International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 Issue 3, May - 2012

Analyzing effect of Aspect Oriented concepts in design and
implementation of design patterns with case study of Observer Pattern
Deepali A. Bhanage', Sachin D. Babar?

Sinhgad Institute of Technology, Lonavala

Abstract— Design pattern is a general reusable solution to a
commonly occurring problem within a given context in
software design. Several patterns crosscut the basic

Observer pattern is one of the popular pattern
described by GoF. The observer pattern is a software
design pattern in which an object, called the subject,

structure of classes adding behaviour and modifying roles
in the classes relationship. Recent studies have shown that
several design patterns involve crosscutting concerns where
object oriented abstractions failed to handle, this led to
decreasing system modularity, reusability supportability,
portability, reliability and maintainability. This encourages
examining impact of Aspect Oriented Programming on
Software development at Design Lewel. In this paper, effect
of Aspect Oriented Programming on Gang of Four (GOF)
design pattern is analyzed. This investigation is further
continued with implementing case study of Observer
Pattern with example of IT Infrastructure Monitoring. This
paper also explores use of JAVA Annotations in
implementation of Observer Pattern with AOP.

Keywords—Aspect Oriented Programming, AOP, AspectJ,
Observer Pattern, Java annotations, GoF design patterns,
Crosscutting.

I. INTRODUCTION

Design patternis a general repeatable solution to a
commonly occurring problem in software design. It is a
description or template for how to solve a problem that
can be used in many different situations [1]. Design
patterns can speed up the development process by
providing tested, proven development paradigms. Design
patterns helps to produce good design, which helps in
producing better softwares. Design Patterns have gained
its popularity after the “Gang of Four” book [1] where
the first software pattern catalogue containing the 23
Gang-of-Four (GoF) patterns were introduced.

Recent studies shown that several patterns crosscut
the basic structure of classes adding behaviour and
modifying roles in the classes relationship. Crosscutting
represents the situation when a concern is met by placing
code into objects through the system but the code doesn’t
directly relate to the functionality defined for those
objects [2]. Examples of crosscutting concerns are
logging, synchronization, error and exception handling,
scheduling and optimization.

maintains a list of its dependents, called observers, and
notifies them automatically of any state changes, usually
by calling one of their methods. The Observer Pattern
Defines a one-to-many dependency between objects so
that when one object changes state, all its dependents are
notified and updated automatically. The observer pattern
is used when the change of a state in one object must be
reflected in another object without keeping the objects
tight coupled. It is also used when framework needs to be
enhanced in future with new observers with minimal
changes [1].

Abstracting the implementation offers great
flexibility. Observers can observe the state change of any
subject if that subject implements Subject interface and
the observers themselves extend Observer abstract class.
But at the same time the responsibilities of classes are
also changed. In order to being a subject, an object has to
implement the features of maintaining the list of
observers, notifying each observer when its state
changes. When an observer wants to observe a subject, it
has to extend an abstract class to indicate that it has the
method receiving the notifications. These features all
belong to Observer pattern, are tangled with the core
features of the object, obscure the primary concern of
objects. This violates the single responsibility feature of
OOP [3].

Although the use of Observer pattern brings several
benefits, they could “hard-code” the underlying system,
making difficult to express changes. To implement
Observer patterns described above in a system you may
have to modify several classes, affecting their
relationships and their clients.

The Object Oriented Programming is most commonly
used and very popular methodology employed in
software Industry, but it does not do as a good job in
address many crosscutting concerns that must be
included in multiple modules[2]. In OOP crosscut
concerns, code tangling and code scattering will be seen
Code tangling is caused when a module handles multiple

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 Issue 3, May - 2012

concerns simultaneously, the codes from other modules
present in a module. Code scattering is caused when a
single issue is implemented in multiple modules. Because
crosscutting concerns are spread over many modules in
nature, related implementations are also scattered over all
modules. Code tangling and code scattering together
result in lower code reuse and harder evolution [4]. If a
module is implementing multiple concerns, it is hard to
modify. When a module is scattered in many modules, if
the module requires reimplementation, many modules
have to be modified. This fails of Open Close Principle
[4]. Unfortunately, object-oriented abstractions are often
not able to modularize those crosscutting concerns,
which in turn decrease the system reusability and
maintainability.

