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Abstract:- This work presents the Taylor Series Method with
shooting (STSM) with the purpose to find both approximate and
exact solutions for the nonlinear problem that describes the
steady state solutions of a highly nonlinear model of a coupled
diffusion and nth-order chemical reaction in a spherical porous
catalyst. After comparing STSM approximation with the exact
solutions, we will conclude that the proposed solutions are
besides of extremely handy, accurate (with relative error less
than one percent in all the cases), therefore it follows that the
proposed method is potentially an efficient tool to be used in
practical applications instead of others cumbersome and
complicated methods.

I INTRODUCTION

Most of the processes in nature are nonlinear, in such a way
that, the mathematical models used with the purpose to get
exact and approximate solutions do not always offer the
required results. On the other hand, differential equations have
shown to be an appropriate tool with the end to model
complicated phenomena in nature.

Nature processes give rise to scientific problems and for
the same reason the proposal of new methods with the purpose
to obtain both exact and approximate solutions to the
differential equations that govern these problems becomes
compulsory. Given that the search for such solutions many
times is a complicated task, it justifies the current research in
this subject. Unlike the linear differential equations whose
theory and solution methods can be found in many standard
texts of differential equations [1] the case of nonlinear ordinary
differential equations with exact solutions is less frequent [1].
One of the main contributions of this article is to show the
potentiality of the proposed method in order to find both exact
and approximate solutions with relative ease for the highly
nonlinear problem that describes a coupled diffusion and nth-
order chemical reaction in a spherical porous catalyst [2].
Given the great diversity of scientific problems, and their
corresponding nonlinear differential equations to be solved,
have been proposed several methods. Some of most employed
in accordance with the literature are: tanh method [3], exp-

function [4], Adomian’s decomposition method [5, 6, 7, 8],
parameter expansion [9], homotopy perturbation method
(HPM) [10, 11, 12, 13, 14, 15, 16, 17,18], perturbation method
[19, 20, 21,22, 23], modified Taylor series method [24],
Homotopy Analysis Method [25], Variational iteration method
[26, 27], among others.

The main goal of this work is to employ a version of
Taylor Series Method with shooting (STSM) with the end to
provide analytical solutions for the relevant highly nonlinear
differential equation that describes the steady state solutions of
a highly nonlinear model of a coupled diffusion and nth-order
chemical reaction in a spherical porous catalyst [2]. As a matter
of fact, the importance of the diffusion and reaction problems
consists in their application in chemical and process
engineering problems [28]. Respect to the process engineering
field, diffusion and reaction problems arise above all in the
heterogeneous catalysts by using porous structures where
reaction could occur, other examples of technological interest
are found in [28]. Next, we will see that STSM method is
relatively easy to use and it is able to provide both, exact and
analytical approximate solutions even for the case of nonlinear
differential equations defined in closed intervals for which the
most of the investigation works are essentially numeric.
Traditionally, Taylor Series Method (TSM) is a known method
which is given in terms of initial conditions for a proposed
problem and it is not very employed at the moment to solve
differential equations. As a matter of fact, one serious
inconvenient of the problem to solve, is the presence of a
singularity for x = 0; nevertheless, we will see that STSM
method is indeed able to adequately handle it. In brief, the
proposed method is given in the following terms. Given an
ordinary differential equation, then like TSM, STSM proposes
a Taylor series for the differential equation to solve, given that
the goal is to solve a boundary value problem, then the
successive derivatives of the differential equation to calculate
the coefficients of the Series Taylor solution will be expressed
in terms of an unknown initial condition. This quantity will be
tried as a shooting constant which will be determinined
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requiring that the proposed series obey the other boundary
condition. We will see that even, the mentioned method is able
to find exact analytical solutions.

The rest of this work is proposed in the following way.
Section 2, provides the basic idea of STSM Method.
Additionally Section 3 explains the antecedents for the
nonlinear differential equation that describes the steady state
solutions of a highly nonlinear model of a coupled diffusion
and nth-order chemical reaction in a spherical porous catalyst,
Section 4 presents the application of the proposed method, in
the search for an approximate solution for the relevant problem
above mentioned. Section 5 offers a discussion about the
obtained solutions for this work. Finally, a brief conclusion of
the relevant aspects of this article is given in Section 6.

Il. ELEMENTS OF SHOOTING TAYLOR SERIES
METHOD

Next, we will provide the basic theory of STSM.

