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Abstract:- This work presents the Taylor Series Method with 

shooting (STSM) with the purpose to find both approximate and 

exact solutions for the nonlinear problem that describes the 

steady state solutions of a highly nonlinear model of a coupled 

diffusion and nth-order chemical reaction in a spherical porous 

catalyst. After comparing STSM approximation with the exact 

solutions, we will conclude that the proposed solutions are 

besides of extremely handy, accurate (with relative error less 

than one percent in all the cases), therefore it follows that the 

proposed method is potentially an efficient tool to be used in 

practical applications instead of others cumbersome and 

complicated methods. 

I.  INTRODUCTION 

Most of the processes in nature are nonlinear, in such a way 
that, the mathematical models used with the purpose to get 
exact and approximate solutions do not always offer the 
required results. On the other hand, differential equations have 
shown to be an appropriate tool with the end to model 
complicated phenomena in nature. 

 Nature processes give rise to scientific problems and for 
the same reason the proposal of new methods with the purpose 
to obtain both exact and approximate solutions to the 
differential equations that govern these problems becomes 
compulsory. Given that the search for such solutions many 
times is a complicated task, it justifies the current research in 
this subject. Unlike the linear differential equations whose 
theory and solution methods can be found in many standard 
texts of differential equations [1] the case of nonlinear ordinary 
differential equations with exact solutions is less frequent [1]. 
One of the main contributions of this article is to show the 
potentiality of the proposed method in order to find both exact 
and approximate solutions with relative ease for the highly 
nonlinear problem that describes a coupled diffusion and nth-
order chemical reaction in a spherical porous catalyst [2]. 
Given the great diversity of scientific problems, and their 
corresponding nonlinear differential equations to be solved, 
have been proposed several methods. Some of most employed 
in accordance with the literature are: tanh method [3], exp-

function [4], Adomian’s decomposition method [5, 6, 7, 8], 
parameter expansion [9], homotopy perturbation method 
(HPM) [10, 11, 12, 13, 14, 15, 16, 17,18], perturbation method 
[19, 20, 21,22, 23], modified Taylor series method [24], 
Homotopy Analysis Method [25], Variational iteration method 
[26, 27], among others. 

 The main goal of this work is to employ a version of 
Taylor Series Method with shooting (STSM) with the end to 
provide analytical solutions for the relevant highly nonlinear 
differential equation that describes the steady state solutions of 
a highly nonlinear model of a coupled diffusion and nth-order 
chemical reaction in a spherical porous catalyst [2]. As a matter 
of fact, the importance of the diffusion and reaction problems 
consists in their application in chemical and process 
engineering problems [28]. Respect to the process engineering 
field, diffusion and reaction problems arise above all in the 
heterogeneous catalysts by using porous structures where 
reaction could occur, other examples of technological interest 
are found in [28]. Next, we will see that STSM method is 
relatively easy to use and it is able to provide both, exact and 
analytical approximate solutions even for the case of nonlinear 
differential equations defined in closed intervals for which the 
most of the investigation works are essentially numeric. 
Traditionally, Taylor Series Method (TSM) is a known method 
which is given in terms of initial conditions for a proposed 
problem and it is not very employed at the moment to solve 
differential equations. As a matter of fact, one serious 
inconvenient of the problem to solve, is the presence of a 
singularity for 𝑥 = 0; nevertheless, we will see that STSM 
method is indeed able to adequately handle it. In brief, the 
proposed method is given in the following terms. Given an 
ordinary differential equation, then like TSM, STSM proposes 
a Taylor series for the differential equation to solve, given that 
the goal is to solve a boundary value problem, then the 
successive derivatives of the differential equation to calculate 
the coefficients of the Series Taylor solution will be expressed 
in terms of an unknown initial condition. This quantity will be 
tried as a shooting constant which will be determinined 
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requiring that the proposed series obey the other boundary 
condition. We will see that even, the mentioned method is able 
to find exact analytical solutions. 

