

1

Analyzing effect of Aspect Oriented concepts in design and

implementation of design patterns with case study of Observer Pattern

 Deepali A. Bhanage
1
, Sachin D. Babar

2

Sinhgad Institute of Technology, Lonavala

Abstract— Design pattern is a general reusable solution to a

commonly occurring problem within a given context in
software design. Several patterns crosscut the basic

structure of classes adding behaviour and modifying roles

in the classes relationship. Recent studies have shown that

several design patterns involve crosscutting concerns where

object oriented abstractions failed to handle, this led to
decreasing system modularity, reusability supportability,

portability, reliability and maintainability. This encourages

examining impact of Aspect Oriented Programming on

Software development at Design Level. In this paper, effect

of Aspect Oriented Programming on Gang of Four (GOF)
design pattern is analyzed. This investigation is further

continued with implementing case study of Observer

Pattern with example of IT Infrastructure Monitoring. This

paper also explores use of JAVA Annotations in

implementation of Observer Pattern with AOP.

Keywords—Aspect Oriented Programming, AOP, AspectJ,

Observer Pattern, Java annotations, GoF design patterns,

Crosscutting.

I. INTRODUCTION

 Design pattern is a general repeatable solution to a

commonly occurring problem in software design. It is a

description or template for how to solve a problem that

can be used in many different situations [1]. Design

patterns can speed up the development process by

providing tested, proven development paradigms. Design

patterns helps to produce good design, which helps in

producing better softwares. Design Patterns have gained

its popularity after the “Gang of Four” book [1] where

the first software pattern catalogue containing the 23

Gang-of-Four (GoF) patterns were introduced.

 Recent studies shown that several patterns crosscut

the basic structure of classes adding behaviour and

modifying roles in the classes relationship. Crosscutting

represents the situation when a concern is met by placing

code into objects through the system but the code doesn’t

directly relate to the functionality defined for those

objects [2]. Examples of crosscutting concerns are

logging, synchronization, error and exception handling,

scheduling and optimizat ion.

 Observer pattern is one of the popular pattern

described by GoF. The observer pattern is a software

design pattern in which an object, called the subject,

maintains a list of its dependents, called observers, and

notifies them automatically of any state changes, usually

by calling one of their methods . The Observer Pattern

Defines a one-to-many dependency between objects so

that when one object changes state, all its dependents are

notified and updated automatically. The observer pattern

is used when the change of a state in one object must be

reflected in another object without keeping the objects

tight coupled. It is also used when framework needs to be

enhanced in future with new observers with min imal

changes [1].

 Abstracting the implementation offers great

flexib ility. Observers can observe the state change of any

subject if that subject implements Subject interface and

the observers themselves extend Observer abstract class.

But at the same time the responsibilities of classes are

also changed. In order to being a subject, an object has to

implement the features of maintain ing the list of

observers, notifying each observer when its state

changes. When an observer wants to observe a subject, it

has to extend an abstract class to indicate that it has the

method receiving the notifications. These features all

belong to Observer pattern, are tangled with the core

features of the object, obscure the primary concern of

objects. This violates the single responsibility feature of

OOP [3].

 Although the use of Observer pattern brings several

benefits, they could “hard-code” the underlying system,

making difficult to express changes. To implement

Observer patterns described above in a system you may

have to modify several classes, affecting their

relationships and their clients.

 The Object Oriented Programming is most commonly

used and very popular methodology employed in

software Industry, but it does not do as a good job in

address many crosscutting concerns that must be

included in multip le modules[2]. In OOP crosscut

concerns, code tangling and code scattering will be seen

Code tangling is caused when a module handles multip le

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

1www.ijert.org

2

concerns simultaneously, the codes from other modules

present in a module. Code scattering is caused when a

single issue is implemented in mult iple modules. Because

crosscutting concerns are spread over many modules in

nature, related implementations are also scattered over all

modules. Code tangling and code scattering together

result in lower code reuse and harder evolution [4]. If a

module is implementing multip le concerns, it is hard to

modify. When a module is scattered in many modules, if

the module requires reimplementation, many modules

have to be modified. Th is fails of Open Close Princip le

[4]. Unfortunately, object-oriented abstractions are often

not able to modularize those crosscutting concerns,

which in turn decrease the system reusability and

maintainability.

 Aspect Oriented Programming can help on separating

some of the system’s design patterns, specifying and

implementing them as single units of abstraction [5].

