF

⇒ ((x = =DISCOVER_PEERS_FAILED) ∧ (x = BASE + 8))) ∧ ((M? ↦y) ∈RcvS ⇒((y = = DISCOVER

_PEERS_SUCCEEDED) ∧ (y = BASE + 9))))

(M? ↦10) ∈ Mrang ⇒(((M? = = CONNECT) ∧ (M? = BASE + 10)) ∧((M? ↦x) ∈RcvF

⇒ ((x = =CONNECT_FAILED) ∧ (x = BASE + 11))) ∧ ((M? ↦y) ∈RcvS ⇒((y = = CONNECT

_SUCCEEDED) ∧ (y = BASE + 12))))

(M? ↦13) ∈ Mrang ⇒(((M? = = CANCEL_CONNECT) ∧ (M? = BASE + 13)) ∧((M? ↦x) ∈RcvF

⇒ ((x = =CANCEL_CONNECT_FAILED) ∧ (x = BASE + 14))) ∧ ((M? ↦y) ∈RcvS ⇒((y = = CANCEL

_CONNECT_SUCCEEDED) ∧ (y = BASE + 15))))

(M? ↦16) ∈ Mrang ⇒(((M? = = CREATE_GROUP) ∧ (M? = BASE + 16)) ∧((M? ↦x) ∈RcvF

⇒ ((x = =CREATE_GROUP_FAILED) ∧ (x = BASE + 17))) ∧ ((M? ↦y) ∈RcvS ⇒((y = = CREATE

_GROUP_SUCCEEDED) ∧ (y = BASE + 18))))

(M? ↦19) ∈ Mrang ⇒(((M? = = REMOVE_GROUP) ∧ (M? = BASE + 19)) ∧((M? ↦x) ∈RcvF

⇒ ((x = =REMOVE_GROUP_FAILED) ∧ (x = BASE + 20))) ∧ ((M? ↦y) ∈RcvS ⇒((y = = REMOVE

_GROUP_SUCCEEDED) ∧ (y = BASE + 21))))

(M? ↦22) ∈Mrang ⇒(((M? = = REQUEST_PEERS) ∧ (M? = BASE + 22)) ∧ (M ? ↦x) ∈RcvRep

⇒((x = = RESPONSE_REQUEST_PEERS) ∧ (x = BASE + 23)))

(M? ↦24) ∈Mrang ⇒(((M? = = REQUEST_CONNECTION_INFO) ∧ (M? = BASE + 24)) ∧

(M ? ↦x) ∈RcvRep ⇒((x = = RESPONSE_CONNECTION_INFO) ∧ (x = BASE + 25)))

(M? ↦26) ∈Mrang ⇒(((M? = = REQUEST_GROUP_INFO) ∧ (M? = BASE + 26)) ∧ (M ? ↦x) ∈RcvRep

⇒((x = = RESPONSE_GROUP_INFO) ∧ (x = BASE + 27)))

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

46

www.ijert.org
www.ijert.org
www.ijert.org

Finally the specification of WifiP2pManager is given by:

WifiP2pManager ≙INIT ∧ Initialize ∧ Channel ∧ Operation

• Auto organization and group created state

Applications communicate with WifiP2pService to issues device and connectivity requests through the WifiP2pManager

interface. The state machine communicates with the Wi-Fi driver through wpa_supplicant and handles the event responses

through wifiMonitor. The methods of this java class are the different states of the state machine. Each state implements three

main methods: enter() to activate the state, processMessage() that processes actions related to the reception of either message

from the WifiP2pManager through the binder or event from wpa_supplicant through the WifiMonitor and exit() to close and exit

to the state. The states implemented in the p2p state machine are presented in figure 4. We present here the formal specification

of the groupCreatedState method which corresponds to the GroupCreatedState state.

We define WMEvent, a set of events sent by the WifiMonitor and MsgWFManager, a set of message sent par WifiP2pManager.

WMEvent = = AP_STA_CONNECTED_EVENT | AP_STA_DISCONNECTED_EVENT |

P2P_GROUP_REMOVED_EVENT | P2P_DEVICE_LOST_EVENT | P2P_INVITATION_RESULT_EVENT |

P2P_PROV_DISC_PBC_REQ_EVENT | P2P_PROV_DISC_ENTER_PIN_EVENT | P2P_GROUP_STARTED_EVENT

MsgWFManager = = CONNECT | REMOVE_GROUP; MsgWFManager⊂Message

The following schema present the enter() method for the GroupCreatedState state.

