
Analytical Solution for Lateral Buckling of 

Double Layer Grid-Walls by the Sandwich Plate 

Analogy Method and the Kantorovich Method 
 

W. F. Zhang, W. F. Liang,  K. S. Chen, Y.

 

H.

 

Lu

 

& Y.

 

X.

 

Tan 

 

Northeast Petroleum University

 

Daqing,

 

Heilongjiang

 

,

 

China

 

 

Abstract—There is a new trend appearing in new and 

expanding engineering, that is the space grid structure is 

gradually used to construct the structural wall which is called 

grid-wall in this paper. Because of being subjected to load in 

vertical plane, the lateral buckling of grid-wall may occur. A 

simplified analytical method for lateral buckling of Double 

Layer Grid-wall(DLG-wall) of orthogonal square pyramid space 

grid structure with one side free and the others simply 

supported is put forward in this paper. In practical design, 

DLG-wall can be simplified to a continuum mode based on the 

sandwich plate analogy method and three-dimensional, platelike 

lattice structures is transformed into one-dimensional problem 

through the Kantorovich method, and then the minimum 

critical load formula of lateral buckling for DLG-wall is 

deduced, its accuracy is verified by finite element method. The 

comparison of different results shows that the presented method 

is not only very simple and convenient but also has fairly high 

precision. Furthermore, this method can relieve designer of the 

time-consuming task of building a complicated model for finite 

element analysis. Therefore, this practical simplified method is 

suitable for making plan and preliminary design for DLG-wall.  

Keywords—Double layer grid-wall; lateral buckling; the 

sandwich plate analogy method; the Kantorovich method, finite 

element method  

I.  INTRODUCTION 

The space grid structure has the advantages of large space 
stiffness, good mechanical performance and attractive 
appearance, etc, and it has been widely used in the practical 
engineering. The application was mainly used for horizontal 
span structure in the past, for instance, the roof structure or 
floor structure. However, as a spatial structure with good 
performance, its application should also be spatial, and there 
are no limitations for the horizontal or vertical layout scheme 
in architecture and structure design. In recent years, with the 
development of the structure and the need to adapt to the 
function of the building, various forms of grid structure began 
to be used for structural wall in large buildings and public 
buildings, among them, the vertical double layer grid-wall 
(DLG-wall) structure used in New York Javits Exhibition and 
Conference Center are successful examples

[1]
. 

DLG-wall is used not only in the new project but also in 
reconstructed project or extension project to meet the 
requirement of building functions, such as acquiring large 
architectural space in new constructions or extension 
constructions. However, in the case of reconstructed project or 
extension project, the boundary conditions of the DLG-wall 
are three sides of them are connected with other structure 
components or foundations, while the other (usually the top 

side) is free.  Because the height of the DLG-wall is very large 

(H≥30 m), and the thickness of the wall can't be too large, so 

that the study of stability for the DLG-wall is of great 
importance.  

Based on the background of this kind of practical projects 
and considering generality of problems, the boundary 
conditions of the vertical bearing DLG-wall are considered as 
one side free and others simply supported. Taking orthogonal 
square pyramid space grid-wall as an example, it can be 
simplified a continuum mode based on the sandwich plate 
analogy method, and then its lateral stability can be analyzed 
by using the Kantorovich method. 

The currently analytical approaches for analyzing large 
repetitive lattice structures can be grouped into five classes, 
namely, direct method

[2]
, discrete field method

[3]
, periodic 

structure approaches
[4]

, substitute continuum approaches
[5]

 and 
plate analogy method. The number of publications on 
continuum modeling of repetitive lattice structures has been 
steadily increasing, several studies are discussed in the 
literature

[6]-[10]
, such as continuum modeling of large lattice 

structures by A. K. Noor and M. M. Jr Martin
[6]

, and 

continuum models for beam-and platelike lattice structures by 
T. Anne and D. R. Guido

[7]
. 

The sandwich plate analogy method is a simplified 
calculation method for the design of the grid structure. In 
1982, S. L. Dong and X. Heng

[11]
 proposed sandwich plate 

analogy method of orthogonal square pyramid space grids and 
adopted in design specification of double layer grid 
structures

[12]
. W. F. Zhang

[13]-[14]
 first applied the sandwich 

plate analogy method to analyze the vertical dynamic response 
of the double layer grid structure, and the exact solution 
formula for the natural vibration of orthogonal square pyramid 
space grids was derived. N. Bai

[15] 
applied the sandwich plate 

analogy method to the vertical seismic analysis of square grid 
structure, and the correctness of the practical formula for the 
vertical seismic internal force of the grid structure was 
verified. And then, the sandwich plate analogy method was 
used for static analysis, natural vibration analysis and the 
stability analysis of square grid structure by W. F. Zhang and 
W. Y. Liu

[16]
, the accuracy of the formulas for the natural 

vibration the critical load of buckling were verified. 