 The rest of this work is proposed in the following way. 
Section 2, provides the basic idea of STSM Method. 
Additionally Section 3 explains the antecedents for the 
nonlinear differential equation that describes the steady state 
solutions of a highly nonlinear model of a coupled diffusion 
and nth-order chemical reaction in a spherical porous catalyst, 
Section 4 presents the application of the proposed method, in 
the search for an approximate solution for the relevant problem 
above mentioned. Section 5 offers a discussion about the 
obtained solutions for this work. Finally, a brief conclusion of 
the relevant aspects of this article is given in Section 6. 

II. ELEMENTS OF SHOOTING TAYLOR SERIES 

METHOD 

Next, we will provide the basic theory of STSM. 

We start assuming a nonlinear problem with the following 
form  

 𝑢(𝑛) = 𝑁(𝑢) − 𝑓(𝑥),        𝑥 ∈ Ω,         (1) 

 with the boundary condition  

 𝐵 (𝑢,
𝜕𝑢

𝜕𝜂
) = 0,        𝑥 ∈ Γ.                   (2) 

 In the above equations, 𝑛 is the order of the differential 
equation (1), 𝑁 represents a general operator; 𝑓(𝑥) denotes a 
known analytic function while 𝐵 is a boundary operator, Γ as a 
matter of fact, is the boundary of the domain Ω, and 𝜕𝑢/𝜕𝜂 is 
the differentiation along the normal drawn outwards from Ω. 

 Following the proposed method, we will get the successive 
derivatives of the differential equation to solve. 

 𝑢(𝑖)(𝑥0),        (𝑖 = 0,1, … ),                       (3) 

in this expression 𝑥0 denotes the expansion point. 

 The series solution for (1) can be expressed as  

𝑢𝑇 = 𝑢(𝑥0) +
𝑢′(𝑥0)

1!
(𝑥 − 𝑥0)

1 +
𝑢′(𝑥0)

2!
  (𝑥 − 𝑥0)

2+. . .   𝑥 ∈ Ω,           

(4) 

we note that derivatives 𝑢(𝑖)(𝑥0), (𝑖 = 0,1, … ) are expressed in 
terms of one of the boundary conditions of (1). 

 With the purpose to get the coefficients of (4) (𝑢(𝑖)(𝑥0)) 
(𝑖 = 0,1, … ), we just apply the condition 𝑢𝑇(1) = 1. 

 

III. ANTECEDENTS FOR THE PROBLEM THAT 

DESCRIBES THE STEADY STATE SOLUTIONS OF A 

NONLINEAR MODEL OF A COUPLED DIFFUSION AND 

NTH-ORDER CHEMICAL REACTION IN A SPHERICAL 

POROUS CATALYST 

The goal of the article is to provide exact and handy 
analytical approximate solutions for the problem of a highly 
nonlinear model of a coupled diffusion and nth-order chemical 
reaction in a spherical porous catalyst. As a matter of fact, [2] 
presented an approach for these problems for the case of exact 
solutions, while [29] obtained analytical approximate solutions 
by using Adomian decomposition method. This article will 

show that STSM method is able to provide both kinds of 
solutions for this complicated problem, by using essentially a 
single polynomial handy expression. Essentially, we will see 
that STSM solves an elementary algebraic equation by the 
proposed differential equation. 

 Assuming isothermal conditions, the differential equation 
that governs the steady regime of the nth-order reaction-
diffusion process in the spherical geometric pellet is given by 
[27, 29]:  

 
𝑑2𝑐

𝑑𝑟2
+
2

𝑟

𝑑𝑐

𝑑𝑟
=
𝑘𝑣

𝐷𝑒
𝑐𝑛,                (5) 

where, 𝑐 denotes the reactant concentration in pore of catalyst 
pellet, while 𝐷𝑒  is the effective diffusion coefficient for 
reactant, 𝑟 represents the distance from the pellet core and 𝑘𝑣 
the reaction rate constant. The reaction order belongs to the 
range 𝑛 ≥ 0 and the boundary conditions are expressed for:  

