
Android based Mathematical Expression

Evaluation from Images

Aanal Patel

IT Dept., LDRP-ITR,

Sector-15, Gandhinagar,

Gujarat, INDIA

Dhiren Pandit
Science & Humanities Dept., LDRP-ITR,

Sector-15, Gandhinagar,

Gujarat, INDIA

Neel Acharya
CE Dept., LDRP-ITR,

Sector-15, Gandhinagar, Gujarat, INDIA

Abstract—Current era is an era of automated systems and

machine learning plays vital role in construction of automated

systems. In machine learning, neural network is key tool. OCR is

used for recognition of characters from printed text and

mathematical tool of neural network is used for classification.

Proposed system combines OCR and Mathematics, hence a

system is designed that can compute mathematical expressions

from images which contains equations. OCR systems can be used

to convert the image of expression to a string of mathematical

expressions and then combined with Mathematical libraries and

compiler to obtain solution of such mathematical expressions

Keywords— OCR, Expression, Android, Neural Networks,

Evaluation, Image Processing, Character detection, Printed

Character Recognition

I. INTRODUCTION
Closed-Form Expression evaluation is one of the easiest

task in mathematics. Its Computer application is also one such
easy task. With built-in operators many mathematical simple
equations can be easily solved using computers. However, with
increase in mathematical complexity the solution of the
equation becomes increasingly tougher task. This is due to
need of more complex techniques of problem solution and
more complex algorithmic procedures. Many such systems
exist today that help us solve complex mathematical equations.
With combination of such systems and an Optical Character
Recognition system this problem can be transformed to a new
domain of printed expression calculation.

II. M-EXPRESSION FOR MATHEMATICAL

EXPRESSION EVALUATION

M-Expression is one such android and java based system

under development that does the task of printed expression

calculation. The front-end is an android application that allows

a user to choose an image of printed expression which is then

forwarded to the java based back-end that does the task of

OCR and then obtains the expression in a form that the java

code can calculate it. This is then further processes with a

math library to compile and find errors if any. In case of no

errors, the expression is evaluated and a response comprising

of calculated answer is sent to the front-end. For the task of

OCR, a neural network based approach has been taken that

uses a java library to train the dataset of fonts which can be

used to classify the test image. Along with a basic set of

mathematical operations (like addition, subtraction,

multiplication, division, power), relational operations (like

equals, not-equals, less-than, greater-than, less-than or equals,

greater-than or equals) Boolean operation (like and, or, not)

are supported. Also trigonometric functions (like sine, cosine,

...) and other complex mathematical operations (like ceil,

floor, log, ...) are supported.

A. Flow Diagram

Start

Load image

Pre-Process image

Image API

Detect
characters and
separate them

Classification task / OCR
(Neural-Network)

Character
detection error?

No

Error in OCR?

No

Expression in
string form

Connector 1

Yes

Yes

Connector 2

Fig. 1. Flow-chart part-1

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080475

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 612

Yes

Mathematical
processing

End

Compile
expression

Error ?

Yes

No

Evaluate
Expression

Answer

Connector 1Connector 2

Fig. 2. Flow-chart part-2

B. Preprocessing

Once an image of mathematical expression is loaded in the

system, the image is pre-processed. Pre-processing step

includes enhancing the image and grey scale conversion. This

step makes the image ready to be properly processed and

removes chances of minor errors in the OCR process [1]. For

this purpose, different filters are used. In this work following

filters are used for better recognition rate.

1. RGB to Grayscale (Dimension Reduction)

Given input colored image has three dimensional pixel value

(RGB). Hence matrix obtained for this input colored image is

three dimensional matrix. It is quite difficult to perform image

processing technique on three dimensional matrix, hence for

suitable and smoother processing the image is converted in

gray format. A gray image has two dimensional pixel value

which lies between [0, 255] as per the gray value of a pixel

[2].

Fig. 3. Dimensional Reduction using RGB to Gray

i. Gaussian Blur filter

Once grayscale image is obtained, filters are applied for

smoothing image. Smoothing, also called blurring, is a simple

and frequently used image processing operation. Many

reasons are there for use of this filter but here smoothing

filters are used in order to reduce noise. There are many filters

for smoothing but the most common type of filters are linear,

in which an output pixel’s value is determined as a

weighted sum of input pixel values (). But most

useful filter is Gaussian filter. Gaussian filtering is done by

convolving each point in the input array with a Gaussian

kernel and then summing them all to produce the output array.

Following is an image of 1D Gaussian kernel.

