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Abstract— In this paper presents symmetrical nine level
cascaded multilevel inverter with reduction of switching
component for various pulse width modulation technique and
various references waveform. In conventional CHB inverters
required high number of switching components, it appear to
more complex control circuitry and bulky. The Proposed
cascaded multilevel inverter output voltage level rising by using
less number of switches driven by the multicarrier modulation

techniques. This paper presents generalized structure,
Operation, comparison with other conventional topology,
Simulation  results  with MATLAB/SIMULINK  and

experimental results.
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I. INTRODUCTION

Multi Level Inverter (MLI) offers a number of advantages
when compared to the conventional multilevel inverter. The
stepped approximation of the sinusoidal output waveform
with higher levels reduces the THD harmonic distortion of
the output waveform and the stresses across the
semiconductor devices and also allows higher current/voltage
and power ratings. The depreciates switching frequency of
each individual switch of the inverter also decreased the
switching losses and improves the efficiency of the inverter.
Rathore et al. (2015) to propose a new optimal pulse width
modulation strategy for a cascaded seven-level inverter such
that maximum switching frequency is limited to rated
fundamental frequency (50/60 Hz) and all power devices
operate at identical switching frequency. Ruderman et al.
(2015) simple smooth hyperbolic voltage THD above and
below bound approximations for single phase and three phase
inverters with nearest synchronous switching. Haw et al.
(2015) the proposed algorithm increases the transient
performance of the closed-loop system with only proportional
controller and reduces the STATCOM reactive current
ripples. Mokhberdoran et al. (2014) the proposed cascaded
multilevel inverter has been examine in both symmetric and
asymmetric operation modes. A great perfection in voltage
levels with less number of switching devices has been
obtained in both symmetric and asymmetric modes. Ajami et
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al. (2014) the proposed multilevel inverter results in reduction
of switches devices, relevant gate driver circuits and also the
installation area and inverter cost. Chattopadhyay et al.
(2014) the concept has the capability of self-balancing during
negative and positive cycles without any closed-loop
control/algorithm, and it does not consume any power. Filho
et al. (2013) this technique uses genetic algorithms to obtain
switching angles offline for dissimilar dc source values.
Belkamel et al. (2013) the selected inverter DC voltage
sources, high-frequency PWM control methods can be
effectively applied without loss of modularity. Low-
frequency and sinusoidal PWM strategy were successfully
applied. Farokhnia et al. (2012) the proposed inverter in
reducing THD, when it is compared with the case of a
multilevel inverter with constant DC sources. Kangarlu et al.
(2012) to operate with high voltage and power, improved
output waveform quality and flexibility which make them
attractive and more popular. Farokhnia et al. (2011) an
analytical algebraic technique based on formulating the line
voltage THD of multilevel inverters with unequal dc sources
is presented. Mekhilef et al. (2011) the high-voltage stage is
made of a three-phase conventional multilevel inverter to
reduce the cost and losses. The medium-voltage and low-
voltage stages are made of three-level inverters constructed
using cascaded H-bridge inverter. Hinago et al. (2010)
proposed topology produces output maximum numbers of
voltage levels in the same number of switching devices by
using this conversion. The number of gate driving circuit is
reduced, which leads to reduction of the size and power
consumption in the driving circuits. The THD of the output
waveform is also reduced.

Il. PROPOSED TOPOLOGY

The main drawbacks of the conventional cascaded
multilevel inverter is that when the voltage level increases,
the number of switches increases and also the dc source
required increases. In order to conquer this introduced a new
topology of cascaded multilevel inverter. The advantage of
this topology is that the number of switches required is
reduced and also the number of dc sources. Figure 1 shows
the new cascaded nine levels H-bridge multilevel inverter.
The following output voltage levels required to generate nine
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level voItage +Vie,+2vde, +3Vae,¥4Vdc 0,-Ve,-2Ve,-3Vc,-
4V y..For +Vq. the S1, S2, S4, S5 switches are ON. For +2vdc
the S1, S2, S5, S7switches are ON. For +3V. the S1, S2, S5,
S6 switches are ON. For +4Vq the S1, S2 switches are ON.
For OV the S1, S3 switches are ON. For -V the S3, S6, S7
switches are ON. For -2Vq the S3, S4, S6 switches are on.
For -3Vq the S3, S4, S7 switches are ON. For -4V the S3,
S4, S5, S6, S7 switches are ON. The switching combinations
are shown in table 1.
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Fig. 1. Proposed Nine level inverter.

