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Abstract: An analytical first order solution to the one-dimensional
advection-dispersion equation with spatially variable retardation
factor is derived using a generalized integral transform method to
investigate the transport of sorbing but otherwise non-reacting solutes
in hydraulic homogenous but geochemically heterogeneous porous
formations. The solution is derived under conditions of steady-state
flow and arbitrary initial and inlet boundary conditions. The results
obtained by this solution agree well with the results obtained by
numerically inverting Laplace transform-generated solutions
previously published in the literature. The solution is developed for a
third or flux type inlet boundary condition, which is applicable when
considering resident solute concentrations and a semi-infinite porous
medium. For mathematical simplicity it is hypothesized that the
sorption processes are based on linear equilibrium isotherms and that
the local chemical equilibrium assumption is valid. The result from
several simulations, compared with predictions based on the classical
advection-dispersion equation with constant coefficients, indicate that
at early times, spatially variable retardation affects the transport
behavior of sorbing solutes. The zeroth moments corresponding to
constant and variable retardation are not necessarily equal. The
center of mass appears to move more slowly, and solute spreading is
enhanced in the variable retardation case. At late time, when the
travel distance is much larger than the correlation scale of the
retardation factor, the zeroth moment for the variable retardation
case is identical to the case of invariant retardation. The analytical
solution presented in this paper provides more flexibility with regard
to the inlet conditions.

INTRODUCTION

The impact of spatially variable hydraulic parameters on
the transport and spreading of conservative, non-reacting
solutes in natural subsurface has been the focus of many
recent studies. Gelhar et. al. (1979), Sudheendra (2010,
2011). Aral etal (1996) and others, have provided
methodologies for improving the description and prediction
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of non-reacting solute transport in complex structured
formations, compared with the prediction based on the
classical advection-dispersion equation with constant
coefficients. On the other hand, the transport of sorbing
solutes in geochemically as well as hydraulically
heterogeneous porous media has received little attention.

For the importance case of transport of sorbing solutes in
geochemically homogeneous porous media, the effects of
sorption are commonly accounted for by a dimensionless
retardation factor, which may be defined as the ration of
the average interstitial fluid velocity to the propagation
velocity of the solute. Excluding the possibilities of mass
transport limitations and solute transformation or decay,
any observed fluctuations on the retardation factor are
attributed solely to the variability of the distribution
coefficient, which is an experimentally obtained measure of
sorption or solute retention by the solid formation. Sorption
processes can be complex and depend on many variables,
including temperature, pressure, solution pH, and ionic
strength, sorbent surface charge, sorbent sorptive capacity,
and the presence of species that complete for sorption sites.
Spatial or temporal fluctuations in any of these variables
accordingly affect the distribution coefficient and,
consequently, the movement of sorbing solutes in
subsurface porous media. For example, the distribution
coefficient of non-polar organic solutes (synthetic organic
chemicals, major constituents of groundwater toxic
pollutants) is correlated with the organic carbon content of
the sorbent (Karckhoff (1984) and Sudheendra (2014)).
Although such a correlation is not fully reliable for every
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solute-sorbent system (Curtis and Roberts, 1985), it can
explain to some extent the variable retardation observed in
field experiments (Roberts et.al 1986).

Garabedian (1987) & Sudheendra (2012) employed
spectral methods to analyze reactive solute macro-
dispersion under the assumption that the log-hydraulic
conductivity is linearly related to both the porosity and the
distribution coefficient. His result indicate that solute
spreading is enhanced when there is negative correlation
between the log-hydraulic conductivity and the distribution
coefficient. The present work is focused on the transport of
pollutants but otherwise non-reacting solutes under local
equilibrium conditions in a one-dimensional unsaturated
porous medium. Analytical solutions are employed to solve
the one-dimensional advection-dispersion equation with
uniform, steady fluid flow conditions and spatially variable
retardation factor, for a semi-infinite medium and flux-type
inlet boundary condition.

The main objective of the study is to provide mathematical
model for better understanding of transport of pollutant
through unsaturated porous media. A mathematical model
is an important tool and can play a crucial role in
understanding the mechanism of groundwater pollution
problems. It is a simplified description of physical reality
expressed in mathematical terms. Mathematical models
that attempt to simulate atmospheric processes involved in
groundwater pollution are based, in general, on the
equation of mass conservation for individual pollutant
species. Such models relate in one equation the effects of
all the physical aspects and dynamic processes that
influence the mass balance on groundwater which include
transport, diffusion, removal of pollutants and loss or
transformation through chemical reactions.

MATHEMATICAL MODEL

The Advection-Dispersion equation along with initial
condition and boundary conditions can be written as
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Let us take D1 = D/R, wi = W/R, M=AR. Initially,
saturated flow of fluid of concentration, C = 0, takes place
in the porous media.

oC 0*C oC
—=D,—-w,—-A4C 1)
a D M A
Thus, the appropriate boundary conditions for the given
model

C(z,0)=0 z2>0
C(0,t)=C,e™ t>0¢. )

C(oo,t)=0 t>0
The problem then is to characterize the concentration as a
function of z and t, where the input condition is assumed at
the origin and a second type or flux type homogeneous

condition is assumed. Cy is initial concentration. To reduce
equation (3) to a more familiar form, we take
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Substituting equation (3) into equation (1) gives
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The initial and boundary conditions (2) transform to
2
r(0,t)=C, Exp Zvé)twt(ﬂl—)/)t} t>0
1
I'(z,0)=0 75010
(o0, t)=0 t>0

Equation (4) may be solved for a time dependent influx of
the fluid at z = 0. The solution of equation (4) may be
obtained readily by use of Duhamel’s theorem (Carslaw
and Jaeger, 1947).