 𝑐(𝑟 = 𝑟0) = 𝑐𝑠 ,                               (6) 

and  

 [
𝑑𝑐

𝑑𝑟
]
𝑟=0

= 0.                         (7) 

 Expressing the boundary value problem (5)-(7) in terms of 
the dimensionless variables  

 𝑥 =
𝑟

𝑟0
,        𝑦(𝑥) =

𝑐(𝑟)

𝑐𝑠
,                     (8) 

we get  

 
𝑑2𝑦

𝑑𝑥2
+
2

𝑥

𝑑𝑦

𝑑𝑥
= 𝜙2𝑦𝑛 ,                (9) 

  

 𝑦(1) = 1,                   (10) 

and  

 [
𝑑𝑦

𝑑𝑥
]
𝑥=0

= 0,                   (11) 

where 𝜙 = (𝑘𝑣𝑟0
2𝑐𝑠
𝑛−1/𝐷𝑒)

1/2 denotes the Thiele modulus. 

 

IV. APPLICATION OF STSM METHOD 

Next, we will employ STSM method in order to find 
analytical approximate and exact solutions for the boundary 
value problem (9)-(11). 

 In accordance with STSM, first we propose the following 
Taylor approximation:  

𝑦(𝑥) = 𝑦(0) +
𝑦′′(0)

2!
  𝑥2 +

𝑦′′′(0)

3!
  𝑥3 +

𝑦𝑖𝑣(0)

4!
  𝑥4 +⋯      

 (12) 

where we have employed the initial condition (11). 

 We will rewrite (12) as follows  

 𝑦(𝑥) = 𝛼 +
𝛽

2!
  𝑥2 +

𝛾

3!
  𝑥3 +

𝛿

4!
  𝑥4…         (13) 

after we have substituted the unknown initial conditions for 
some shooting constants. 

 We note the unknown initial conditions are calculated 
about 𝑥 = 0, but at this point (9) has a singularity. With the 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV11IS110067
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 11 Issue 11, November-2022

121

www.ijert.org
www.ijert.org
www.ijert.org


end to avoid this problem, we multiply (9) by 𝑥 and after we 
apply a derivative to the resulting equation to get  

𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑3𝑦

𝑑𝑥3
+ 2

𝑑2𝑦

𝑑𝑥2
= 𝜙2𝑦𝑛 + 𝑛𝜙2𝑥𝑦𝑛−1

𝑑𝑦

𝑑𝑥
,      (14) 

after evaluating (14) in 𝑥 = 0, we obtain:  

 𝛽 =
𝛼𝑛

3
𝜙2. (15) 

 With the purpose to follow evaluating other shooting 
constants we differentiate (14):  

 

4
𝑑3𝑦

𝑑𝑥3
+𝑥

𝑑4𝑦

𝑑𝑥4
=

2𝑛𝜙2𝑦𝑛−1
𝑑𝑦

𝑑𝑥

+𝑛𝜙2 (𝑦𝑛−1
𝑑𝑦

𝑑𝑥
+ 𝑥𝑦𝑛−1

𝑑2𝑦

𝑑𝑥2
+ (𝑛 − 1)𝑥𝑦𝑛−2 (

𝑑𝑦

𝑑𝑥
)
2

) ,

 (16) 

evaluating (16) in 𝑥 = 0, we obtain:  

𝛾 = 0.                                        (17) 

 Continuing in this form, after differentiating (16) we get: 

5
𝑑4𝑦

𝑑𝑥4
+𝑥
𝑑5𝑦

𝑑𝑥5
=

2𝑛𝜙2𝑦𝑛−1
𝑑2𝑦

𝑑𝑥2
+ 2𝑛𝜙2(𝑛 − 1)𝑦𝑛−2 (

𝑑𝑦

𝑑𝑥
)
2

+𝑛𝜙2

(

 
 
 
 
 
 
 
 
 

𝑦𝑛−1
𝑑2𝑦

𝑑𝑥2

+𝑥 (𝑦𝑛−1
𝑑3𝑦

𝑑𝑥3
+ (𝑛 − 1)𝑦𝑛−2 (

𝑑𝑦

𝑑𝑥
)
𝑑2𝑦

𝑑𝑥2
)

+(𝑛 − 1)𝑦𝑛−2 (
𝑑𝑦

𝑑𝑥
)
2

+𝑥(𝑛 − 1)

(

 
 (𝑛 − 2)𝑦

𝑛−3 (
𝑑𝑦

𝑑𝑥
)
3

+2𝑦𝑛−2 (
𝑑𝑦

𝑑𝑥
)
𝑑2𝑦

𝑑𝑥2 )

 
 

)

 
 
 
 
 
 
 
 
 

.