 Enter

STATUS: ℕ

Role = = GO | Client

DevRole : [Device] ↣Role

D?: Device;

D?.STATUS = CONNECTED

(D? ↦r) ∈ DevRole ∧(r = GO)

D?.Addr = SERVER_ADDRESS

Rep! = sendP2pConnectionChangedBroadcast

In the GroupCreatedState state, any element of WMEvent or MsgWFManager received, messages are processed according to the

events.

If a device connects in the group, which corresponds to the receipt of the AP_STA_CONNECTED_EVENT event sent by the

WifiMonitor.It should be noted that a new device can connect to the group only if the number of peers currently present in the

group is still less than themax_peersof the GO.

 ConnectedEvent

Wfe? : WMEvent

Wfe? = AP_STA_CONNECTED_EVENT

D?.Addr ≠ NULL

D?.STATTUS = CONNECTED

D? ∉ Group ∧ DevRole(D?) ≠GO

Group′ = Group ∪{D?}

#Group′ = #Group + 1

Rep? = sendP2pPeersChangedBroadcast

Or if a device leaves the group, which corresponds to the receipt of the AP_STA_DISCONNECTED_EVENT event, the

schema is the following.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

47

www.ijert.org
www.ijert.org
www.ijert.org

 DisconnectEvent

Wfe?: WMEvent

[iface]; p2pGroupRemove : [iface] ↣{T, F}

If? : iface

Wfe? = AP_STA_DISCONNECTED_EVENT

D?.Addr ≠ NULL

D?.STATUS = AVAILABLE

D? ∈ Group ∧ DevRole(D?) ≠GO

Group′ = Group ∖{D?}

#Group′ = #Group – 1

(Group′ = ∅) ⇒ (D?.If?↦T) ∈p2pGroupRemove

 DeviceLostEvent

Wfe? = p2p_DEVICE_LOST_EVENT

D?.Addr ≠ NULL

DevRole(D?) = GO ∧ D? ∈Group

Group ∖{D?} ⇒ (D?.If ↦ T)

If the CONNECT message is received from the WifiP2pManager, we have the two following schemas

 ConnectT

Wpm?: MsgWFManager

P2pInvite : [Device] ↣ {T, F}

Wpm? = CONNECT

D?.Addr ≠ NULL

(P2pInvite(D?) ≠F) ⇒D?.STATUS = INVITED

Rep! = sendP2pPeersChangedBroadcast

wifiP2pManager = CONNECT_SUCCEEDED

 ConnectF

(P2pInvite(D?) = F) ⇒wifiP2pManager = CONNECT_FAILFED

And Connect≙ConnectT∨ConnectF

If the group is destroyed:

 RemoveGroup

If?: Iface

Wpm? = REMOVE_GROUP

P2pGroupRemove (If?) = F

wifiP2pManager = REMOVE_GROUP_SUCCEEDED

So we have the following schema

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

48

www.ijert.org
www.ijert.org
www.ijert.org

ProcessMessage≙ConnectEvent∨DisconnectEvent∨Connect∨RemoveGroup

The exit() method of the state is represent by:

 Exit

STATUS:ℕ

Role = = GO |Client

DevRole: [Device] ↣Role

D?: Device

D?.STATUS = AVAILABLE

D ? ∈Group

(DevRole(D ?) = GO) ⇒ (D ?.Addr =Null)

Rep! = sendP2pConnectionChangedBroadcast

Then groupCreatedState ≙ Enter ∨ ProcessMessage ∨ Exit

• Addressing

To allow communications in the group, each device must have an address. Wi-Fi Direct uses class C IPv4 addresses in the

192.168.49.x, x ∈ [1, 254]; with the mask on 3 bytes. The addressing of devices in the group is as follows:

 GOAddressing

ΞDevice

X!:ℕ

D?: Device

DevRole: [Device]↣Role

(D?∈Group)∧ (DevRole (D?) = GO)

X! = 1

 ClientAddressing

ΞDevice

CA: ℙℕ

X!:CA

D?: Device

DevRole: [Device] ↣Role

(D? ∈Group) ∧ (DevRole (D?) = Client)

X′∈ CA

X′≥2

X′≤254)

X! = X′

The in the group Addressing ≙ GOAddressing ∧ ClientAddressing

VI. DISCUSSION

The detailed study of the Wi-Fi Implementation on Android and the formal specification reveal that

