

Analyzing The Overall Performance Of N-Computing Device At Different

Load Conditions

Snigdha Srivastava
1
 Saumya Srivastava

2
 Sneha Mani Tripathi

3

1, 2 & 3
 Department of computer science and Engineering, Institute of Technology and

Management, GIDA, Gorakhpur, India

Abstract

The personal computer has a very high processing

power now-a-days than actually required for a single

user system. Hence, it can be effectively used as a

multi-user system which serves several users

concurrently. This can be achieved by using N-

computing device. Any N-computing device uses the

processing power of a single CPU to serve multiple

users. This concept is related to the concept of

mapping between user level thread and kernel level

thread. Therefore the performance of the device

should be such that it utilizes maximum power of the

system. This paper provides the method and the

outcome of the performance analysis of the device

under various load conditions. This performance

factor has been measured in various parameters. We

have also shown 100 percent utilization of CPU, i.e.

utilization of full processing power. This is done with

the help of some codes. In other words this paper

studies how to utilize the full processing power of a

personal computer for number of users

simultaneously and hence save energy.

Keywords: Kernel, mapping, n-computing device,

performance factor, thread.

1. Introduction
We’ve all become accustomed to the PC model,

which allows every user to have their own CPU, hard

disk, and memory to run their applications, but

personal computers have now become so powerful

that most people can’t possibly use all the processing

power they purchase. N-Computing desktop

virtualization is a modern take on the time-honored

concept where multiple users share the processing

power of a single computer. This approach has

several advantages over the traditional PC model,

including lower overall costs, better energy

efficiency, and simplified administration. N-

computing is technology that allows multiple users to

share single computer simultaneously; this means

that with n-computing we could have one ordinary

desktop computer catering for people or more at the

same time. N-computing is a desktop virtualization

company that manufactures hardware and software to

create virtual desktops (sometimes called zero clients

or thin clients) which enable multiple users to

simultaneously share a single operating system

instance. The effectiveness of parallel computing

depends to a great extent on the performance of the

primitives that are used to express and control the

parallelism within programs. It exhibit poor

performance if the cost of creating and managing

parallelism is high. Even a fine-grained program can

achieve good performance if the cost of creating and

managing parallelism is low. Kernel level threads are,

effectively, processes that share code and data space,

where user level threads are implemented at the

application level. This research divides responsibility

for thread management between the kernel and

application. Multithreading has emerged as a leading

paradigm for the development of applications with

demanding performance requirement. When number

of users increase, so does the number of processes

and hence number of threads, then performance is a

major issue. Therefore analyzing the performance

and trying to maximize it is the best option which is

discussed along with the methods further in this

paper.

2. Thread Management
Threads are the vehicle for concurrency in many

approaches to parallel programming. Threads can be

supported either by the operating system kernel or by

user-level library code in the application address

space, but neither approach has been fully

satisfactory [5]. A thread is a light-weight process.

The implementation of threads and processes differs

2659

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

from one operating system to another, but in most

cases, a thread is contained inside a process. Multiple

threads can exist within the same process and share

resources such as memory, while different processes

do not share these resources. There are two

commonly used thread models: kernel level threads

and user level threads. Kernel level threads suffer

from the cost of frequent user-kernel domain

crossings kernel scheduling priorities. User level

threads are not integrated with the kernel; blocking

all threads whenever one thread is blocked. On a

single processor, multithreading generally occurs by

time-division multiplexing the processor switches

between different threads. This context switching

generally happens frequently enough that the user

perceives the threads or tasks as running at the same

time. On a multiprocessor (including multi-core

system), the threads or tasks will actually run at the

same time, with each processor or core running a

particular thread or task. The kernel of an operating

system allows programmers to manipulate threads via

the system call interface. Some implementations are

called a kernel thread, whereas a lightweight process

is a specific type of kernel thread that shares the same

state and information. Multithreading has emerged as

a leading paradigm for development of application

with demanding performance requirements [1].

Therefore we can say that generally, threads are

located on shared data structure: a shared run queue

for ready threads and shared communication

structures for blocked thread. Access control to the

shared resource is maintained through lock-based

mechanism which ensures safe access to such critical

section of core [2].