Fig. 4. 1 D Gaussian kernel

Assuming that an image is 1D, it can be noticed that the pixel

located in the middle would have the biggest weight. The

weight of its neighbors decreases as the spatial distance

between them and the center pixel increases.

2D Gaussian can be represented as:

Where is the mean(peak) and represents the variance.

Fig. 5. Effect of Gaussian filter

ii. Adaptive threshold

Image binarization or thresholding is an important tool in

image processing and computer vision, to extract the object

pixels in an image from the background pixels. A number of

methods have already been proposed for image thresholding.

Bi-level image is used as a pre-processing unit in several

applications. The use of binary images decreases

computational load for the overall application. These

applications include document analysis, optical character

recognition system, scene matching, quality inspection of

materials etc. The thresholding process computes the threshold

value that differentiate object and background pixels. Under

varying illumination and noise, the thresholding can become a

challenging job. A number of factors contribute to complicate

the thresholding scheme including ambient illumination,

variance of gray levels within the object and the background,

inadequate contrast, object shape and size non-commensurate

with the scene. A wrong selection of threshold value may

misinterpret the background pixel and can classify it as object

and vice versa, resulting in overall degradation of system

performance. In document analysis, thresholding is sensitive

to noise, surrounding illumination, gray Ievel distribution,

local shading effects, inadequate contrast, the presence of

dense non-text components such as photographs, etc. There

are a number of important performance requirements that need

Input Image Grayscale Image

Dimension

Reduction

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080475

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 613

to be considered while thresholding gray level images. These

include:

a) Loss of features after thresholding input image should be

zero or minimum. b) The features (objects) with similar

relative gray levels should have same binary values in the

processed output image. c) Thc effect of noise of minor gray

level variations should be eliminated.

Fig. 6. Effect of Adaptive threshold

C. Character detection

Next the system will separate the image into individual

character images. This is done by reading the pre-processed

greyscale converted image pixel by pixel. A group of black

pixels spaced by a minimum threshold is considered as a

character in the image. This can be achieved by moving a

variable sized window over the image pixel array and then

adjusting the window till a suitable group of pixels with

predefined threshold distance has been found [3][4].

D. Classification / OCR

After detecting each character, the next job is to classify the

characters into the clusters of predefined characters. To be

straight to the target with the arrow, this step involves OCR

technique to detect the character. For this purpose, we use a

properly trained neural network that does our job.

Neural network consists of n input neurons. Where

n=(height)x(width) of individual character in the detection

step [5][6][7].

The number of output neuron is m, where m=the number of

total detectable characters.

There could be any amount of hidden neurons but it was

experimentally found that 11 to 15 hidden neuron layers give

optimal result. (IN our case it is 12 hidden layers) [8][9] [10].

Multilayer perceptrons can easily learn tougher patterns &

complex decision boundaries using feed forward and back

propagation algorithms.

For any input N = (N1, N2, N3, …, Nn) are considered to be

input layer. Every connection between 2 neutrons/perceptrons,

there is an associated weight, Wab (Weight of a connection

from node an in a layer to node b in next layer).

N1 N2 N3 N4 Nn

A B C D

W X Y Z

M1 M2 M3 Mm

Hidden
Layer

Output
Layer

Input Layer

Fig. 7. Neural network: Input layer, Hidden layer, Output layer

Similarly, there are output neurons M = (M1, M2, M3, …, Mm)

that provide output of the network. In our case the input

values, (N1, N2, N3, …, Nn) consists of the pixels of the input

character detected. The output layer in our case consists of m

node (neurons) each representing a character and the output at

any output node (neurons) is either 1 or 0, 1 at the place of

character detected & 0 for the rest of outputs. This outputs are

ideal & may deviate slightly in practical world.

There is a connection between input node (neuron) & output

node (neuron) via one or more hidden nodes (neurons).

The value of any node is the weighted sum of all the input

values to the node.

Back propagation algorithm:

 Initialization network weights

 Until the termination:

{

For each training example:

{

Propagate the input forward to the network and

compute the observed outputs.

Propagate the errors backward as follows:

For each network output unit o calculate its error

term

Where, Vo is the value of node k

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080475

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 614

For each hidden unit calculate its error term,

Where, Vk is the value of node k

Finally, update each weight

Where,

}

}

Important parameters in the above algorithm:

Two most important parameters in BACKPROPAGATION

are the learning rate and the momentum.

 Learning Rate: in the above algorithm the weights of

the nodes are updated by:

 ,

this parameter is called the learning rate.

 Momentum: The weight update part of the equation

can be modified in a way that the update in nth

iteration also affected by the previous iteration in

multiples of what is called a momentum factor. By

adding this term to the formula, the update rule will

be: . Momentum

takes values in the range 0 ≤ α < 1.