Aspect Oriented Programming can help on separating
some of the system’s design patterns, specifying and
implementing them as single units of abstraction [5].
Compared with OOP implementation, Aspect-oriented
Programming (AOP) offers one viable solution,
duplicated code blocks are modeled in different aspects
that crosscut other modules. OOP and AOP complement
each other [6]. While aspect-orientation originally has
emerged at the programming level, modern software
development is more than just coding, there was a need
to study applying the aspect orientation also over other
development phases, starting from the requirements
analysis phase till the imp lementation phase, which led to
the emerge of aspect oriented software engineering. The
aspect-oriented programming main goal is to help the
developer in the task of clearly separate crosscutting
concerns, using mechanisms to abstract and compose
them to produce the desired system. The aspect-oriented
programming extends other programming technigques
(object oriented, structured, functional etc) that do not
offer suitable abstractions to deal with crosscutting [5].

When observer pattern implemented by AOP the
subject or the observer doesn't extend an abstract class or
implement an interface, an aspect introduces interfaces or
classes to existing classes. At the same time when the
subject notifies observers and which method of the
observer receives notification are defined in the same
aspect. Maintaining the list of observers is also finished
by this aspect. When the subject state changes, this aspect
will notify the observer. In this implementation, if an
object wants to observe other objects, it only needs a
response method, other modifications are not required. It
is not necessary to modify the objects which will be
observed. The implementation is clean which easily
evolves and helps to address the crosscutting concerns of
the OOP [3].

While implementing the Observer pattern using AOP,
every object has a single responsibility. The crosscut

concern defining the relations between objects is
modeled in an aspect, not in classes. Though there are
many benefits of AOP as compared to OOP, users need
to know Aspect Oriented Programming Language for
implementation. Paper discuss about use of JAVA
Annotations, to define the subject, the observer and their
relations. Users employ these annotations instead of an
aspect language to define the pattern concern [4]. This
program analyses and generates the aspect, weaves this
aspect with target classes by load-time weaving or
compile-time weaving.

Il. STUDY FORMAT

This paper is divided in following sections. Section I11
will explain the literature survey which highlights the
problems occurring in traditional implementation and
related solution that is use of AOP at the time of
implementation of GoF Design Patterns. Section 1V will
give information about implementation of observer
pattern with case study of IT Infrastructure event
Management system with Aspect oriented concepts. With
this example, paper will discuss crosscutting and how to
overcome it with the help of AOP. Section V will explore
use of Java annotations in implementation. Section VI
unfolds the effect of AOP on Observer Pattern measured
with respect to different software properties. Finally the
conclusion of the paper is presented.

I1l. RELATED WORK

The majority of applications available in market
contain common functionality such as authentication,
authorization, caching, communication, exception
manage ment, logging and instrumentation, and validation
which are described as crosscutting concerns because it
affects the entire application, and should be centralized in
one location in the code where possible. To compensate
for missing tools and languages we need architectural
solutions for the problems around crosscutting concerns
[9]. Design pattern provide reusable solution in all types
of software designing and implementation. It becomes
important to verify the effect of Aspect oriented
programming to remove the crosscutting concern so that
it will improve modularity, maintainability, reusability,
uniformity, transparency, extensibility.

Paper analyses comparison between use of Object
Oriented and Aspect Oriented concepts at design level.
After comparison it has been concluded that in few GoF
Design Patterns crosscutting concern is present and it can
be addressed by applying the aspect oriented approach at
design level [3][8].