TABLE | SWITCHING TABLE FOR PROPOSED NINE LEVEL INVERTER
S S, Ss Sy Ss Se S7 OUTPUT
VOLTAGE
1 1 0 0 0 0 0 4Vge
1 1 0 0 1 1 0 3Vge
1 1 0 0 1 0 1 2V
1 1 0 1 1 0 0 Ve
1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 -Ve
0 0 1 1 0 1 0 -2Ve
0 0 1 1 0 0 1 -3V
0 0 1 1 1 1 1 -4V ge

I11. PWM TECHNIQUES

Development of this PWM technique used to reduce the
THD of the output. Increasing the switching frequency of the
PWM pattern reduces the lower frequency harmonics due to
moved away the switching frequency carrier harmonics and

sideband harmonics from the fundamental frequency
component. The reference/modulating wave of multilevel
carrier based PWM strategies can be sinusoidal PWM signal.
The reference wave is concerned for CFD including
amplitude, frequency and phase angle of the reference wave.
The following techniques are employed in this study.

A. Variable Amplitude Phase Disposition (VAPD) PWM
Strategy

In this strategy all the carriers have the same frequency
and the adjustable amplitude (different or unequal
amplitudes). All the carriers selected above and below zero
reference line are in same phase. Carrier and reference wave
arrangements are as shown in Fig. 2
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Fig. 2. Carrier arrangements for VAPDPWM

B. Variable Amplitude Phase Opposition & Disposition
(VAPOD) PWM Strategy

In this strategy all the carriers have the same frequency
and the adjustable amplitude (different or unequal
amplitudes). But all the carriers selected above the zero value
reference are in phase among them but in opposition (180
degrees phase shifted) with those below. Carrier and
reference wave arrangements are as shown in Fig 3.
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Fig. 3. Carrier arrangements for VAPODPWM

C. Variable Amplitude Alternative Phase Opposition &
Disposition (VAAPOD) PWM Strategy

In this strategy all the carriers have the same frequency
and the adjustable amplitude (different or unequal
amplitudes). All the carriers are alternate in position which is
shown in Fig. 4(D). There is phase shift of 1800 between
adjacent carriers. Reference and carrier wave arrangements
are as shown in Fig. 4.
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Fig. 4. Carrier arrangements for VAAPODPWM
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D. Variable Amplitude Variable Frequency (VAVF) PWM
Strategy

The number of switches for above and below devices of
chosen MLI is much more than the intermediate switches in
SPWM using constant frequency carriers. In order to equalize
the number of switches for all the switches, variable
frequency PWM technique is used as illustrated in which the
carrier frequency of the intermediate switches is properly
enhance to balance the numbers of switching for all the
switches Fig. 5.
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Fig. 5. Carrier arrangements for VAVFPWM

IV. SIMULATION RESULTS

Simulation of proposed three phase nine-level
symmetrical inverter with R load is carried out by MATLAB/
SIMULINK. Switching signals for Cascaded Multi Level
Inverter (CMLI) are developed using PWM techniques are
used for the references. The simulation is performed for
different modulation indices (ma=0.6-1) and for all the PWM
techniques. The corresponding % THD values and Vrus of
fundamental and peak amplitude voltage Vpeak Of inverter
output for same modulation indices corresponding of FFT
plots and they are shown in tables 2-7.Figures shows the
simulated output waveforms for the phase voltage for a CMLI
and corresponding FFT plots for sinusoidal reference chosen
the one sample value of m, = 0.8.Tables 2 — 7 obtain the
performance measures such as %THD, Vrus and Vpeak.
Figures 6 — 21 shows the three-phase output voltage (phase
voltage) waveforms for sinusoidal references and its
respective FFT plots. The following parameter values are
used for simulation: Vg4 = 100V and R=100 ohms, f. =2000
Hz and f, = 50Hz.
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Fig. 6. Three-phase output waveform for phase voltage Ve of VAPDPWM
technique
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Fig. 7. FFT plot for phase voltage of VAPDPWM technique.