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

49

www.ijert.org
www.ijert.org
www.ijert.org

Wi-Fi Direct is an interesting and suitable candidate technology for ad hoc communication in several applications, but his

implementation on the Android OS has some limits on several levels relatively to the formation of a large scale Ad hoc network:

• In terms of connection and association: the scan, listen, and search processes may consume considerable amount of

time in Wi-Fi Direct. Two devices attempting a peer discovery can share probe messages only if a search phase and a

listen phase is met on the same channel. However, these phases are randomized; as each listen phase of a device can

vary from a random multiplier of 100 time units. Therefore, two devices could attempt multiple discoveries before

actually synchronizing their channels, which could consume time in scales of seconds. Moreover, this delay can be

relatively high if several P2P Devices are simultaneously performing Device Discovery in the same wireless range.

Another limit comes from access to the communication channel: it is impossible for a device to have several

communication channels at the same time since the p2p_init() function just permit to reserve a specific random channel

(a frequency) on which the p2p group formation process will be initiated. So each p2p group can only work on one

communication channel. However only the devices supporting concurrent operations can also be connected to a BSS of

Wi-Fi while connected to the P2P Group. A device supports concurrent operations when the concurrent_operations

parameter was initialized during the configuration.

• At the topology and mobility: In Android, upper-layer applications can specify a Group Owner Intent; otherwise the

Wi-Fi Direct framework simply sets it with a random value. The Group Owner election mode based on the Intent value

is not optimal enough, since based on a single criterion. It can happen that after GO Negotiation, equipment having

reduced performances becomes Group Owner at the expense of another which has higher performances. Once the

group is created, all communication goes through the Group Owner. Clients cannot communicate directly without pass

to the GO. So the GO acts as a router within the group, but he cannot communicate simultaneously with Clients that

are belonging in the group. Moreover, the number of devices that can be associated in a P2P Group depends on the

maximum number of discovered peers the GO can remember, which limits the scale of the group and if the GO is

leaving the group, the group is destroyed making the GO the central equipment of the group.

• At the addressing and routing: In Android devices, once a Wi-Fi Direct connection is established, the Group Owner

will always have 192.168.49.1 IP address and Clients in the group will have different addresses (192.168.49.x /24,

where x is a random number ∈ [2, 254]) according to GO assignments. This method of assigning addresses can cause

conflicts in case the Group Owner is part of several groups.

In fact the Peer to Peer interfaces of all Group Owners have the same IP address, namely 192.168.49.1. The Wi-Fi

interfaces of the Group Owners that act as legacy clients in another group are assigned an IP address in the format

192.168.49.x/24. Similarly, Peer to Peer interfaces of clients are assigned different IP addresses in the format

192.168.49.x/24. This provides the address conflicts for Peer to Peer interface of the Group Owners. Thus even if there

is a way to allow multi-group membership, the devices in different groups may not be able to reach each other

especially since no routing mechanism is defined.

VII. CONCLUSION

Wi-Fi Direct is one of the promising technologies to establish MANET among mobile devices because of its high popularity in

Android OS, high data rate and long communication range. The protocol has also the potential to be used in several applications

such as files transferring, sharing resources, online gaming, alert dissemination, social networking, etc. Most of research work is

focused on the performance evaluation Wi-Fi Direct. Providing efficient group formation techniques and supporting multi-hop

communication are part of the key research issues highlighted in the literature. In this paper, we presented a technical overview

of Wi-Fi Direct technology on Android in order to well understand its implementation. We took out the layer structure of the

Wi-Fi Direct framework on Android by presenting the different classes and their interactions in each layer. The main

components of the Wi-Fi Direct framework on Android are the WifiP2pManager() class found in the SDK and the

wpa_supplicant package in the HAL. We showed how the WifiP2pManager() class works for discovery and connection to

peers. We have explained and presented the group formation and group owner election mechanisms in the wpa_supplicant. We

provide also the formal specification of some classes by using Z and Object-Z specification languages. Which leads us raise the

limits of Wi-Fi Direct implementation on Android in terms of the development of large-scale networks. These limits are of

several orders: in the connection and association, in topology and mobility and in the addressing and routing. To implement new

solutions on Android with Wi-Fi Direct, we can make changes in the WifiP2pManager()and WifiP2pService() classes and in

some functions of the wpa_supplicant; e.g. p2p_connect(),p2p_invite() for MANETs functionalities or p2p_find(), p2p_listen()

for implementing new device discovery mechanisms.