Figure 1. Thread Management

Kernel level threads share some of the

disadvantages of processes. Switching between them

is slow, taking an order of magnitude more time than

a user level thread context switch. Also they are

scheduled by the kernel; with no application control

.this can be negatively affect performance. For

example, if threads have different priorities and the

priorities are not visible to the kernel, a low priority

thread may be scheduled in place of a high priority

one. User level threads systems control scheduling

decisions, but because they are not integrated with

the kernel, when one thread blocks (e.g. to perform

I\O), all of the user level threads sharing the process

are blocked. This advantage of a multithreaded

program allows it to operate faster on computer

systems that have multiple CPUs, CPUs with

multiple cores or across a cluster of machines—

because the threads of the program naturally lend

themselves to truly concurrent execution. In such a

case, the programmer needs to be careful to avoid

race conditions, and other non-intuitive behaviors.

The Scheduler Activations model, proposed by

Anderson et al., combines CPU allocation decisions

with application control over thread scheduling. It

discusses the performance characteristics of an

implementation of Scheduler Activations for a

uniprocessor system, and proposes an analytic model

 Task Context Task Context

 Task Context

Thread

Context

Thread

Context

Thread

Context

Thread

Context

Thread

Context

Thread

Context

 CPU CPU

 CPU

 CPU

2660

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

for determining the class of applications that benefit

from its use [3].

In order for data to be correctly manipulated,

threads will often need to rendezvous in time in order

to process the data in the correct order. Threads may

also require mutually exclusive operations (often

implemented using semaphores) in order to prevent

common data from being simultaneously modified, or

read while in the process of being modified. The

operating system kernel has complete control over

the allocation of processors among address spaces

including the ability to change the number of

processors assigned to an application during its

execution. To achieve this, the kernel notifies the

address space thread scheduler of every kernel event

affecting the address space, allowing the application

to have complete knowledge of its scheduling state. .

For fixed priority scheduling on uniprocessors, under

certain conditions, the system's schedulability is

maximized when the priorities are chosen in the

inverse order of the task's deadlines [4]. The thread

system in each address space notifies the kernel of

the subset of user-level thread operations that can

affect processor allocation decisions, preserving good

performance for the majority of operations that do

not need to be reflected to the kernel [5]. Today’s

operating systems provide kernel threads for parallel

applications and multi-threaded servers. Scheduling

plays an important role with regard to efficiency and

fairness especially for distributed applications,

multimedia processing and server processes. A multi-

threaded application should be able to specify the

scheduling strategy for its threads itself. In most

modern operating systems the scheduling strategy is

hard-coded into the kernel and cannot be changed by

the user. There are a few user-level thread packages

available, where the users can define the scheduling

strategy. Yet user-level threads are not suitable for

applications that interact with the operating system

frequently, such as server processes or distributed

applications. Each application can have one or more

of its own schedulers, which can define the

application-specific scheduling strategy. Thus, the

programmer can implement his own scheduling

strategy for his application or even for subsystems

inside the application [6].

3. Scheduling and mapping of threads by

kernel
In most computer operating systems, the kernel is

the central component. It is the bridge between the

user and applications and the computer hardware. It

also is the mechanism that allows the computer to

handle multiple users and multiple tasks

simultaneously. The types of kernels are the

monolithic kernel, the microkernel, the hybrid kernel,

the nanokernel and the exokernel. The kernel

manages all of the computer's system resources. This

includes long-term storage, the central processing

unit (CPU), short-term memory and the input and

output devices. When an application needs one of

these resources, the kernel makes the resource

available and completes the request. This handling of

resources allows the operating systems to be both

multi-user and multitasking. The operating system

does not actually perform more than one task at a

time. Instead, the kernel switches tasks at such a high

speed that the computer appears to be performing

multiple tasks. The kernel also is responsible for

making sure that resources used by one user or

process are not violated the request of another user or

process. There two main types of kernels are the

monolithic kernel and the microkernel. Monolithic

kernels employ a supervisory method of resource

management in which all of the operating system

services are run in the same address space, called the

kernel space. Some monolithic kernels can load and

unload executable modules. This extends the

operating system's capabilities while still maintaining

a minimum amount of code running in the kernel

space at any one time. Micro kernels run only the

minimal amount of operating system services, such

as memory management, thread management and

inter-process communication in the kernel space. All

other services, such as device drivers, user interfaces

and file management, are run in the user space. The

microkernel severely minimizes the amount of code

that is running in the kernel mode.