TABLE |
Effect of AOP on Design Patterns [3]

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 Issue 3, May - 2012

There were qualitative studies such as the work done
by [2][4] which represents effort done in the area of
addressing the impact of applying the aspect oriented
programming approaches on GOF design patterns based
on important software engineering attributes and other
quantitative studies [3][8] performed to compare object
oriented and aspect-oriented implementations based a
metrics of measurements measuring the cohesion,
coupling and size of both implementations. There are
multiple surveys conducted to see the use of AOP with
design patterns at design level. Most of the studies are

> % crosscutting concerns. Table 1 shows the effect of Aspect
5 E Eg‘ B= Orientation in terms of existence of crosscutting
3 g gg 8 concerns, improved modularity and reusability
1%2] >
Gang of Four §° Es =2
Design Patte ms In this paper, case study of Observer pattern is done
Chain of while applying AOP concepts at design as well as
Responsi bility Yes Yes Yes implementation level. The distinctive crosscutting
Command Yes Yes Yes elements in the Observer pattern are the roles (Subject
and Observer) superimposed to the classes participating
Interpreter No No No in the implementation of the pattern, and the consistent
Ite rator No No Yes behavior of notifying the observers required from the
Mediator Yes Yes Yes methods changing the state of the Subject object [6].
Memento No Yes Yes This paper explains the Observer pattern with the help
Olserer Yes Yes Yes of AOP and example of IT Infrastructure Event
State No Yes Yes l\/!anagement. Thg Information Tech_nology Infrastructgre
Library (ITIL) is a set of practices for IT service
Strategy No Yes Yes management (ITSM) that focuses on aligning IT services
Template Method | No No Yes with the needs of business. Event Management and
Visitor No Yes Yes monitoring is process added in ITI_L wh |9h is responsible
to manage all events that occur in the infrastructure to
Adapter No Yes Yes ensure normal operation and also to assist in detecting
Bridge No Yes Yes and escalating exception conditions. Event Management
Composite Yes Yes Yes aSS|s_ts_W|th the e_arly identification of |n(_:|den_ts through
providing a baseline of automated operations in order to
Decorator No Yes Yes allow service management staff to focus on become more
Facade No No No proactive in their daily operations. Events are normally
Avaeight No Yes Ves notifications/warnings created by an IT Service,
e Configuration Item (CI) or any type of monitoring tool
Proxy No Yes Yes around the status or availability.
Abstract Factory No Yes Yes
] IV. IMPLEMENTATION OF OBSERVER PATTERN WITH
Builder No No Yes AOP
Factory Method No Yes Yes o)
Brot No . Ve Observer pattern maintains consistency among several
rototype objects that depends on a model data in a way that
Singleton No No No promotes reuse and keep a low coupling among classes.

In this pattern, every time the Subject state changes, all
the Observers are notified. The main problem with the
object-oriented Observer pattern is that you should
modify the structure of classes that participate in the
pattern. So, it is hard to apply the pattern into an existing
design as well as remove from it.

The design of the Observer pattern is changed in order
to represent it as classes and aspects. There is no
Observer role neither a Subject one. Both structure and
behavior of these two roles are expressed in the
MonitoringObserverPattern aspect. ITSMSubject
describes the interface that all the concrete subjects must

not extensive and limited to theoretical work. be in accordance to (enforce by the
MonitoringObserverPattern and
As discussed in [2] applying aspect oriented concepts MonitoringConcreteObserverPattern). When

on GoF patterns could lead to improved modularity,
maintainability, reusability, uniformity, transparency,
extensibility even if the pattern doesn’t involve

implemented, the ITSMSubject will contain a reference
to its observers, and allow the dynamic addition and
deletion of observers. Observer describes the interface

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 Issue 3, May - 2012

that all the concrete observers must be in accordance to
(enforce by the MonitoringObserverPattern and
MonitoringConcreteObserverPattern). They are notified
every time the state of the subject changes.
ITSM ConcreteSubject Store state information to be used
by ConcreteObservers. It does not, however, send
notifications to its Observers. This responsibility is part
of the MonitoringObserverPattern role.
ConcreteObservers serve as basis to field and method’s
introduction performed by the
MonitoringObserverPattern. MonitoringObserverPattern
is an abstract aspect that encapsulates the behavior of the
Observer pattern. The MonitoringObserverPattern
contains the fields and methods to be included in the
classes that are affected by the
MonitoringConcreteObserverPattern. Concrete
ObserverPattern specifies in what situations the
ConcreteObservers are going to be notified as well as
what is going to be executed when the
ConcreteObservers are notified.