We start assuming a nonlinear problem with the following
form

u™® =N®@)-f(x), x€Q €))
with the boundary condition
Ju
B (uﬂ) =0, xel. @)

In the above equations, n is the order of the differential
equation (1), N represents a general operator; f(x) denotes a
known analytic function while B is a boundary operator, I" as a
matter of fact, is the boundary of the domain Q, and du/dn is
the differentiation along the normal drawn outwards from Q.

Following the proposed method, we will get the successive
derivatives of the differential equation to solve.

uD(xy), ((=01,..), ©))
in this expression x, denotes the expansion point.

The series solution for (1) can be expressed as

ur(xo)
1!

(x — x)t +@ (x —x9)?+... x€Q,
4)

we note that derivatives u®(x,), (i = 0,1, ...) are expressed in
terms of one of the boundary conditions of (1).

ur = u(xy) +

With the purpose to get the coefficients of (4) (u®(x,))
(i=0,1,...), we just apply the condition u,(1) = 1.

I1l.  ANTECEDENTS FOR THE PROBLEM THAT
DESCRIBES THE STEADY STATE SOLUTIONS OF A
NONLINEAR MODEL OF A COUPLED DIFFUSION AND
NTH-ORDER CHEMICAL REACTION IN A SPHERICAL
POROUS CATALYST

The goal of the article is to provide exact and handy
analytical approximate solutions for the problem of a highly
nonlinear model of a coupled diffusion and nth-order chemical
reaction in a spherical porous catalyst. As a matter of fact, [2]
presented an approach for these problems for the case of exact
solutions, while [29] obtained analytical approximate solutions
by using Adomian decomposition method. This article will

show that STSM method is able to provide both kinds of
solutions for this complicated problem, by using essentially a
single polynomial handy expression. Essentially, we will see
that STSM solves an elementary algebraic equation by the
proposed differential equation.

Assuming isothermal conditions, the differential equation
that governs the steady regime of the nth-order reaction-
diffusion process in the spherical geometric pellet is given by
[27, 29]:

d’c  2dc _ky

dr2+rdr_DeC ’ ®)
where, ¢ denotes the reactant concentration in pore of catalyst
pellet, while D, is the effective diffusion coefficient for
reactant, r represents the distance from the pellet core and kv
the reaction rate constant. The reaction order belongs to the
range n = 0 and the boundary conditions are expressed for:

c(r=rmy) =cs, (6)
and
[%]rzo = 0. @)

Expressing the boundary value problem (5)-(7) in terms of
the dimensionless variables

x=Z, yx =2, ®)
0 S
we get
a?y  2dy _ 42
dx2+xdx_¢yn' (9)
y(1) =1, (10)
and
dy _
[EL:o =0, (11)

where ¢ = (k,rZc?"'/D,)*/? denotes the Thiele modulus.

IV. APPLICATION OF STSM METHOD

Next, we will employ STSM method in order to find
analytical approximate and exact solutions for the boundary
value problem (9)-(11).

In accordance with STSM, first we propose the following
Taylor approximation:

y0) = y(0) + L2 2 4 10 43 4 20yt
(12)
where we have employed the initial condition (11).
We will rewrite (12) as follows
= B y2,Y 4349 4
y(x)—a+2!x tg X X (13)

after we have substituted the unknown initial conditions for
some shooting constants.

We note the unknown initial conditions are calculated
about x = 0, but at this point (9) has a singularity. With the
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end to avoid this problem, we multiply (9) by x and after we
apply a derivative to the resulting equation to get

= ¢y +npxy" 12, (14)
after evaluating (14) in x = 0, we obtain:
=S92 (19

With the purpose to follow evaluating other shooting
constants we differentiate (14):

d?y X ddy
dx? dx3 dx2

a3 a*
4 _y X _y =
dx3 dx*

2n¢2y”_1d—y

ng? (' Ly S (- 1y (2)),
(16)

evaluating (16) in x = 0, we obtain:
y =0. an

Continuing in this form, after differentiating (16) we get:

d* d’°
s_y +x _y_
dx* dx5
d?y dy\*
2,n-1__ 7 2 n-2
2no‘y ax? +2n¢p*(n—1)y (dx)
sy
dx?

3

@y nea (AV\ A%y
+"<Y” et ey ()0

d 2
+n¢? +(n—1)y"? (di)
Z)yn 3
+x(n—1) ( )
+2y™ (dy) &y
dx/ dx?
(18)
Next, we evaluate (19) in x = 0, to get
5=k (19)
Therefore, by substituting (15)-(19) into (13) we get
y(x) =a+ an:)Z x? + nﬁZ?_l x*. (20)

We note the ease to obtain the approximate solution (20),
which depends of arbitrary values of n and ¢, besides it is clear
that following this procedure we can easily add more terms to
(20). We note that the procedure is based in elementary
differentiations Nevertheless, we will show the effectiveness of
(20) in order to model the proposed nonlinear problem.