Compared with OOP implementation, Aspect-oriented

Programming (AOP) offers one viable solution,

duplicated code blocks are modeled in d ifferent aspects

that crosscut other modules. OOP and AOP complement

each other [6]. While aspect-orientation originally has

emerged at the programming level, modern software

development is more than just coding, there was a need

to study applying the aspect orientation also over other

development phases, starting from the requirements

analysis phase till the implementation phase, which led to

the emerge of aspect oriented software engineering. The

aspect-oriented programming main goal is to help the

developer in the task of clearly separate crosscutting

concerns, using mechanisms to abstract and compose

them to produce the desired system. The aspect-oriented

programming extends other programming techniques

(object oriented, structured, functional etc) that do not

offer suitable abstractions to deal with crosscutting [5].

 When observer pattern implemented by AOP the

subject or the observer doesn't extend an abstract class or

implement an interface, an aspect introduces interfaces or

classes to existing classes. At the same time when the

subject notifies observers and which method of the

observer receives notification are defined in the same

aspect. Maintaining the list of observers is also finished

by this aspect. When the subject state changes, this aspect

will notify the observer. In this implementation, if an

object wants to observe other objects, it only needs a

response method, other modificat ions are not required. It

is not necessary to modify the objects which will be

observed. The implementation is clean which easily

evolves and helps to address the crosscutting concerns of

the OOP [3].

 While implementing the Observer pattern using AOP,

every object has a single responsibility. The crosscut

concern defining the relat ions between objects is

modeled in an aspect, not in classes. Though there are

many benefits of AOP as compared to OOP, users need

to know Aspect Oriented Programming Language for

implementation. Paper discuss about use of JAVA

Annotations, to define the subject, the observer and their

relations. Users employ these annotations instead of an

aspect language to define the pattern concern [4]. Th is

program analyses and generates the aspect, weaves this

aspect with target classes by load-time weaving or

compile-t ime weaving.

II. STUDY FORMAT

 This paper is divided in fo llowing sections. Section III

will explain the literature survey which highlights the

problems occurring in tradit ional implementation and

related solution that is use of AOP at the time of

implementation of GoF Design Patterns. Section IV will

give information about implementation of observer

pattern with case study of IT Infrastructure event

Management system with Aspect oriented concepts. With

this example, paper will discuss crosscutting and how to

overcome it with the help of AOP. Section V will exp lore

use of Java annotations in implementation. Section VI

unfolds the effect of AOP on Observer Pattern measured

with respect to different software properties. Finally the

conclusion of the paper is presented.

III. RELATED WORK

 The majority of applications available in market

contain common functionality such as authentication,

authorization, caching, communication, exception

management, logging and instrumentation, and validation

which are described as crosscutting concerns because it

affects the entire application, and should be centralized in

one location in the code where possible. To compensate

for missing tools and languages we need architectural

solutions for the problems around crosscutting concerns

[9]. Design pattern provide reusable solution in all types

of software designing and implementation. It becomes

important to verify the effect of Aspect oriented

programming to remove the crosscutting concern so that

it will improve modularity, maintainability, reusability,

uniformity, transparency, extensibility.

 Paper analyses comparison between use of Object

Oriented and Aspect Oriented concepts at design level.

After comparison it has been concluded that in few GoF

Design Patterns crosscutting concern is present and it can

be addressed by applying the aspect oriented approach at

design level [3][8].

TABLE I
Effect of AOP on Design Patterns [3]

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

2www.ijert.org

3

Gang of Four

Design Patterns

C
ro

ss
cu

tt
in

g

C
o

n
ce

rn

Im
p

ro
v

ed

M
o
d
u

la
ri

ty

Im
p

ro
v

ed

R
eu

sa
b

il
it

y

Chain of
Responsibility Yes Yes Yes

Command Yes Yes Yes

Interpreter No No No

Iterator No No Yes

Mediator Yes Yes Yes

Memento No Yes Yes

Observer Yes Yes Yes

State No Yes Yes

Strategy No Yes Yes

Template Method No No Yes

Visitor No Yes Yes

Adapter No Yes Yes

Bridge No Yes Yes

Composite Yes Yes Yes

Decorator No Yes Yes

Façade No No No

Flyweight No Yes Yes

Proxy No Yes Yes

Abstract Factory No Yes Yes

Builder No No Yes

Factory Method No Yes Yes

Prototype No Yes Yes

Singleton No No No

 There were qualitat ive studies such as the work done

by [2][4] which represents effort done in the area of

addressing the impact of applying the aspect oriented

programming approaches on GOF design patterns based

on important software engineering attributes and other

quantitative studies [3][8] performed to compare object

oriented and aspect-oriented implementations based a

metrics of measurements measuring the cohesion,

coupling and size of both implementations. There are

multip le surveys conducted to see the use of AOP with

design patterns at design level. Most of the studies are

not extensive and limited to theoretical work.