In the implementation of ITSM event management,
different devices, applications, hardware, database and
services are subjects. ITSM Administrators and different
application can serve as Observes. When some incident
occurs for configurable item, popularly known as ClI,
sends notifications to the observer as event. Sometime
observer may propose to receive events for analysis and
information. The list of all the observers is maintained in
Aspect MonitoringObserverPattern. Pointcut and advices
in MonitoringObserverPattern helps to waive the
application. When the classes corresponding to concrete
subjects and concrete observers are weaved together with
the MonitoringConcreteObserverPattern, the following
methods and fields are attached to the
ITSM ConcreteSubject and ConcreteObservers: fields
Observer observers (ITSMConcreteSubject), Subject
subject (Concrete Observers) methods void add(Observer
obs), void remove(Observer obs) (Concrete Subject),
void setSubject(Subject s), Subject getSubject()
(Concrete Observers) These attachments are specified in
the abstract aspect (the MonitoringObserverPattern). The
ITSM ConcreteSubject implements the ITSMSubject
interface. The concrete observers implement the observer
interface. The other modifications are done to the
dynamic nature of the observer and subject classes,
telling that every time that the state of the subject
changes the update method of the observers is invocated.

V. USE OF JAVA ANNOTATION IN IMPLEMENTATION

However, using this method you have to know how to
define pointcuts, advices, inter-type declarations in
aspects, how to weaving aspects with classes. This paper
provides a method using Java annotations to define
pattern participants and their relations, and then those
annotations are used to generate aspects. In this

<<Interface>>
ITSMSubject

<<Interface>>
Obsenver

i after stateChanges..

Notify all the observers
Qadd(obs : Observer) : void
Qremove(obs : Observer) : void
QgetObservers() : Observer []
QgetData(: Object

QsetSubject(s : Subject) : void
Qyetsubject(: Subject
Qupdate() : void

N2

<<Aspect>>
MonitoringObserverPattern
qubmcl ohservers : Observer []
&Observer.subject : Subject

L Any Class | S<<poi stateChanges(s : Subject) —_—
I —
<. ject s): stateC
Qsubjectaddiobs : Observer) : void -
Qsubjectremove(ohs : Observer) : Observer
<Lcrosscut>
.- "<<crosscut>> \
ITSMConcreteSubject| Concrete Observer
—
e e
——

<<Aspect>>
oncreteObserverPattern

Qdeclare parents: ConcreteSubject implements Subject,)
Qdeclare parents: ConcreteObserver implements Observer()
Q==pointcut=> stateChanges(s : Subject)

Figure 1: Implementing Observer Pattern with AspectJ[2]

implementation, users only use Java annotations rather
than Aspect language; they don't have to know an Aspect
language.

A. Defining Annotation @subject and @observer

@Subiject is applied to specify the subject, @Observer
is used to define the observer. Both annotations are used
to annotate a class or an interface. Sometime there are
many groups of different observing associations between
objects, so the id property is defined to identity which
group objects are in; its default value is 0. The same class
may be annotated with different id. Other annotations
defined later also have this property.

B. Annoting State Change and Update Method
@SubjectChange is applied to a method, indicting
after executing this method, the subject's state changes,
and observers will be notified.

C. Starting and Stopping Observing
After annotating pattern participants, the subject and
the observer, we need to establish the association
between participants to start observing. It is apparent that
only when we can get both the subject and the observer,
we may establish their association.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181
Vol. 1 Issue 3, May - 2012

VI.