 

(18) 

 Next, we evaluate (19) in 𝑥 = 0, to get  

 𝛿 =
5𝑛𝜙2𝛼𝑛−1𝛽

3
.                          (19) 

 Therefore, by substituting (15)-(19) into (13) we get  

 𝑦(𝑥) = 𝛼 +
𝛼𝑛𝜙2

6
  𝑥2 +

𝑛𝜙4𝛼2𝑛−1

120
  𝑥4.         (20) 

 We note the ease to obtain the approximate solution (20), 
which depends of arbitrary values of 𝑛 and 𝜙, besides it is clear 
that following this procedure we can easily add more terms to 
(20). We note that the procedure is based in elementary 
differentiations Nevertheless, we will show the effectiveness of 
(20) in order to model the proposed nonlinear problem.  

 

V. CASE STUDIES 

Case 1.  𝑛 = 0 

 Next, we will obtain an exact solution for this case. 

 We note that (20) can be simplified as:  

 𝑦(𝑥) = 𝛼 +
𝜙2

6
  𝑥2,                        (21) 

applying the condition 𝑦(1) = 1, we get  

 𝛼  = 1 −
𝜙2

6
.                            (22) 

 After substituting (22) into (21) we get  

 𝑦(𝑥) = 1 −
𝜙2

6
  (1 − 𝑥2),                     (23) 

that is the exact solution for this problem [2]. 

Case 2.     𝑛 = 1,   𝜙 = 2 

 In accordance with [2] this case possesses an exact 
solution. 

 Nevertheless, STSM will obtain a precise analytical 
approximate solution for this case: 

 After substituting 𝑛 = 1 and 𝜙 = 2 into (20) we get:  

 𝑦(𝑥) = 𝛼 +
2𝛼

3
𝑥2 +

2𝛼

15
𝑥4.                    (24) 

 In accordance with the proposed method, in order to 
determinate 𝛼 we substitute (24) into the condition 𝑦(1) = 1 to 
get an algebraic equation, whose solution is given by  

 𝛼 = 0.5555.                        (25) 

 Therefore, substituting (25) into (24) we get  

𝑦(𝑥) = 0.5555 + 0.37037037  𝑥2 + 0.0740740  𝑥4.   (26) 

 We note the handiness of (26). 

 Next, we compare the precision of (26) with the exact 
solution [2] for some values of 𝑥, in order to know the 
reliability of (26). 

Table 1: Comparison between (26) and exact solution for (9)-(11) using 
𝑛 = 1, 𝜙 = 2. 

x Exact STSM (26) Relative error 
using (26) 

0  0.5510   0.5555   0.81%  

0.2   0.5660   0.5704   0.79%  

0.4   0.6121   0.6167   0.74%  

0.6   0.6933   0.6984   0.74%  

0.8   0.8187   0.8228   0.5054%  

1.0  0.4796933928   0.4700209520   0%  

  

We note that the relative error committed by using (26) is 
scarcely less than one percent. 

Case 3.   𝑛 = 5,   𝜙 = 1. 

 This case possesses an exact solution [2]. 