 As discussed in [2] applying aspect oriented concepts

on GoF patterns could lead to improved modularity,

maintainability, reusability, uniformity, transparency,

extensibility even if the pattern doesn’t involve

crosscutting concerns. Table 1 shows the effect of Aspect

Orientation in terms of existence of crosscutting

concerns, improved modularity and reusability

 In this paper, case study of Observer pattern is done

while applying AOP concepts at design as well as

implementation level. The distinctive crosscutting

elements in the Observer pattern are the roles (Subject

and Observer) superimposed to the classes participating

in the implementation of the pattern, and the consistent

behavior of notifying the observers required from the

methods changing the state of the Subject object [6].

 This paper exp lains the Observer pattern with the help

of AOP and example o f IT Infrastructure Event

Management. The Informat ion Technology Infrastructure

Library (ITIL) is a set of practices for IT service

management (ITSM) that focuses on aligning IT services

with the needs of business. Event Management and

monitoring is process added in ITIL which is responsible

to manage all events that occur in the infrastructure to

ensure normal operation and also to assist in detecting

and escalating exception conditions. Event Management

assists with the early identification of incidents through

providing a baseline of automated operations in order to

allow service management staff to focus on become more

proactive in their daily operations. Events are normally

notifications/warnings created by an IT Service,

Configurat ion Item (CI) or any type of monitoring tool

around the status or availability.

IV. IMPLEMENTATION OF OBSERVER PATTERN WITH

AOP

 Observer pattern maintains consistency among several

objects that depends on a model data in a way that

promotes reuse and keep a low coupling among classes.

In this pattern, every time the Subject state changes, all

the Observers are notified. The main problem with the

object-oriented Observer pattern is that you should
modify the structure of classes that participate in the

pattern. So, it is hard to apply the pattern into an existing

design as well as remove from it.

 The design of the Observer pattern is changed in order

to represent it as classes and aspects. There is no

Observer role neither a Subject one. Both structure and

behavior of these two roles are expressed in the

MonitoringObserverPattern aspect. ITSMSubject

describes the interface that all the concrete subjects must

be in accordance to (enforce by the

MonitoringObserverPattern and

MonitoringConcreteObserverPattern). When

implemented, the ITSMSubject will contain a reference

to its observers, and allow the dynamic addition and

deletion of observers. Observer describes the interface

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

3www.ijert.org

4

that all the concrete observers must be in accordance to

(enforce by the MonitoringObserverPattern and

MonitoringConcreteObserverPattern). They are notified

every time the state of the subject changes.

ITSMConcreteSubject Store state information to be used

by ConcreteObservers. It does not, however, send

notifications to its Observers. This responsibility is part

of the MonitoringObserverPattern role.

ConcreteObservers serve as basis to field and method’s

introduction performed by the

MonitoringObserverPattern. MonitoringObserverPattern

is an abstract aspect that encapsulates the behavior of the

Observer pattern. The MonitoringObserverPattern

contains the fields and methods to be included in the

classes that are affected by the

MonitoringConcreteObserverPattern. Concrete

ObserverPattern specifies in what situations the

ConcreteObservers are going to be notified as well as

what is going to be executed when the

ConcreteObservers are notified.

 In the implementation of ITSM event management,

different devices, applications, hardware, database and

services are subjects. ITSM Administrators and different

application can serve as Observes. When some incident

occurs for configurable item, popularly known as CI,

sends notifications to the observer as event. Sometime

observer may propose to receive events for analysis and

informat ion. The list of all the observers is maintained in

Aspect MonitoringObserverPattern. Pointcut and advices

in MonitoringObserverPattern helps to waive the

application. When the classes corresponding to concrete

subjects and concrete observers are weaved together with

the MonitoringConcreteObserverPattern, the following

methods and fields are attached to the

ITSMConcreteSubject and ConcreteObservers: fields

Observer observers (ITSMConcreteSubject), Subject

subject (Concrete Observers) methods void add(Observer

obs), void remove(Observer obs) (Concrete Subject),

void setSubject(Subject s), Subject getSubject()

(Concrete Observers) These attachments are specified in

the abstract aspect (the MonitoringObserverPattern). The

ITSMConcreteSubject implements the ITSMSubject

interface. The concrete observers implement the observer

interface. The other modifications are done to the

dynamic nature of the observer and subject classes,

telling that every time that the state of the subject

changes the update method of the observers is invocated.

V. USE OF JAVA ANNOTATION IN IMPLEMENTATION

 However, using this method you have to know how to

define pointcuts, advices, inter-type declarations in

aspects, how to weaving aspects with classes. This paper

provides a method using Java annotations to define

pattern participants and their relations, and then those

annotations are used to generate aspects. In this

Figure 1: Implementing Observer Pattern with AspectJ[2]

implementation, users only use Java annotations rather

than Aspect language; they don't have to know an Aspect

language.