Every thread has a thread priority assigned to it.

Threads created within the common language

runtime are initially assigned the priority of

ThreadPriority.Normal. Threads created outside the

runtime retain the priority they had before they

entered the managed environment. Threads are

scheduled for execution based on their priority. Even

though threads are executing within the runtime, all

threads are assigned processor time slices by the

operating system. The details of the scheduling

algorithm used to determine the order in which

threads are executed varies with each operating

system. Under some operating systems, the thread

with the highest priority (of those threads that can be

executed) is always scheduled to run first. If multiple

threads with the same priority are all available, the

scheduler cycles through the threads at that priority,

2661

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

giving each thread a fixed time slice in which to execute. As long as a thread with a higher priority is

available to run, lower priority threads do not get to

execute [5]. Therefore the sequence of execution of

threads is totally dependent on its priority. When

there are no more runnable threads at a given priority,

the scheduler moves to the next lower priority and

schedules the threads at that priority for execution. If

a higher priority thread becomes runnable, the lower

priority thread is preempted and the higher priority

thread is allowed to execute once again.

Figure 2. Thread Mapping between Kernel level Thread and User level Thread

The operating system kernel provides each user-

level thread system with its own virtual

multiprocessor, the abstraction of a dedicated

physical machine except that the kernel may change

the number of processors in that machine during the

execution of the program [5].

There are two types of threads to be managed in a

modern system: User threads and kernel threads.

User threads are supported above the kernel, without

kernel support. These are the threads that application

programmers would put into their programs. Kernel

threads are supported within the kernel of the OS

itself. All modern OS support kernel level threads,

allowing the kernel to perform multiple simultaneous

tasks and/or to service multiple kernel system calls

simultaneously. In a specific implementation, the

user threads must be mapped to kernel threads, using

one of the following strategies:

• Many-To-One Model:

In the many-to-one model, many user-level

threads are all mapped onto a single kernel thread.

Thread management is handled by the thread library

in user space, which is very efficient.

• One-To-One Model:

The one-to-one model creates a separate kernel

thread to handle each user thread. One-to-one model

overcomes the problems listed above involving

blocking system calls and the splitting of processes

across multiple CPUs.

• Many-to-Many Model:

The many-to-many model multiplexes any number

of user threads onto an equal or smaller number of

kernel threads, combining the best features of the

one-to-one and many-to-one models.

4. Methods and code for analysis
The maximum CPU utilization can be achieved by

increasing the number of processes per CPU cycle.

This task can be achieved by running various

programs, capable of creating thousands of threads.

We can also use a linked list program which can

create thousands of new nodes. These programs will

help in achieve our goal that is to utilize full

processing power. Before going to the code we

should also know, how the N-computing device

works that if a program is run on 1 of the nodes

connected to the device then it affects the

performance of other nodes too. The unique N-

Computing technology is composed of three primary

components: vSpace virtualization software, a user

extension protocol, and access devices. By

combining all three of these components into an

integrated solution, N-Computing delivers unmatched

performance at an incredibly low cost. Traditional

 Thread

 Mapping Region Thread

 Thread Region Region

Task 1

Task 2

2662

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

thin client solutions and other PC alternatives all rely

on separate components from disparate vendors,

resulting in sub-optimal performance at higher costs.

• VSpace Server software:

N-Computing vSpace Server virtualization

software, included with the hardware, creates the

virtual desktops in the shared PC by dividing the

computer's resources into independent sessions that

give each user their own PC experience. The vSpace

software uses the company’s proprietary display and

communications protocol ("UXP") to communicate

between the shared computer and the user stations.