 We will see that STSM method will provide a handy 
precise analytical approximate solution for this case: 

 Substituting 𝑛 = 5 and 𝜙 = 1 into (20) yields  

 𝑦(𝑥) = 𝛼 +
𝛼5

6
  𝑥2 +

𝛼9

24
  𝑥4.       (27) 

 Again, to calculate 𝛼 we use the condition 𝑦(1) = 1 in 
order to obtain an equation  

 𝛼 +
𝛼5

6
  +

𝛼9

24
= 1,            (28) 

the solution of (28) is given by  

 𝛼 = 0.8914.                        (29) 
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 After substituting (29) into (27) we get a handy solution  

𝑦(𝑥) = 0.8914 + 0.0938  𝑥2 + 0.0148  𝑥4.    (30) 

 Next, we will show again the precision of the proposed 
approximation (30) comparing it with the exact solution [2]. 

 

Table 2: Comparison between (26) and exact solution for (9)-(11) 
using 𝑛 = 5, 𝜙 = 1. 

x Exact STSM (30) Relative error 
using (30) 

0   0.88950   0.89140   0.20%  

0.2   0.89932   0.89517   0.21%  

0.4   0.90477   0.90678   0.22%  

0.6   0.92497   0.92708   0.22%  

0.8   0.95565   0.95749   0.19%  

1.0   1   1   0%  

 

From Table 2 we see that the relative error committed by 
using (26) is scarcely of two tenths of one percent. 

Case 4.  𝑛 = 3/2,    𝜙 = 1. 

 In accordance with [2], this case does not correspond to an 
exact solution. We will see that the proposed method provides 
a handy approximation with good precision. 

 Substituting 𝑛 = 3/2 and 𝜙 = 1 into (20) yields in the 
following approximation.  

 𝑦(𝑥) = 𝛼 +
𝛼3/2

6
  𝑥2 +

𝛼2

80
  𝑥4.                  (31) 

 After applying the boundary condition 𝑦(1) = 1, we get 
from (31) the algebraic equation  

 𝛼 +
𝛼3/2

6
  +

𝛼2

80
  = 1,                      (32) 

the solution of (32) is given by  

 𝛼 = 0.8582.                           (33) 

 After substituting (33) into (31) we get a handy accurate 
solution  

 𝑦(𝑥) = 0.8582 + 0.1325  𝑥2 + 0.0092𝑥4.   (34) 

 We will show the precision of (34) comparing it with the 
numerical solution. 

Table 3: Comparison between (34) and numerical solution for (9)-(11) 
using 𝑛 = 3/2, 𝜙 = 1. 

x Exact STSM (34) Relative error 
using (34) 

0   0.8579   0.8582   0.034%  

0.2   0.8632   0.8635   0.036%  

0.4   0.8793   0.8796   0.038%  

0.6   0.9067   0.9070   0.033%  

0.8   0.9465   0.9467   0.021%  

1.0   1   1   0%  

 

From Table 3 we see that the relative error committed by 
using (34) is about three hundredths of one percent. 

Case 5.   𝑛 = 2,  𝜙 = 1. 

 In accordance with [2], this case does not possess an exact 
solution. 

 Next, we will get a handy precise analytical approximate 
solution for this case. 

 Substituting 𝑛 = 2 and 𝜙 = 1 into (20) yields in the 
following approximation.  

 𝑦(𝑥) = 𝛼 +
𝛼2

6
𝑥2 +

𝛼3

60
  𝑥4.       (35) 

 After applying the boundary condition 𝑦(1) = 1, we get 
the algebraic equation  

 𝛼 +
𝛼2

6
+
𝛼3

60
= 1.                               (36) 

 The solution of (36) is given by  

 𝛼 = 0.8646.                               (37) 

 The obtaining of (37) results again in the solution of the 
proposed problem for the values 𝑛 = 2, 𝜙 = 1. After 
substituting (37) into (35) we get a handy accurate solution  

𝑦(𝑥) = 0.8646 + 0.12458  𝑥2 + 0.01077𝑥4.     (38) 

 We will show the precision of (38) comparing it with the 
numerical solution. 