The Kantorovich method
[17]

 is a method for solving 
differential equations proposed by the former Soviet scholar, 
Kantorovich, in 1933, which can convert variational problem 
of multiple integrals to ordinary differential equation. If 
combine it with the energy variational method, the more 
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accurate approximate analytical solution can be obtained. 
Earlier, A. D. Kerr

[18]
 successfully used the extended 

Kantorovich method for the problem of bending and buckling 
of an isotropic rectangular plate. The efficiency and accuracy 
of the method have also been demonstrated in the stress 
analysis of clamped isotropic plates

[19]
 and clamped 

orthotropic plates
[20]

, also. J. M. Ding and X. L. Su
[21] 

have 
solved the displacement of the space truss under vertical load. 
As for the buckling problems, U. Variddhi and S. Pairod

[22]
 

finished the buckling analysis of symmetrically laminated 
composite plates by the extended Kantorovich method, and W. 
F. Zhang and K. Y. Liu

[23] 
have studied application for the 

solutions of lateral buckling for rectangular plate by the 
Kantorovich method. 

In 1998, C.X. Xu and C. T. Ding
[1]

 have studied the 
stability calculation of vertical DLG-wall, with the sandwich 
plate analogy method, taking the DLG-wall as a  sandwich 
plate with four side simply supported, analytical buckling 
equations of the sandwich plate have been derived, and the 

critical load of the space truss wall has been obtained. 
Different from above mentioned results, in this paper, the 
boundary conditions of the vertical bearing DLG-wall in 
reconstructed or extension building are considered as one side 
free and top side simply supported, its lateral buckling 
analysis is based on the sandwich plate analogy method and 
the Kantorovich method, and then the minimum critical load 
formula of lateral buckling for the DLG-wall is deduced, 
whose accuracy is verified by finite element method. 

II.   PRESENTATION OF QUESTIONS 

When the orthogonal square pyramid space grid structure 
acts as structure wall (see Fig.1), it is subjected to in-plane 
load in vertical plane and then in-plane deflection may occur. 
As the load reaches critical load, the DLG-wall will occur out-
plane deflection and twist, which is called lateral buckling for 
the DLG-wall. However, this problem has not been studied 
until now. 
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Support nodes 
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Bottom chords 

1/2P         P           P            P          1/2P 

s 

s 

 
Fig.1.  Example of orthogonal square pyramid space grid-wall 

The lateral buckling analysis can be carried out by using 
the finite element software, however, which needs to know the 
detailed dimensions of structural components and has 
complicated process in establishing FEM model. Moreover, 
the analysis conducted by software is not universal for any 
grid-wall. For this reason, finite element method is not 
suitable for preliminary design, but applicable to checking the 
final structure design. In this paper, we intend to search for a 
simplified analysis method to predict the buckling strength of 
the space DLG-wall in the preliminary design of the grid-wall, 
by which critical load of lateral buckling for the DLG-wall 
could be obtained through several main parameters, such as 
the length, rigidity, etc. 

Usually, it is more difficult to calculate the critical load of 
lateral buckling by making use of partial differential equations 
for orthogonal square pyramid space grids with one side free 
and others simply supported, when the free side is subjected to 
vertical load. The sandwich plate analogy method and the 
Kantorovich method will be introduced to solve this problem.  
With the Kantorovich method, the deflection function along 
the free side is not necessary to be chosen prior to calculate 

the minimum critical load of grid-wall lateral buckling. 
Numerical analyses on the lateral buckling behavior of the 
grid-wall are further performed for a various dimentions of 
grid-wall by finite element software ANSYS, which is found 
that the FEM results correspond well with the analytical 
solutions. So this simplified method may provide reference for 
the application of DLG-wall in practice. 