RESULT OF STRUCTURED ANALYSIS

In this paper, structured analysis is done for applying
Aspect Oriented concepts on Observer Pattern to solve
the problem emerging from the existence of Crosscutting
concerns. It is realized that after applying AOP to
Observer pattern leads to improvement in some key
software properties. Table 2 shows the effect of AOP on
different software properties when applied to Observer
Pattern.

After Applying AOP to Observer Pattern, paper
analyzes the impact of using JAVA Annotation in
Observer Pattern.

Results of the JAVA Annotation analysis is as follows

e Annotations provide a novel method to define
participants and their relations by annotations.

¢ JAVA Annotation can be used to generate Aspects.

e No need to wunderstand AOP to overcome
shortcomings of Observer Pattern.

e Use of annotation provides clean and simple solution
to complex implementations.

TABLE Il
Structured Analysis of Observed Pattern with AOP

Sr No|Software Properties | Improved with AOP
1 |Modularity Yes
2 |Reusability Yes
3 [Maintainability Yes
4 [Uniformity Yes
5 [Transparency No
6 [Extensibility Yes
7 [Portability No
8 [Supportability Yes
9 [Reliability No
10 [Efficiency No
11 |Usability Yes
12 |Adaptability Yes
13 [Redundancy Yes

CONCLUSION

When applying Aspect Oriented Programming to
design pattern lead to efficacious push towards building
effective and intelligent solutions. Implementing ITSM
Event Management with Observer Pattern under the
umbrella of Aspect Orientation reduces the crosscutting
concern and improves the maintainability, reusability,
uniformity, transparency, extensibility. Use of Java

annotations in Observer Pattern helps to deliver clean and
powerful solution.

REFERENCES

[1] Gamma, E. et al Design Pattems- Elements of Reusable Object
Oriented Software. Addison-Wesley, 2009.

[2] Eduardo Kessler Piveta; Luiz Carlos Zancanella;, “Observer
Pattern using Aspect- Oriented Programming” SugarloafPLoP
Conferenece, 2003.

[3] El Maghawry, N.; Dawood, A. R.; ,”Aspect oriented GoF design
patterns” Informatics and systems (INFOS), 2010 The 7th
Intemational Conference on, wol., no., pp.1-7, 28-30 March
2010..

[4] LiuJicheng; Yin Hui; Wang Yabo; , “A novel implementation of
observer pattem by aspect based on Java annotation, ” Computer
Science and Information Technology (ICCSIT), 2010 3rd IEEE
Intemational Conference on , vol.1, no., pp.284-288, 9-11july
2010.

[5] Ramnivas Laddad . Aspect] in Action: Practical Aspect Oriented
Programming. Addison-Wesley,2005.

[6] Lei Zhang; , “Study on comparison of AOP and OOP,” Computer
Science and Service Syatem (CSSS), 2011 International
Conference on , vol., no., pp.3596-3599, 27-29 Jane 2011.

[7] Chrigiansson, B.; Forss, M.; Hagen, I.; Hansson, K..; Jonasson,
J.; M. Jonasson, Lott, F.; Olsson S.; and Rosevall, T. “ GoF Design
Patterns- with example using Javaand UML2 ”,2009.

[8] Wang Xiachuan; Zhang Shu; Tang Wanmei. “A New
Programming Fashion in OOP and AOP,” Journal of Chongging
University of Artsand Sciences (Natural Science Edition), 2007,
v.26 n. 14, pp.41-44.

[9] Christa Schwanninger; Egon Wuchner; Michael Kircher
“Encapsulating Crosscuting Concems in System Software”. In

Proceedings of the Thid AOSD Workshop on Agpects,
Components, and Pattems for Infrastructure Software 2004.

[10] Marin, M. ; Moonen, L. ; van Deursen, A.,” A Classification of
Crosscutting Concerns’, Software Maintenance, 2005. ICSM'05.
Proceedings of the 21st IEEE International Conference on 26-
29Sept2005.

www.ijert.org