V. CASESTUDIES

applying the condition y(1) = 1, we get

« =1-2 22)
After substituting (22) into (21) we get
2
y) =1-L 1-x?), (23)
that is the exact solution for this problem [2].
Case2. n=1, ¢p=2

In accordance with [2] this case possesses an exact
solution.

Nevertheless, STSM will obtain a precise analytical
approximate solution for this case:

After substituting n = 1 and ¢ = 2 into (20) we get:
y(x)=a+ Z?axz + i—:x“. (24)

In accordance with the proposed method, in order to
determinate a we substitute (24) into the condition y(1) = 1 to
get an algebraic equation, whose solution is given by

a = 0.5555. (25)
Therefore, substituting (25) into (24) we get
y(x) = 0.5555 + 0.37037037 x2 + 0.0740740 x*. (26)
We note the handiness of (26).

Next, we compare the precision of (26) with the exact
solution [2] for some values of x, in order to know the
reliability of (26).

Table 1: Comparison between (26) and exact solution for (9)-(11) using

n=1¢=2.

X Exact STSM (26) Relative error
using (26)

0 0.5510 0.5555 0.81%

0.2 0.5660 0.5704 0.79%

0.4 0.6121 0.6167 0.74%

0.6 0.6933 0.6984 0.74%

0.8 0.8187 0.8228 0.5054%

1.0 0.4796933928 0.4700209520 0%

We note that the relative error committed by using (26) is
scarcely less than one percent.

Case3. n=5, ¢=1.
This case possesses an exact solution [2].

We will see that STSM method will provide a handy
precise analytical approximate solution for this case:

Substituting n = 5 and ¢ = 1 into (20) yields
—at+ L x4+ D 27
y() = a+— x*+— x% (27)

Again, to calculate a« we use the condition y(1) =1 in
order to obtain an equation

Casel. n=0
5 9
Next, we will obtain an exact solution for this case. a+s +o=1, (28)
We note that (20) can be simplified as: the solution of (28) is given by
yx) = a+ ¢_2 2 1) a = 0.8914. (29)
122
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After substituting (29) into (27) we get a handy solution
y(x) = 0.8914 + 0.0938 x? + 0.0148 x*. (30)

Next, we will show again the precision of the proposed
approximation (30) comparing it with the exact solution [2].

Table 2: Comparison between (26) and exact solution for (9)-(11)
usingn =5,¢ = 1.

X Exact STSM (30) Relative error

using (30)
0 0.88950 0.89140 0.20%
0.2 0.89932 0.89517 0.21%
0.4 0.90477 0.90678 0.22%
0.6 0.92497 0.92708 0.22%
0.8 0.95565 0.95749 0.19%
1.0 1 1 0%

Next, we will get a handy precise analytical approximate
solution for this case.

Substituting n =2 and ¢ =1 into (20) yields in the
following approximation.
y(x) =a+ G (35)
6 60

After applying the boundary condition y(1) = 1, we get
the algebraic equation

2 3

a+ ‘% +Z =1 (36)
The solution of (36) is given by
a = 0.8646. (37)

The obtaining of (37) results again in the solution of the
proposed problem for the values n =2, ¢ =1. After

From Table 2 we see that the relative error committed by
using (26) is scarcely of two tenths of one percent.

Cased4. n=3/2, ¢p=1.

In accordance with [2], this case does not correspond to an
exact solution. We will see that the proposed method provides
a handy approximation with good precision.

Substituting n = 3/2 and ¢ = 1 into (20) yields in the
following approximation.

a3/? a?
y(x) =a+— x%+ = x*. (31)

After applying the boundary condition y(1) =1, we get
from (31) the algebraic equation

/
at+EE +E =, (32)
6 80
the solution of (32) is given by

a = 0.8582. (33)

After substituting (33) into (31) we get a handy accurate
solution

y(x) = 0.8582 + 0.1325 x2 + 0.0092x*. (34)

We will show the precision of (34) comparing it with the
numerical solution.

Table 3: Comparison between (34) and numerical solution for (9)-(11)
usingn =3/2,¢ = 1.

substituting (37) into (35) we get a handy accurate solution

numerical solution.