1000

0

-1000

0 0.01 0.02 003  0.04 0.05 006 007 008 0.09 01
1000

plitude in volts
o

g-moun
1000
0
-1000
0 001 002 003 004 D005 006 007 008 003 01
Time in secs
Fig. 8. Three-phase output waveform for line voltage V. of VAPDPWM
technique
Fundamental (50Hz) = 714.9 , THD= 11.06%
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Fig. 9. FFT plot for line voltage of VAPDPWM technique
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Fig. 10. Three-phase output waveform for phase voltage Ve of Fig. 14. Three-phase output waveform for phase voltage Vp of
VAPODPWM technique VAAPODPWM technique
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Fig. 11. FFT plot for phase voltage of VAPODPWM technigue Fig. 15. FFT plot for phase voltage of VAAPODPWM technique
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Fig. 12. Three-phase output waveform for line voltage V. of VAPODPWM Fig. 16. Three-phase output waveform for line voltage V, of
technique VAAPODPWM technique
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Fig. 13. FFT plot for line voltage of VAPODPWM technique Fig. 17. FFT plot for line voltage of VAAPODPWM technique
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18. Three-phase output waveform for phase voltage Vr of VAVFPWM
technique
Fundamental (50Hz) = 412.9 , THD= 23.75%
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Fig. 19. FFT plot for phase voltage of VAVFPWM technique
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Fig. 20. Three-phase output waveform for line voltage V. of VAVFPWM

technique
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Fig. 21. FFT plot for line voltage of VAVFPWM technique

TABLE Il. % THD FOR DIFFERENT MODULATION INDICES WITH
PHASE VOLTAGE
m, | VAPD | VAPOD | VAAPOD | VAVF
1 2241 22.22 22.36 22.57
0.9 23.49 23.36 23.47 23.42
0.8 23.78 23.59 23.63 23.75
0.7 23.31 23.13 23.26 23.36
0.6 22.04 22.05 21.90 22.10
TABLE Ill.  Vgums FOR DIFFERENT MODULATION INDICES WITH PHASE
VOLTAGE
m, | VAPD | VAPOD | VAAPOD | VAVF
1 320.5 321 319.9 320.3
0.9 306.3 306.2 306.4 306.4
0.8 292.3 291.9 292.6 292
0.7 276.5 276.9 276.2 276.5
0.6 260.6 260.8 260.3 260.5
TABLE IV. Vpegak FOR DIFFERENT MODULATION INDICES WITH PHASE
VOLTAGE
m, VAPD VAPOD VAAPOD VAVF
1 453.3 453.9 452.4 452.9
0.9 433.2 433 433.3 433.3
0.8 413.4 412.8 413.8 4129
0.7 391 391.6 390.6 391
0.6 368.6 368.8 368.2 368.3
TABLE V. %THD FOR DIFFERENT MODULATION INDICES WITH LINE
VOLTAGE
m, | VAPD VAPOD VAAPOD VAVF
1 11.64 12.92 13.84 12.25
0.9 10.98 14.90 14.64 11.93
0.8 11.06 15.58 14.56 12.39
0.7 11.17 15.56 13.60 12.43
0.6 10.76 14.69 12.64 11.93
TABLE VI. Vgus FOR DIFFERENT MODULATION INDICES WITH LINE
VOLTAGE TABLE STYLES
m, VAPD VAPOD VAAPOD VAVF
1 555 555.1 554.2 554.6
0.9 530.4 530.3 530.2 530.6
0.8 505.5 505.3 506 505.2
0.7 478.7 479.7 478.6 478.6
0.6 451.2 451.3 451 451
TABLE VII. Vpeak FOR DIFFERENT MODULATION INDICES WITH LINE
VOLTAGE
m, VAPD VAPOD VAAPOD | VAVF
1 785 785.1 783.7 784.4
0.9 750 749.9 749.8 750.4
0.8 7149 714.5 715.6 714.5
0.7 677 678.4 676.9 676.9
0.6 638 638.2 637.8 637.8
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V. CONCLUSIONS

It is observed from Tables 2 and 5 that VAPDPWM

methods provide output with relatively low distortion for
all the references. VAPOD with sinusoidal references is
found to perform better since it provides relatively higher
fundamental RMS output voltage (Tables 3 and 6).Table 4
and 7 provide peak value for all modulating indices.
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