Table 4: Comparison between (38) and numerical solution for (9)-(11) 
using 𝑛 = 2, 𝜙 = 1. 

x Exact STSM (38) Relative error 
using (38) 

0   0.8640   0.8646   0.069%  

0.2   0.8689   0.8696   0.080%  

0.4   0.8841   0.8848   0.080%  

0.6   0.9101   0.9108   0.082%  

0.8   0.9482   0.9487   0.057%  

1.0   1   1   0%  

 

From Table 4 we see that the relative error committed by 
using (38) is about between five hundredths and eight 
hundredths of one percent. 

VI. DISCUSSION 

In this work STSM was employed with the purpose to find 
both, exact and analytical approximate solutions for the rather 
complicated nonlinear ordinary differential equation which 
describes the problem of a nonlinear model of a coupled 
diffusion and nth-order chemical reaction in a spherical porous 
catalyst. We note that (9) has a singularity in 𝑥 = 0, we noted 
that STSM is much appropriate to handle this difficulty. The 
rearrangement of the equation and the systematic increasing of 
the order of the differential equation to solve, demonstrated its 
efficiency with the purpose to handle the aforementioned 
singularity. As a matter of fact, as result of this procedure 
based in just differentiations, we proposed, with little effort, to 
provide the general handy solution (20), which depends in 
principle of arbitrary values of the reaction order 𝑛, and the 
Thiele modulus 𝜙. In this step, the proposed procedure is very 
simple, for given values of 𝑛 and 𝜙 we apply the right 
boundary condition 𝑦(1) = 1 in order to get an algebraic 
equation from the proposed solution, to determine the unknown 
initial condition 𝛼 whose solution provides the sought 
analytical approximate or the exact solution. 

 As a matter of fact, we provide five case studies in order to 
show the potentiality of the proposed method. The first case 
study proposed the reaction order 𝑛 = 0. STSM got the correct 
exact solution for this problem [2]. For the case studies 2 and 3, 
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we obtained handy precise analytical approximate solutions. In 
accordance with [2] these problems, which derives from the 
values 𝑛 = 1, 𝜙 = 2 and 𝑛 = 5, 𝜙 = 1 correspond to exact 
solutions. It is notable from Tables 1 and 2 that the relative 
error committed by using approximations (26) and (30) for 
these cases are scarcely less than one percent and two tenths of 
one percent respectively. Finally, Cases 4 and 5 correspond to 
non-exact solutions [2]. Nevertheless from Tables 3 and 4 we 
deduce that the relative error committed by using our 
approximations (34) and (38) for this case are about three 
hundredths and eight hundredths of one percent respectively. 
Therefore, our expressions for the proposed problem are not 
only precise but we emphasize that they are short polynomial 
expressions of only three terms. Besides, it is very important to 
emphasize that, it is possible to improve the accuracy of our 
STSM approximations by keeping more terms in expansion 
(20). 

VII. CONCLUSIONS 

This work presented STSM with the end to provide both, 
exact and analytical approximate solutions for the nonlinear 
problem that describes the complicated nonlinear ordinary 
differential equation which describes the problem of a 
nonlinear model of a coupled diffusion and nth-order chemical 
reaction in a spherical porous catalyst. Despite of the fact that 
(9) has a singularity in 𝑥 = 0, STSM was able to handle it 
adequately with the end to get handy analytical solutions for 
this important problem. The method basically works 
calculating derivatives of several orders and expresses the 
solution of a differential equation in terms of the solution of 
one or more algebraic equations. The comparison with other 
methods of the literature [2] shows the convenience of 
employing STSM as a practical tool with the purpose to obtain 
accurate solutions for boundary value problems instead of 
using other more sophisticated and cumbersome procedures. 
As a matter of fact [29] employed Adomian decomposition 
method with the end to get analytical approximate solutions for 
the problem (9)-(11). Nevertheless, Adomian decomposition 
method requires to calculate the so denominated Adomian 
coefficients in order to linearize the nonlinear term and uses the 
concept of operator and inverse operator. As a consequence, 
from article [29], we noted that the employed procedure by 
using Adomian method is clearly more complex than the one 
proposed for this work. Thus, we emphasize that the use of the 
Taylor series is many times an adequate method to obtain 
handy analytical approximate solutions, and should be 
employed more frequently. 
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