E. Mathematical-Processing (Compiling + Evaluation)

For compiling a mathematical expression in we use a classical

calculator stack approach that pushes in the operators and

operands one by one into a stack and once everything is in the

stack, the stack is evaluated one operator at a time by pushing

and popping as per the precedence and associativity of the

operator. In case of any error, the process is stopped and error

is returned.

III. STANDARD DATASET FOR EXPERIMENT

For testing of the above mentioned procedure, a dataset

consisting of 7 different fonts was used.

All the mentioned fonts were tested for characters in ASCII

sequence of 32 (space) to 126 (~)

Fonts:
TABLE I. . FONTS USED FOR TESTING

Shruti Candara

Times New Roman Carlito

Consolas System

Book Antiqua

Below are a few samples of test dataset

Fig. 8. Image used for testing

With the setup as mentioned above and 7 datasets, the results

were quite impressive. Efficiency pars the OCR process at

approximately 91% and the Mathematical evaluation is quite

effective to calculate all the operators thrown at it.

Also it is important to note that for certain fonts with similar

looking characters, the error rate was high. For Example, for

fonts Broadway & Britannic O (capital O), & 0(Zero) looked

almost same, so were erroneous.

Fig. 9. Confusion for Zero & ‘O’ in different fonts

Britannic Font confusion for Zero & ‘O’

Broadway Font confusion for Zero & ‘O’

System Font

Canadra Font

Book-Antiqua Font

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080475

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 615

Procedure for the app:

 Step 1 + 2 + 3 + 4:

Fig. 10. App screenshots (1)

 Step 5: Check output

Fig. 11. App screenshots (2)

TABLE II. . EXPERIMENTAL RESULTS: INPUT IMAGE AND EVALUATED

EXPRESSIONS

Image
Detected

Expression

Evaluated

Expression

2^2 4

2^2 4

abs(-90) 90

loglo(100)

Error: no

operator

loglo

log10(100) 2

Step 2: Select the

expression image

(capture via camera

or browse in the

gallery)

Step 1: Open the

application

Step 4: Wait for the

processing
Step 3: Crop the

image to select

proper expression

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080475

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 616

max(100,56) 100

PI*10*10 314

Pi*10*10 314

sin(90) 1

tan(90)

16331239350

000000 ≈

infinite

tanh(90) 1

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

5 10 20 30 40 50 60 70 78

Ef
fi

ci
en

cy

Number of Fonts in dataset

Efficiency

Efficiency

With increase in the fonts in the dataset, we are able to achieve

a stable efficiency rate of about 90% to 92%. With increase in

font for a certain amount, the efficiency went on to plateau

and further more increase led to decline of efficiency due to

ambiguity in classification.

REFERENCES

[1] P. P. Roy, J. Llados, U. Pal, “Text/graphics separation in color maps”,
in: Computing: Theory and Applications, 2007. ICCTA' 07.
International Conference on, IEEE, 2007, pp. 545-551.

[2] Li Peng, Junhua Li ,“A Facial Expression Recognition Method Based on
Quantum Neural Networks”, Publication: ISKE-2007, October 2007

[3] R. Singh, C. Yadav, P. Verma, V. Yadav, “Optical character recognition
(ocr) for printed devnagari script using artifcial neural network”,
international Journal of Computer Science & Communication 1 (1)
(2010) 91-95.

[4] M. S. Uddin, T. Rahman, U. S. Busra, M. Sultana, “Automated
extraction of text from images using morphology based approach”,
proceeding of international journal of electronics & informatics 1 (1).

[5] F. Gounther, S. Fritsch, “neural-net: Training of neural networks”, The
R journal 2 (1) (2010) 30-38.

[6] C. M. Bishop, “Neural networks for pattern recognition”, Oxford
university press, 1995.

[7] S. B. Maind, P. Wankar, “Research paper on basic of artificial neural
network”, International Journal on Recent and Innovation Trends in
Computing and Communication 2 (1) (2014) 96-100.

[8] C. Peterson, T. Rognvaldsson, L. Lonnblad, “Jetnet 3.0a versatile
artifcial neural network package”, Computer Physics Communications
81 (1) (1994) 185-220.

[9] K. Hornik, “Approximation capabilities of multilayer feedforward
networks”, Neural networks 4 (2) (1991) 251-257.

[10] R. Lippmann, “An introduction to computing with neural nets”, IEEE
Assp magazine 4 (2) (1987) 4-22.

Fig. 12. Experimental results: Input image and Evaluated Expression

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV5IS080475

Vol. 5 Issue 08, August-2016

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org 617