III.  THE LATERAL BUCKLING OF GLD-WALL BY THE 

SANDWICH PLATE ANALOGY METHOD AND THE KANTOROVICH 

METHOD 

In this paper, we establish the sandwich plate analogy 
model for orthogonal square pyramid space grid, which 
consists of two parallel surfaces (top and bottom chord plane) 
and core layer (Diagonals). Double-layer grids have 
comparatively low transverse shear stiffness. Hence basic 
equations are set up with the flat plate bending theory and 
shear deformation is not taken into account as calculating the 
critical load. The displacement function  , which, according 

to the relations between the stress and deformation states
[12]

, 
describes the displacement pattern caused by vertical uniform 
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load q acting on the free side of grid-wall in vertical plane, as 
sown in the Fig.1. In the FEM modeling, the uniform load q is 
translated to concentrated load P on middle support nodes and 

1

2
P  on the two end nodes. 

According to the sandwich plate analogy model, the lateral 
buckling of DLG-wall should fulfill the requirement of 
making the following total potential energy minimum 

2 2

0 0

0 0

1
( )

2

1
( ) ( )

2

a b

x xx y yy

a b

y

U V D D dxdy
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Where U and V denote the strain energy of the DLG-wall 
and the external potential energy induced by the external load, 
respectively. Dx and Dy, which depend on the plate dimensions 
and elastic constants, are called equivalent bending stiffness, 
and in the case of orthogonal square pyramid space grid, its 
expression has the form as 

2
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Where h is the height of DLG-wall, s is the size of top chord 
for the cell unit of single square pyramid, Aa, Ab are the areas 
of top chord and bottom chord, respectively.  

Furthermore, in the expression of the total potential energy,  

xx , yy , y  denote the relations between deflection 

function   and the corresponding deformation components. 

Their definition can be expressed as 

2

2xx
x








; 

2

2yy
y






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y
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


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
                 (2) 

q x( )  is vertical load applied in vertical plane. ( )y x  denotes 

the displacement function of the points lying on the vertical 
plane z =0 when the lateral buckling of grid-wall occurs, and 

it can be expressed as 2( ) ( )y yx     when the external load 

is uniform load. 

Then we can rewrite  the total potential energy as 

2 2
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2
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                 (3) 

Define the deflection function as  

( , ) ( )sin( )
x

x y f y
a


                        (3a) 

Obviously this function fulfills the geometric boundary 
conditions for x-direction, but for y-direction we set an 

undetermined function ( )f y . Here we define 
2

2
( )

D
q x k

a


  

and x yD D D  , where k is minimum lateral buckling 

coefficient of grid-wall. Introducing relations (2) and (3a) into 
the Eq.(3), and performing the integrals with respect to x, we 
arrive 

4
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The total potential energy also could be expressed in the 
following form:  
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0
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Where       
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According to the stationary value principle of total 
potential energy, the necessary condition of obtaining 
minimum of energy functional is 0  , i.e. 
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    Eq.(7) need fulfill the following differential equation:  

2

' 2 ''
0

F d F d F
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                (8) 

This is called Euler differential equation of the variational 
problem. With the aid of Eq.(6) Eq.(8)can be rewritten as 
follows: 

4 (4) 2 '' 4 2 0d da f k k a f k f                      (9) 

This is an ordinary differential equation, from which we 
can find that the Kantorovich method is semi-analytical 
method that transforms the partial differential equation 
problem into the ordinary differential equation. 

In addition, Eq.(7) must fulfill the boundary conditions 

at 0y  , y b . Firstly, at the side of 0y  , Eq.(7) must 

fulfill the natural boundary condition, i.e. bending moment 
0M   and geometric boundary condition displacement 

0  ; Secondly, at the other side of y b , Eq.(7) must 

fulfill the natural boundary condition, i.e. bending moment 
0M  and shear force 0Q  , as follows:  

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS060954

( This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 06, June-2015

1308



               

 

''

0

0

''

' ''

0

( , ) 0

0

0

y

y

y b

y b

F

f

x y

F

f

F d F

dyf f











 
 

 




 

 
 


        

                              (1

0) 

If the equality 0  would come into existence forever at 

the side of 0y  , since expression sin( )
x

a


 can’t be zero for 

anytime, we must set ( ) 0f y  . Introducing Eq.(6) and 
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Let us take the buckling mode as ( ) syf y e , then we can 

obtain the characteristic equation of the ordinary differential 
equation as 

4 2 2 4 2(as) (as) 0d dk k k                       (12) 

First of all, the characteristic of this type of equation roots 
should be discussed. If there are real roots in the above 

equation, the discriminant must be 0  , i.e. 2k  , so the 

discriminant becomes 
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Obviously, Eq.(12) has no real roots, so that the right-hand 

side of Eq.(13) will never be greater than 0 for 2k  , and 

0s  even though for 2k  . Defining the complex solution 

as
1
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the real and imaginary parts can be obtained respectively, 
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2

d dk kk


   , 2
2

d dk kk


   . 