REFERENCES
[1] M. Asif Khan, W. Cherif, F. Filali, and R. Hamila, “Wi-Fi Direct Research – Current status and Future perspectives,” Journal of Network and

Computer Applications, Vol. 93, pp 245-258, 2017.

[2] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-Device Communications with Wi-Fi Direct: Overview and
Experimentation,”IEEE Wireless Communications, vol. 20, no. 3, pp.96-104, 2013.

[3] M. Conti, F. Delmastro, G. Minutiello, and R. Paris, “Experimenting opportunistic networks with Wi-Fi Direct,” Wireless Days (WD), 2013

IFIP, pp. 1–6, 2013.
[4] H. Je, D. Kwon, H. Kim, and H. Ju, “Mobile Network Configuration for Large-scale Multimedia delivery on a single WLAN,” 2014.

[5] R. Kanaoka and Y. Tobe, “Design of Data Transfer System on Smartphones using Wi-Fi Direct and Accelometers,” IEEE 3rd Global
Conference on Consumer Electronics, GCCE 2014, pp.71-75, 2014.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

50

www.ijert.org
www.ijert.org
www.ijert.org

[6] “Wi-fi peer-to-peer (p2p) technical specification V1.7”, WiFi Alliance, Tech. Rep., 2016.
[7] IEEE 802.11-2012 IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and

metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications, Mar. 2012.
[8] W. Sun, C. Yang, S. Jin, and S. Choi, “Listen Channel Randomization for Faster Wi-Fi Direct Device Discovery,” The 35th Annual IEEE

International Conference on Computer Communications. IEEE INFOCOM. 2016.

[9] J. Han, K. W. Lim, and Y. B. Ko, “Fast Location-based Association of Wi-Fi Direct for Distributed Wireless Docking Services,” International
Conference on Green and Human Information Technology (ICGHIT), 2014.

[10] J. Feng, Z. Liu, and Y. Ji, “Wireless Channel Loss Analysis – A Case Study Using Wi-Fi Direct,” International Wireless Communications and

Mobile Computing Conference (IWCMC), 2014.
[11] H. Yoo, S.Kim, S. Lee, J. Y. Hwang, and D. Kim, “Traffic-aware Parameter tuning for Wi-Fi Direct Power Saving,” International Conference

on Ubiquitous and Future Networks (ICUFN), 2014.

[12] K. W. Lim, Y.Seo, Y. B. Ko, J. Kim, and J. Lee, “Dynamic Power Management in Wi-Fi Direct for Future Wireless Serial Bus,” Wireless
Networks, vol.20, no.7, pp.1777-1793, 2014.

[13] K. W. Lim, W. S. Jung, and Y. B. Ko, “Energy Efficient Quality-of-Service for WLAN-Based D2D Communications,” Ad Hoc Networks, vol.

25, pp.102-116, 2015.
[14] D. Camps-Mur, X. Pérez-Costa, and S. Sallent-Ribes, “Designing energy efficient access points with Wi-Fi Direct,” Computer Networks,

vol.55, no. 13, pp 2838-2855, 2011.

[15] H. Zhang, Y. Wang, and C. C. Tan, “Wd2: An improved wi-fi-direct group formation protocol,” in Proceedings of the 9th ACM MobiCom
workshop on Challenged networks. ACM, 2014, pp. 55–60.

[16] U. Botrel Menegato, L. Souza Cimino, S. E. Delabrida Silva, F. A. Medeiros Silva, J. Castro Lima, and R. A. R. Oliveira, “Dynamic clustering

in wifi direct technology,” in Proceedings of the 12th ACM international symposium on Mobility management and wireless access. ACM, 2014,
pp. 25–29.

[17] A. A. Shahin, and M. Younis, “Efficient multi-group formation and communication protocol for wi-fi direct,” in Local Computer Networks

(LCN), 2015 IEEE 40th Conference on. IEEE, 2015, pp. 233–236.
[18] V. Arnaboldi, M. G. Campana, and F. Delmastro, “Context-Aware Configuration and Management of WiFi Direct Groups for Real

Opportunistic Networks,” IEEE 14th International Conference on Mobile Ad hoc and Sensors Systems (MASS), 2017.
[19] A. Laha, X. Cao, W. Shen, X. Tian, and Y. Cheng, “An Energy Efficient Routing Protocol for Device-to-Device Based Multihop Smartphone

Networks,” IEEE International Conference on Communications (ICC), 2015.