• Desktop virtualization software:

The virtualization software divides the computer's

resources into independent sessions that give each

user their own rich PC experience. Functioning as a

data manager, it transmits and handles the desktop

display and remote activities from the users’

keyboard and mouse (through the access device).

• Extension protocol:

A key part of being able to deliver a full remote

computing experience is the extension protocol used.

Traditional thin clients use protocols that were

developed for occasional use by administrators for

temporary remote control. N-Computing developed

its unique User extension Protocol (UXP) for

continuous use by end users demanding a full PC

experience. As a result, multimedia applications

including streaming video, Flash, and 3D graphics

can be supported.

• Access devices:

The N-Computing access devices do not use PC-

based processors or chipsets and do not run a local

operating system. All of the primary functionality is

integrated into a single chip that has an optimal set of

resources for working with the N-Computing

virtualization software and extension protocol. This

System-on-Chip (SoC) contains patented

technologies for delivering unmatched performance

from a very low-power device.

Some codes were implemented on 5 nodes connected

via N-computing device, in order to utilize its full

processing power. These programs are written in c

and java programming languages. These codes are

implemented on one node yet they affected the other

nodes too. On running these codes we analyzed the

performance of the device, simply by varying the

load applied on the device. Some of the

implemented codes are as following:

4.1 Code to generate thousands of threads
class demo1 extends Thread

{

public void run()

{

for(int i=1;i<=156000;i++)

if(i%2==0)

System.out.println(i +"is Even");

else

System.out.println(i +"is odd");

}

}

class demo2 extends Thread

{

int limit=156892;

int num=1;

public void run()

{

for(int i=1;i<=limit;i++)

{

int sum=0;

while(i>0)

{

sum=sum+(i%10);

i=i/10;

}

}

}

}

 class abc

{

public static void main(String ar[])

{

int i;

for(i=0;i<20000;i++)

{

new demo1().start();

new demo2().start();

}

}

}

4.2 Code to generate multiple nodes in a

linked list
#include<alloc.h>

struct node

{

int item;

struct node *next;

}*START=NULL;

void add(int x)

{

struct node *temp1,*temp2;

if(START==NULL)

{

temp1=(struct node *) malloc(sizeof(struct node *));

temp1->next=NULL;

temp1->item=x;

START=temp1;

}

else

{

2663

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

temp1=START;

while(temp1->next!=NULL)

temp1=temp1->next;

temp2=(struct node *) malloc(sizeof(struct node *));

temp2->next=NULL;

temp2->item=x;

temp1->next=temp2;

}

}

void display()

{

struct node *temp;

if(START==NULL)

printf("\n No item to display");

temp=START;

while(temp!=NULL)

{

printf("%2d",temp->item);

temp=temp->next;

}

}

void main()

{

clrscr();

while(!kbhit())

add(10);

display();

getch();

}

5. Performance measure in N-computing

environment
The overall performance of the device is measured

through various parameters. These parameters

collectively judge the performance and are helpful in

comparing the results of the device on varying the

load. Such as we can measure the difference in time

units taken by the device or the number of registers

used or cache utilization. These factors are as

follows:

• CPU Usage:

CPU usage represents how much of the central

processing unit’s total ability to manipulate data is

being used. There are separate graphs for each

processing core that our computer can use. When our

computer is idling, and we have no active programs

running, the CPU usage is typically at 1 percent.

• CPU time:

CPU time is the amount of time for which a

central processing unit was used for processing

instructions of a computer program, as opposed to,

for example, waiting for input/output (I/O)

operations. The CPU time is often measured in clock

ticks or seconds. CPU time is also mentioned as

percentage of the CPU's capacity at any given time

on multi-tasking environment. This is also referred as

CPU usage or process time.

• Paging File Usage:

Our paging file is a software support for our

computer's normal memory-using hard drive space.

On older operating systems, this was commonly

referred to as virtual memory.

• Commit charge:

This measures the amount of 'committed virtual

memory' in the system. This is all memory requested

by processes that is not backed by some named file.