Consequently, general solution of differential Eq. (12) has 
been deduced, the displacement function for y-direction is 
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 Introducing general solution (14) into boundary condition 
(11), a linear equation system consisted of four homogeneous 

linear equations with coefficient mna  can be  obtained as 
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Where the  coefficients of mna  are listed below. 
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Due to the absence of constant term in the right side of  

Eq.(15), if A* , B* , C* , D*  have non zero solutions, the 

necessary condition  is the determinant of coefficient must be 
zero, i.e.  
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    There is only one unknown quantity k in Eq.(16), so we 
can obtain minimal lateral buckling coefficient k for different 
value of a, b, D, kd. Thereby, up to now, when the DLG-wall 
is subjected to uniform load in vertical plane, the formula of 
minimum critical load for the lateral buckling of orthogonal 
square pyramid space grids with one side free and others 
simply supported has been derived, That is 

2

2cr

D
q k

a


                                     (17) 

IV.  VERIFICATION BY THE FINITE ELEMENT METHOD 

In this paper, the minimum critical load for the lateral 
buckling of grid-wall is also calculated by the finite element 
software ANSYS to verify the accuracy of the analytical 
solutions. In the finite model, the element LINK8 is adopted 
to simulate the actual members, which is a uniaxial tension-
compression element with three degrees of freedom on each 
node. In the process of establishing model, creating nodes 
firstly, and then building elements based on the nodes, last the 
finite element model of orthogonal square pyramid space grids 
can be established. In addition, the uniform load q is translated 
to concentrated load P=qs on top middle nodes and 

1 1

2 2
P qs  on top end nodes, which are on the free side, and 

0UX UY UZ   is adopted for other simply supported 

sides. The parameters of seven kinds of DLG-walls used in the 
analysis is listed in Table I, where Aa, Ab, Ac denote the area of 
the cross section for top chord, bottom chord and diagonals 
respectively (arithmetic mean if cross sections are varying 
along the span), and s denotes the length of top chord and h 
denotes the thickness of the grid-wall.  

The lateral buckling for the grid-wall are performed by the 
Kantorovich method and finite element method respectively 
for each grid-wall. Table II gives the results for seven kinds of 
grid-wall and the errors. Fig.2 shows the comparison between 
Kantorocich method and finite element method (FEM). In 
addition, taking 30×30m and 39×30m orthogonal square 
pyramid space grid-walls as examples, the buckling 
deformation of them are obtained by ANSYS, as shown in 
Fig.3 and Fig.4. 

TABLE I.     THE PARAMETERS OF GRID-WALL 

Span(m) 

Parameters 

Ratio of 

Side λ 
Aa (cm2) Ab (cm2) Ac (cm2) s(m) h(m) 

30×30 1.0 11.44 8.41 3.64 3.0 2.0 

45×45 1.0 17.17 13.08 7.90 3.0 3.0 

60×60 1.0 20.90 16.80 7.97 3.0 4.0 

36×30 1.2 29.91 19.20 8.51 3.0 2.3 

39×30 1.3 46.80 29.91 10.7 3.0 2.3 

42×30 1.4 63.80 46.8 19.2 3.0 2.3 

45×30 1.5 45.40 28.60 10.70 3.0 3.0 

TABLE II.  THE COMPARISON OF CALCULATION RESULTS 

Span(m) k 
Kantorovich 

method ( kN/m) 
Finite Element 
method (kN/m) 

Error (%) 

30×30 1.07784 1573.54 1554.40 +1.23 

45×45 1.07784 2410.29 2470.20 -2.43 

60×60 1.07784 3023.65 3051.62 -0.92 

36×30 1.21807 3940.18 3852.40 +2.28 

39×30 1.25568 5400.84 5113.9 +5.61 

42×30 1.24741 6844.21 7035.27 -2.72 

45×30 1.19522 6316.86 6232.77 +1.35 

 

  
Fig.2.  Comparison between Kantorocich method and finite element method 
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Fig.3.   Buckling deformation for 30×30m orthogonal square pyramid space grid-wall 
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Fig.4.  Buckling deformation for 39×30m orthogonal square pyramid space grid-wall 
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V.  CONCLUSION 

For double layer grid-wall, based on the sandwich plate 
analogy method and the Kantorovich method, a simplified 
analytical method to calculate minimum critical load of lateral 
buckling for DLG-walls  has been put forward in this paper. It 
is verified through seven examples of DLG-walls by ANSYS, 
which shows this analytical method is not only very simple 
and convenient but also has fairly high precision. The most 
absolute errors are no more than 5%, which are acceptable 
from the standpoint of engineering design requirements. Thus, 
from what have been discussed above, it can be concluded that 
this simplified analytical method is very practical and suitable 
for making plan and preliminary design of double layer grid-
walls.  
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