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Abstract: An analytical first order solution to the one-dimensional 

advection-dispersion equation with spatially variable retardation 

factor is derived using a generalized integral transform method to 

investigate the transport of sorbing but otherwise non-reacting solutes 

in hydraulic homogenous but geochemically heterogeneous porous 

formations. The solution is derived under conditions of steady-state 

flow and arbitrary initial and inlet boundary conditions. The results 

obtained by this solution agree well with the results obtained by 

numerically inverting Laplace transform-generated solutions 

previously published in the literature. The solution is developed for a 

third or flux type inlet boundary condition, which is applicable when 

considering resident solute concentrations and a semi-infinite porous 

medium. For mathematical simplicity it is hypothesized that the 

sorption processes are based on linear equilibrium isotherms and that 

the local chemical equilibrium assumption is valid. The result from 

several simulations, compared with predictions based on the classical 

advection-dispersion equation with constant coefficients, indicate that 

at early times, spatially variable retardation affects the transport 

behavior of sorbing solutes. The zeroth moments corresponding to 

constant and variable retardation are not necessarily equal. The 

center of mass appears to move more slowly, and solute spreading is 

enhanced in the variable retardation case. At late time, when the 

travel distance is much larger than the correlation scale of the 

retardation factor, the zeroth moment for the variable retardation 

case is identical to the case of invariant retardation. The analytical 

solution presented in this paper provides more flexibility with regard 

to the inlet conditions. 

 

INTRODUCTION 

 

The impact of spatially variable hydraulic parameters on 

the transport and spreading of conservative, non-reacting 

solutes in natural subsurface has been the focus of many 

recent studies. Gelhar et. al. (1979), Sudheendra (2010, 

2011).  Aral et.al (1996) and others, have provided 

methodologies for improving the description and prediction 

of  non-reacting solute transport in complex structured 

formations, compared with the prediction based on the 

classical advection-dispersion equation with constant 

coefficients. On the other hand, the transport of sorbing 

solutes in geochemically as well as hydraulically 

heterogeneous porous media has received little attention. 

 

For the importance case of transport of sorbing solutes in 

geochemically homogeneous porous media, the effects of 

sorption are commonly accounted for by a dimensionless 

retardation factor, which may be defined as the ration of 

the average interstitial fluid velocity to the propagation 

velocity of the solute. Excluding the possibilities of mass 

transport limitations and solute transformation or decay, 

any observed fluctuations on the retardation factor are 

attributed solely to the variability of the distribution 

coefficient, which is an experimentally obtained measure of 

sorption or solute retention by the solid formation. Sorption 

processes can be complex and depend on many variables, 

including temperature, pressure, solution pH, and ionic 

strength, sorbent surface charge, sorbent sorptive capacity, 

and the presence of species that complete for sorption sites. 

Spatial or temporal fluctuations in any of these variables 

accordingly affect the distribution coefficient and, 

consequently, the movement of sorbing solutes in 

subsurface porous media. For example, the distribution 

coefficient of non-polar organic solutes (synthetic organic 

chemicals, major constituents of groundwater toxic 

pollutants) is correlated with the organic carbon content of 

the sorbent (Karckhoff (1984) and Sudheendra (2014)). 

Although such a correlation is not fully reliable for every 
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solute-sorbent system (Curtis and Roberts, 1985), it can 

explain to some extent the variable retardation observed in 

field experiments (Roberts et.al 1986).  

 

Garabedian (1987) & Sudheendra (2012) employed 

spectral methods to analyze reactive solute macro-

dispersion under the assumption that the log-hydraulic 

conductivity is linearly related to both the porosity and the 

distribution coefficient. His result indicate that solute 

spreading is enhanced when there is negative correlation 

between the log-hydraulic conductivity and the distribution 

coefficient. The present work is focused on the transport of 

pollutants but otherwise non-reacting solutes under local 

equilibrium conditions in a one-dimensional unsaturated 

porous medium. Analytical solutions are employed to solve 

the one-dimensional advection-dispersion equation with 

uniform, steady fluid flow conditions and spatially variable 

retardation factor, for a semi-infinite medium and flux-type 

inlet boundary condition.  

 

The main objective of the study is to provide mathematical 

model for better understanding of transport of pollutant 

through unsaturated porous media. A mathematical model 

is an important tool and can play a crucial role in 

understanding the mechanism of groundwater pollution 

problems. It is a simplified description of physical reality 

expressed in mathematical terms. Mathematical models 

that attempt to simulate atmospheric processes involved in 

groundwater pollution are based, in general, on the 

equation of mass conservation for individual pollutant 

species. Such models relate in one equation the effects of 

all the physical aspects and dynamic processes that 

influence the mass balance on groundwater which include 

transport, diffusion, removal of pollutants and loss or 

transformation through chemical reactions. 