One way to look at this is that the system has a

certain budget for virtual memory, and each program

request is charged against that budget. The Total

commit charge is the current in-use value; the Limit

is the sum of the page file sizes and the physical

memory that's available in principle for programs .

• Physical memory:

Physical memory is representative of the actual

physical memory located within our computer. The

physical memory graph tracks how much available

memory vs. used memory our computer has

available. When physical memory is low, it will start

transferring data to the paging file to supplement

itself.

• Kernel memory:

The kernel is the operating device between

applications and the hardware units of a computer

such as the CPU. This is one of the most basic

components of computer hardware and controls the

interaction of all other devices. Kernel memory is not

only physical memory, but paged memory as well.

When the kernel memory becomes full, it often

causes fatal crashes in programs or the entire

computer.

• Number of handles, processes and

threads:

The kernel supplies programs with 'objects' such

as files, shared-memory sections, registry keys, and

so on. A program uniformly manipulates an object by

means of a handle, which is a temporary connection

to the object. A handle is not the object; for example,

if a file is opened for 17 different uses at the same

time, it will have 17 different handles connected to it.

A process is an instance of a program in execution. If

we're running Explorer 3 times, then there will be 3

processes running. The program is the thing that

persists - the program we had yesterday is the

program we have today (unless we did something!).

Processes come and go. Each process is made up of

one or more threads, at the decision of the

programmer.

5.1 Snapshots comparing the performance

2664

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Figure 3. Performance on creating multiple nodes at high load

Figure 4. Performance on creating several threads at a different load

2665

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

The above shown figures show the performance

outcome on running different-different programs at

different load i.e. at the times when different-

different number of nodes is connected to the device.

As we can see in the snapshots that number of

processes, registers used, Kernel memory vary. For

example System cache increases at high load and so

does the peak commit charge, whereas some factor

increase on the basis of time such as PF usage. The

CPU utilization reaches its maximum abruptly when

threads are created otherwise it takes time and vary in

its utilization capacity.

6. Conclusion
N-Computing is a modern take on the time-

honored concept where multiple users share the

processing power of a single computer. This

approach has several advantages over the traditional

PC model like: allowing organizations to use a single

desktop PC like a minicomputer, offering simplicity,

delivering power at a highly affordable price,

ensuring long term customer and partner success. Our

paper analyzes device’s performance and checks if

full processing utilization can be achieved or not at

the n-computing environment. It also studies the

effect of increase and decrease of load conditions on

the device. This effect can prove useful in terms of

increment in performance for organizational purpose

and in this way it could be an effective medium of

full power utilization and energy savings, that also at

reasonable costs.

7. References
1. K. Schwan and H. Zhou [Georgia Institute of

Technology], “Dynamic scheduling of hard real-time

tasks and real-time threads”, IEEE transactions on

Software Engineering, Aug. 1992, Volume 18, Issue 8,

p. 736-748.

2. K.Debattista, K.Vella and J.Cordina, “Wait-free

cache-affinity thread scheduling”, IEEE Proc., Softw.-

April 2003, Volume 150, Issue 2, p. 137-146.

3. Christopher Small and Margo Seltzer, “Scheduler

Activations on BSD:Sharing Thread Management

Between Kernel and Application”, Harvard

University.

4. L. Mangeruca, A. Ferrari and A. L. Sangiovanni-

Vincentelli, “Uniprocessor scheduling under

precedence constraints”, RTAS’06, p. 157-166, IEEE

Computer Society, Washington DC, USA.

5. Thomas E. Anderson, Brian N. Bershad and others,

“Schedular activations: effective kernel support for

the user-level management of parallelism”, ACM

Transactions on Computer Systems [New York,

USA], Feb. 1992, Volume 10, Issue 1, p. 53-79.

6. Thomas Riechman, Jurgen Kleinoder, “User-Level

Scheduling with Kernel Threads”, Department of

Computer Science, University of Erlangen-Nurnberg,

Germany.

7. D. Kang and J.L.Gaudiot [University of California],

“Speculation- aware thread scheduling for

simultaneous multithreading”, Electron. Lett. 4 March

2004, Volume 40, Issue 5, p. 296-298.

2666

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 4, April - 2013
ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