A. Defining Annotation @subject and @observer

 @Subject is applied to specify the subject, @Observer

is used to define the observer. Both annotations are used

to annotate a class or an interface. Sometime there are

many groups of different observing associations between

objects, so the id property is defined to identity which

group objects are in; its default value is o. The same class

may be annotated with different id. Other annotations

defined later also have this property.

B. Annoting State Change and Update Method

 @SubjectChange is applied to a method, indicting

after executing this method, the subject's state changes,

and observers will be notified.

C. Starting and Stopping Observing

 After annotating pattern participants, the subject and

the observer, we need to establish the association

between participants to start observing. It is apparent that

only when we can get both the subject and the observer,

we may establish their association.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

4www.ijert.org

5

VI. RESULT OF STRUCTURED ANALYSIS

 In this paper, structured analysis is done for applying

Aspect Oriented concepts on Observer Pattern to solve

the problem emerg ing from the existence of Crosscutting

concerns. It is realized that after applying AOP to

Observer pattern leads to improvement in some key

software properties. Table 2 shows the effect of AOP on

different software properties when applied to Observer

Pattern.

 After Applying AOP to Observer Pattern, paper

analyzes the impact of using JAVA Annotation in

Observer Pattern.

Results of the JAVA Annotation analysis is as follows

 Annotations provide a novel method to define

participants and their relations by annotations .

 JAVA Annotation can be used to generate Aspects.

 No need to understand AOP to overcome

shortcomings of Observer Pattern.

 Use of annotation provides clean and simple solution

to complex implementations.

TABLE II
Structured Analysis of Observed Pattern with AOP

Sr No Software Properties Improved with AOP

1 Modularity Yes

2 Reusability Yes

3 Maintainability Yes

4 Uniformity Yes

5 Transparency No

6 Extensibility Yes

7 Portability No

8 Supportability Yes

9 Reliability No

10 Efficiency No

11 Usability Yes

12 Adaptability Yes

13 Redundancy Yes

CONCLUSION

 When applying Aspect Oriented Programming to

design pattern lead to efficacious push towards building

effective and intelligent solutions. Implementing ITSM

Event Management with Observer Pattern under the

umbrella of Aspect Orientation reduces the crosscutting

concern and improves the maintainability, reusability,

uniformity, transparency, extensibility. Use of Java

annotations in Observer Pattern helps to deliver clean and

powerful solution.

REFERENCES

[1] Gamma, E. et al Design Patterns- Elements of Reusable Object

Oriented Software. Addison-Wesley, 2009.

[2] Eduardo Kessler Piveta; Luiz Carlos Zancanella;, “Observer
Pattern using Aspect- Oriented Programming” SugarloafPLoP

Conferenece, 2003.

[3] El Maghawry, N.; Dawood, A. R.; ,”Aspect oriented GoF design

patterns,” Informatics and systems (INFOS), 2010 The 7th
International Conference on, vol., no., pp.1-7, 28-30 March

2010..

[4] Liu Jicheng; Yin Hui; Wang Yabo; , “A novel implementation of
observer pattern by aspect based on Java annotation,” Computer
Science and Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on , vol.1, no., pp.284-288, 9-11july
2010.

[5] Ramnivas Laddad . AspectJ in Action: Practical Aspect Oriented

Programming. Addison- Wesley,2005.

[6] Lei Zhang; , “Study on comparison of AOP and OOP,” Computer
Science and Service Syatem (CSSS), 2011 International
Conference on , vol., no., pp.3596-3599, 27-29 Jane 2011.

[7] Christiansson, B.; Forss, M.; Hagen, I.; Hansson, K..; Jonasson,
J.; M. Jonasson, Lott, F.; Olsson S.; and Rosevall, T. “ GoF Design

Patterns- with example using Java and UML2”,2009.

[8] Wang Xiaohuan; Zhang Shu; Tang Wanmei. “A New

Programming Fashion in OOP and AOP,” Journal of Chongqing
University of Arts and Sciences (Natural Science Edition), 2007,
v.26 n. 14, pp.41-44.

[9] Christa Schwanninger; Egon Wuchner; Michael Kircher

“Encapsulating Crosscutting Concerns in System Software”. In

Proceedings of the Third AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software 2004.

[10] Marin, M. ; Moonen, L. ; van Deursen, A.,” A Classification of

Crosscutting Concerns”, Software Maintenance, 2005. ICSM'05.
Proceedings of the 21st IEEE International Conference on 26-
29Sept2005.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012
ISSN: 2278-0181

5www.ijert.org