 

 

MATHEMATICAL MODEL 

 

The Advection-Dispersion equation along with initial 

condition and boundary conditions can be written as 
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Let us take D1 = D/R, w1 = w/R, 1=/R. Initially, 

saturated flow of fluid of concentration, C = 0, takes place 

in the porous media.  
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Thus, the appropriate boundary conditions for the given 

model   
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The problem then is to characterize the concentration as a 

function of z and t, where the input condition is assumed at 

the origin and a second type or flux type homogeneous 

condition is assumed. C0 is initial concentration. To reduce 

equation (3) to a more familiar form, we take 
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(3) 

Substituting equation (3) into equation (1) gives    
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The initial and boundary conditions (2) transform to    
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Equation (4) may be solved for a time dependent influx of 

the fluid at z = 0. The solution of equation (4) may be 

obtained readily by use of Duhamel’s theorem (Carslaw 

and Jaeger, 1947).  

 

If  tzyxFC ,,,  is the solution of the diffusion 

equation for semi-infinite media in which the initial 

concentration is zero and its surface is maintained at 

concentration unity, then the solution of the problem in 

which the surface is maintained at temperature  t is 
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This theorem is used principally for heat conduction 

problems, but the above has been specialized to fit this 

specific case of interest. Consider now the problem in 

which initial concentration is zero and the boundary is 

maintained at concentration unity. The boundary 

conditions are 
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The Laplace transform of equation (4) is  
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Hence, it is reduced to an ordinary differential equation 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

2








1

2

2

D

p

z
       (6) 

The solution of the equation is  
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the particular solution of the Laplace transformed equation 

is 
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The inversion of the above function is given in any table of 

Laplace transforms. The result is  
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Using Duhamel’s theorem, the solution of the problem 

with initial concentration zero and the time dependent 

surface condition at z = 0 is  
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Since 
2e is a continuous function, it is possible to 

differentiate under the integral, which gives 
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Putting 
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solution of the problem be written as 
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Evaluation of the integral solution 

 

The integration of the first term of equation (9) gives 
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For convenience the second integral may be expressed on 

terms of error function (Horenstein, 1945), because this 

function is well tabulated. 
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The second integral of equation (9) may be written as 
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Since the method of reducing integral to a tabulated 

function is the same for both integrals in the right side of 

equation (11), only the first term is considered. Let 
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Similar evaluation of the second integral of equation (11) 
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Substitution into equation (11) gives 

















  




















  deedeeI
22 22

2

1
. (14) 

 

Thus, equation (9) may be expressed as 
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However, by definition, 
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Writing equation (15) in terms of error functions, we get 
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Thus, Substitution into equation (3) the solution is  
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Re-substituting for  and  gives 
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where boundaries are symmetrical the solution of the 

problem is given by the first term the equation (17). The 

second term is equation (17) is thus due to the asymmetric 

boundary imposed in the more general problem. However, 

it should be noted also that if a point a great distance away 

from the source is considered, then it is possible to 

approximate the boundary condition by   0, CtC  , 

which leads to a symmetrical solution. 

 

3. RESULTS & DISCUSSIONS: 

 

This study presents analytical solutions for one-

dimensional advection–dispersion equations in unsaturated 

porous medium in finite domain. The transform method 

coupled with the generalized integral transform technique 

is used to obtain the analytical solutions. Solutions are 

obtained for both first- and third-type inlet boundary 

conditions. The developed analytical solutions for finite 

domain are compared with solutions for the semi-infinite 

domain to clarify how the exit boundary influences the 

one-dimensional transport in a porous medium system.  

         
    Fig. 2: Break-through-curve for C/C0 v/s time 

for z=10m, R=1.0, =0.5 &  = 0    

                  

 
Fig. 3: Break-through-curve for C/C0 v/s time 

for z=10m, R=1.0, =0.5 &  = 0.25 

 

 
    Fig. 4: Break-through-curve for C/C0 v/s time 

           for z=10m, R=1.0, =0.5 &  = 0.5  

 

 
   Fig. 5: Break-through-curve for C/C0 v/s time                      

                for z=10m, R=1.0, =0.5,  = 0.75 & 1.0 

 

The main limitations of the analytical methods are that the 

applicability is for relatively simple problems. The 

geometry of the problem should be regular. The properties 

of the soil in the region considered must be homogeneous 

in the sub region. The analytical method is somewhat more 

flexible than the standard form of other methods for one-

dimensional transport model. Figures 1 to 4 represents the 

concentration profiles verses time in the adsorbing media 

for depth z = 10m and Retardation factor R=1. It is seen 

that for a fixed velocity w, dispersion coefficient D and 

distribution coefficient Kd, C/C0 decreases with depth as 

porosity n decreases due to the distributive coefficient Kd 

and if time increases the concentration decreases for 

different time and decay chain. 