If C=F (X, Y,z t) is the solution of the diffusion

equation for semi-infinite media in which the initial
concentration is zero and its surface is maintained at
concentration unity, then the solution of the problem in

which the surface is maintained at temperature ¢(t) is

c =j¢(f)§ F(x,y,2,t—7)dr

This theorem is used principally for heat conduction
problems, but the above has been specialized to fit this
specific case of interest. Consider now the problem in
which initial concentration is zero and the boundary is
maintained at concentration unity. The boundary
conditions are

ro,t)=0 t>0
I(z,0)=1 z>0
(0, t)=0 t>0
The Laplace transform of equation (4) is
[o]act
ot 0z

Hence, it is reduced to an ordinary differential equation
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The boundary condition as z — « requires that B =0

. . 1

and boundary condition at z = 0 requires that A =— thus
p
the particular solution of the Laplace transformed equation
is
I'= 1 e’
p

The inversion of the above function is given in any table of
Laplace transforms. The result is

ek
2F
Using Duhamel’s theorem, the solution of the problem

with initial concentration zero and the time dependent
surface condition at z =0 is

r=1-erf(——— dn
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5l
2Dtr)

2
Since €7 is a continuous function, it is possible to
differentiate under the integral, which gives
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The solution to the problem is
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Putting 14 = ——————=then the equation (7) can be
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written as
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solution of the problem be written as
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Evaluation of the integral solution

The integration of the first term of equation (9) gives
T 2 g NTT o,
. IExp -y —— |du=——c¢ (10)
o H 2

For convenience the second integral may be expressed on
terms of error function (Horenstein, 1945), because this
function is well tabulated.

Noting that
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The second integral of equation (9) may be written as
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Since the method of reducing integral to a tabulated
function is the same for both integrals in the right side of
equation (11), only the first term is considered. Let

a= 8/ M and the integral may be expressed as

o 2
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0 H
o 2
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Further, let, = (— + a]
a
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Similar evaluation of the second integral of equation (11)

gives
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Again substituting — # =——a into the first term, the
a

result is
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Substitution into equation (11) gives
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Thus, equation (9) may be expressed as
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However, by definition,
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Writing equation (15) in terms of error functions, we get
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Thus, Substitution into equation (3) the solution is
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Re-substituting for € and o gives
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where boundaries are symmetrical the solution of the
problem is given by the first term the equation (17). The
second term is equation (17) is thus due to the asymmetric
boundary imposed in the more general problem. However,
it should be noted also that if a point a great distance away
from the source is considered, then it is possible to

approximate the boundary condition by C(— 0, t) =C,,
which leads to a symmetrical solution.

3. RESULTS & DISCUSSIONS:

This study presents analytical solutions for one-
dimensional advection—dispersion equations in unsaturated
porous medium in finite domain. The transform method
coupled with the generalized integral transform technique
is used to obtain the analytical solutions. Solutions are
obtained for both first- and third-type inlet boundary
conditions. The developed analytical solutions for finite
domain are compared with solutions for the semi-infinite
domain to clarify how the exit boundary influences the
one-dimensional transport in a porous medium system.
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Fig. 2: Break-through-curve for C/Cq v/s time
for z=10m, R=1.0, A=05 &y =0
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Fig. 3: Break-through-curve for C/C, v/s time
for z=10m, R=1.0, A=0.5 & y = 0.25
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Fig. 4: Break-through-curve for C/C, v/s time
for z=10m, R=1.0, A=0.5 & y=0.5
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Fig. 5: Break-through-curve for C/Cy v/s time
for z=10m, R=1.0, A=0.5,y=0.75 & 1.0

The main limitations of the analytical methods are that the
applicability is for relatively simple problems. The
geometry of the problem should be regular. The properties
of the soil in the region considered must be homogeneous
in the sub region. The analytical method is somewhat more
flexible than the standard form of other methods for one-
dimensional transport model. Figures 1 to 4 represents the
concentration profiles verses time in the adsorbing media
for depth z = 10m and Retardation factor R=1. It is seen
that for a fixed velocity w, dispersion coefficient D and
distribution coefficient Kq, C/Co decreases with depth as
porosity n decreases due to the distributive coefficient Kq
and if time increases the concentration decreases for
different time and decay chain.

Accordingly, the analytical solutions derived for the finite
domain will thus be particularly useful for analyzing the
one-dimensional transport in unsaturated porous medium
with a large dispersion coefficient whereas the analytical
solution for semi-infinite domain is recommended to be
applied for a medium system with a small dispersion
coefficient. Moreover, the developed solution is especially
useful for validating numerical model simulated solution
because realistic problems generally have a finite domain.

From this paper, we conclude that the mathematical
solutions have been developed for predicting the possible
concentration of a given dissolved substance in steady
unidirectional seepage flows through semi-infinite,
homogeneous, and isotropic porous media subject to source
concentration that vary exponentially with time for
spatially variable retardation factor using a change of
variable and integral transform technique. The expressions
take into account the contaminants as well as mass transfer
from the liquid to the solid phase due to adsorption. For
simultaneous dispersion and adsorption of a solute, the
dispersion system is considered to be adsorbing at a rate
proportional to its concentration.
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