Table 4: Comparison between (38) and numerical solution for (9)-(11)

usingn=2,¢ =1.

y(x) = 0.8646 + 0.12458 x2 + 0.01077x*.
We will show the precision of (38) comparing it with the

X Exact STSM (38) Relative error

using (38)
0 0.8640 0.8646 0.069%
0.2 0.8689 0.8696 0.080%
0.4 0.8841 0.8848 0.080%
0.6 0.9101 0.9108 0.082%
0.8 0.9482 0.9487 0.057%
1.0 1 1 0%

X Exact STSM (34) Relative error
using (34)

0 0.8579 0.8582 0.034%

0.2 0.8632 0.8635 0.036%

0.4 0.8793 0.8796 0.038%

0.6 0.9067 0.9070 0.033%

0.8 0.9465 0.9467 0.021%

1.0 1 1 0%

From Table 3 we see that the relative error committed by
using (34) is about three hundredths of one percent.

Case5. n=2, ¢ =1.

In accordance with [2], this case does not possess an exact
solution.

From Table 4 we see that the relative error committed by
using (38) is about between five hundredths and eight
hundredths of one percent.

VI. DISCUSSION

In this work STSM was employed with the purpose to find
both, exact and analytical approximate solutions for the rather
complicated nonlinear ordinary differential equation which
describes the problem of a nonlinear model of a coupled
diffusion and nth-order chemical reaction in a spherical porous
catalyst. We note that (9) has a singularity in x = 0, we noted
that STSM is much appropriate to handle this difficulty. The
rearrangement of the equation and the systematic increasing of
the order of the differential equation to solve, demonstrated its
efficiency with the purpose to handle the aforementioned
singularity. As a matter of fact, as result of this procedure
based in just differentiations, we proposed, with little effort, to
provide the general handy solution (20), which depends in
principle of arbitrary values of the reaction order n, and the
Thiele modulus ¢. In this step, the proposed procedure is very
simple, for given values of n and ¢ we apply the right
boundary condition y(1) =1 in order to get an algebraic
equation from the proposed solution, to determine the unknown
initial condition a« whose solution provides the sought
analytical approximate or the exact solution.

As a matter of fact, we provide five case studies in order to
show the potentiality of the proposed method. The first case
study proposed the reaction order n = 0. STSM got the correct
exact solution for this problem [2]. For the case studies 2 and 3,

IJERTV111S110067

www.ijert.org

123

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 11 I'ssue 11, November-2022

we obtained handy precise analytical approximate solutions. In
accordance with [2] these problems, which derives from the
values n=1, ¢ =2 and n =5, ¢ = 1 correspond to exact
solutions. It is notable from Tables 1 and 2 that the relative
error committed by using approximations (26) and (30) for
these cases are scarcely less than one percent and two tenths of
one percent respectively. Finally, Cases 4 and 5 correspond to
non-exact solutions [2]. Nevertheless from Tables 3 and 4 we
deduce that the relative error committed by using our
approximations (34) and (38) for this case are about three
hundredths and eight hundredths of one percent respectively.
Therefore, our expressions for the proposed problem are not
only precise but we emphasize that they are short polynomial
expressions of only three terms. Besides, it is very important to
emphasize that, it is possible to improve the accuracy of our
STSM approximations by keeping more terms in expansion
(20).

VII. CONCLUSIONS

This work presented STSM with the end to provide both,
exact and analytical approximate solutions for the nonlinear
problem that describes the complicated nonlinear ordinary
differential equation which describes the problem of a
nonlinear model of a coupled diffusion and nth-order chemical
reaction in a spherical porous catalyst. Despite of the fact that
(9) has a singularity in x = 0, STSM was able to handle it
adequately with the end to get handy analytical solutions for
this important problem. The method basically works
calculating derivatives of several orders and expresses the
solution of a differential equation in terms of the solution of
one or more algebraic equations. The comparison with other
methods of the literature [2] shows the convenience of
employing STSM as a practical tool with the purpose to obtain
accurate solutions for boundary value problems instead of
using other more sophisticated and cumbersome procedures.
As a matter of fact [29] employed Adomian decomposition
method with the end to get analytical approximate solutions for
the problem (9)-(11). Nevertheless, Adomian decomposition
method requires to calculate the so denominated Adomian
coefficients in order to linearize the nonlinear term and uses the
concept of operator and inverse operator. As a consequence,
from article [29], we noted that the employed procedure by
using Adomian method is clearly more complex than the one
proposed for this work. Thus, we emphasize that the use of the
Taylor series is many times an adequate method to obtain
handy analytical approximate solutions, and should be
employed more frequently.
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