 

Accordingly, the analytical solutions derived for the finite 

domain will thus be particularly useful for analyzing the 

one-dimensional transport in unsaturated porous medium 

with a large dispersion coefficient whereas the analytical 

solution for semi-infinite domain is recommended to be 

applied for a medium system with a small dispersion 

coefficient. Moreover, the developed solution is especially 

useful for validating numerical model simulated solution 

because realistic problems generally have a finite domain. 

 

From this paper, we conclude that the mathematical 

solutions have been developed for predicting the possible 

concentration of a given dissolved substance in steady 

unidirectional seepage flows through semi-infinite, 

homogeneous, and isotropic porous media subject to source 

concentration that vary exponentially with time for 

spatially variable retardation factor using a change of 

variable and integral transform technique. The expressions 

take into account the contaminants as well as mass transfer 

from the liquid to the solid phase due to adsorption. For 

simultaneous dispersion and adsorption of a solute, the 

dispersion system is considered to be adsorbing at a rate 

proportional to its concentration. 

 

 

 

 

 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

5



4. REFERENCES: 

 
[1]Aral, M.M., Liao, B., 1996. Analytical solutions for two-

dimensional transport equation with   time-dependant dispersion 

co-efficients.  Journal of Hydrologic Engineering, 1,20-32. 

[2]Barry, D. A., and Sporito, G. , 1989. Analytical solution of a 
convection-dispersion model with time-dependant transport co-

efficients.  Water Resour.Res.,25,2407-2416. 

[3]Batu, V.,1993. A generalized two-dimensional analytical solute 
transport model in bounded media for flux-type multiple sources.  

Water Resour. Res., 29, 2881-2892. 

[4]Bear,J.,and A.Verruijt.,1990.Modelling Groundwater flow and 
pollution.D Radial Publishing Co.,Tokyo. 

[5]Ermak,D.L.,1977.An Analytical Model for Air Pollutant transport 

and deposition from a point source.Atmos.Environ.,11. 
[6]J.S.Chen,C.W.Liu,and C.M.Liao., 2003. Two - dimensional 

Laplace - Transformed Power Series Solution for Solute 

Transport in a Radially Convergent Flow Field. Adv. Water 
Res.,26,1113-1124. 

[7]Koch,W.,1989.A Solution of two-dimensional atmosphere diffusion 

equation with height-dependent diffusion coefficient including 
ground level absorption. Atmos. Environ., 23, 1729-1732.  

 [8] Sudheendra S.R., 2010 A solution of the differential equation of 

longitudinal dispersion with variable coefficients in a finite 
domain, Int. J. of Applied Mathematics & Physics, Vol.2, No. 2, 

193-204. 
[9] Sudheendra S.R., 2011. A solution of the differential equation of 

dependent dispersion along uniform and non-uniform flow with 

variable coefficients in a finite domain, Int. J. of Mathematical 
Analysis, Vol.3, No. 2, 89-105. 

[10] Sudheendra S.R. 2012. An analytical solution of one-dimensional 

advection-diffusion equation in a porous media in presence of 
radioactive decay, Global Journal of Pure and Applied 

Mathematics, Vol.8, No. 2, 113-124. 

[11] Sudheendra S.R., Raji J, & Niranjan CM, 2014. Mathematical 
Solutions of transport of pollutants through unsaturated porous 

media with adsorption in a finite domain, Int. J. of Combined 

Research & Development, Vol. 2, No. 2, 32-40. 
[12] Sudheendra S.R., Praveen Kumar M. & Ramesh T. 2014. 

Mathematical Analysis of transport of pollutants through 

unsaturated porous media with adsorption and radioactive decay, 
Int. J. of Combined Research & Development, Vol. 2, No. 4, 01-

08. 

[13] Sudheendra S.R., Raji J, & Niranjan CM, 2014. Mathematical 
modelling of transport of pollutants in unsaturated porous media 

with radioactive decay and comparison with soil column 

experiment,  Int. Scientific J. on Engineering & Technology, Vol. 
17, No. 5. 

[14]Tartakowsky,D.,Di Federico,V.,1997.  An analytical solution for 

contaminant transport in non-uniform flow. Transport in porous 
media, 27, 85-97. 

[15]Wexler.E.J.,1992.Analytical solution for one, two and three 

dimensional solute transport in Ground water systems with 
uniform flow. U.S. Geological Survey, Techniques of water 

Resources Investigations, Book 3,Chap. B.7. 

[16] Yates, S. R., 1990.  An analytical solution for one-dimensional 
transport in heterogeneous porous media. Water Resour. Res., 26, 

2331-2338.  
[17] Zoppou,C., and Knight, J.H.., 1997. Analytical solution for 

advection and advection-diffusion equation with spatially variable 

coefficients. Journal of Hydraulic Engineering.,123,144-148 
 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

ICESMART-2015 Conference Proceedings

Volume 3, Issue 19

Special Issue - 2015

6