[20] M. A. Khan, W. Cherif, and F. Filali, “Group Owner Election in Wi-Fi Direct,” IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), 2016.

[21] A. A Shahin, and M. Younis, “A Framework for P2P Networking of Smart Devices Using Wi-Fi Direct,” IEEE 25th International Symposium

on Personal, Indoor and Mobile Radio Communications, 2014.
[22] W. Cherif, M. A. Khan, F. Felali, S. Sharafedine, and Z. Dawy, “P2P Group Formation Enhancement for Opportunistic Networks with Wi-Fi

Direct,” IEEE Wireless Communications and Networking Conference (WCNC), 2017.

[23] I. M. Lombera, L. E. Moser, P. M. Melliar-Smith, and Y. T. Chuang, “Peer Management for iTrust over Wi-Fi Direct,” International
Symposium on Wireless Personal Multimedia Communications, 2013.

[24] J. E. Park, J. Park, and M. J. Lee, “DirectSpace: A Collaborative Framework for Supporting Group Workspaces over Wi-Fi Direct,” 4th

International Conference on Mobile, Ubiquitous, and Intelligent Computing (MUSIC), 2013.
[25] Y. Duan, et al. “Wi-Fi Direct Multi-group Data Dissemination for public Safety,” World Telecommunications Congress (WTC), 2014.

[26] C. Casetti, C. F. Chiasserini, L. C. Pelle, C. Del Valle, Y. Duan, and P. Giaccone, “Content-centric routing in wi-fi direct multi-group

networks,” in 2015 IEEE 16th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2015,
pp. 1-9.

[27] Z. Wang, F. Li, X.Wang, T. Li, and T. Hong, “A Wi-Fi Direct Based Local Communication System,” IEEE IWQoS, 2018.

[28] K. Liu, W. Shen, B. Yin, X. Cao, L. X. Cai, and Y. Cheng, “Development of Mobile Ad-hoc with Off-the-Shelf Android Phones,” Ad-hoc and
Sensor Networking Symposium, IEEE ICC, 2016.

[29] J. Loo, J. L. Mauri, and J. H. Ortiz “Mobile Ad Hoc Networks: Current Status and Future Trends” CRC Press, 2011.

[30] L. Van Hoang and H. Ogawa, “A platform for building ad hoc social networks based on Wi-Fi Direct,” IEEE 3rd Glob. Conf. Consum.
Electron., pp. 626-629, 2014.

[31] Downloading Android source tree: https://source.android.com/setup/build/downloading. Visited on 17 December 2018.

[32] B. Zores, “Dive Into Android Networking: Adding Ethernet Connectivity,” ABS, 2013 available on line https://speakerdeck.com/gxben/dive-
into-android-networking-adding-ethernet-connectivity-1. Visited on 15 December 2018.

[33] Android Platform Architecture: https://developer.android.com/guide/platform/ visited on 17 December 2018.

[34] Android API reference: https://developer.android.com/reference/ visited on 12 December 2018.
[35] Wi-Fi Direct innovation: http://www.wi-fi.org/discover-wi-fi/wi-fi-direct, visited on 29 November 2018.

[36] S. Ranakarthik and C Zang, “Generating Java Skeletel code with Design Contracts from Specifications in a Subset of Object-Z”International

Conference on Computer and Information Science (ACIS) 2006.
[37] A. F. Al Azzawi, M. Bettaz, and H. M. Al-Refai, “Generating Python Code from Object-Z Specifications” International Journal of Software

Engineering & Applications (IJSEA), vol8. N°4. July 2017.

[38] M. Najafi and H. Haghighi, “An Approach to animate Object-Z Specifications using C++”, Scientia Iranica, April 2012.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV9IS020036
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 9 Issue 02, February-2020

51

https://source.android.com/setup/build/downloading
https://speakerdeck.com/gxben/dive-into-android-networking-adding-ethernet-connectivity-1
https://speakerdeck.com/gxben/dive-into-android-networking-adding-ethernet-connectivity-1
https://developer.android.com/guide/platform/
https://developer.android.com/reference/
http://www.wi-fi.org/discover-wi-fi/wi-fi-direct
www.ijert.org
www.ijert.org
www.ijert.org

