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Abstract—Theoretical analysis along with empirical relations 

are used to split turbulent flow into two main regions; the outer 

region and the wall region. The location of the boundary 

between the outer region and wall region was found. Results fall 

within observed range and show the trend in the boundary 

location with respect to variation in Reynolds number and 

relative roughness. The study presented also shades much 

needed light on turbulent pipe flows.   
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I.  INTRODUCTION 
The study of developed turbulent flows in pipes is of great 
interest, since all flows are turbulent in nature and laminar 
flows are just idealization based on suitable conditions for 
simplification. In pipe flows, laminar flows can be assumed 
when Re ≤ 2000, and assumed to be turbulent when Re > 
2000, though there is a transition regime of 2000 < Re < 4000 
and under controlled laboratory condition, laminar flows have 
been observed in flows with Re up to 40000 [1]. Turbulent 
flows are characterized by fluctuations in velocity in all 
coordinate directions; however, the time averaged values are 
usually used in turbulent flow analysis [1]. The turbulent flow 
may be divided into 3 main regions; viscous sublayer at 0 ≤ y+ 
≤ 5, buffer zone at 5 < y+ < 30 and outer region at y+ ≥ 30 [1] 
[2]. Where y+ is the normalized distance from the wall which 
is defined as 

 𝑦+ =
𝑢𝜏𝑦

𝜐
    (1) 

Where uτ is the shear velocity defined by 𝑢𝜏 = √𝜏0 𝜌⁄ ,  τ0 

is the shear stress at the wall, ρ is the fluid density, y is the 
linear distance from the wall and υ is the kinematic viscosity 
[1] [2]. The viscous sublayer has been identified as the region 
critical for the understanding of wall bounded turbulent flow 
[2] [3] [4] [5] [6], because experimental studies have shown 
that the nature of flow close to the wall has an important 
influence  on the wall shear stress and energy as indicated by 
eddies develop in the viscous sublayer and flow out to the 
other regions [3] [4] [5]. Understanding the viscous sublayer 
may also be the key to understanding how Drag Reduction 
Agents work [7].  

Specifically, the velocity profile of the viscous sublayer 
determines the wall shear stress τ0 which is an important 
parameter for describing turbulent flows [2]. In experiments, it 
is not easy to obtain accurate velocity measurements within 
the viscous sublayer [2]. Though there is a wealth of 
experimental information on turbulence close to the wall. 
Experimental study of viscous sublayer has included visual 
observation using ultra microscope [3] [8], hot-wire 

measurements [3], oil-film interferometry [2] [9] [10], and 
micro-pillar shear-stress sensors [11] [12]. All these 
experimental methods have limitations and challenges [2] 
which results in errors in their results. Empirical relations have 
been developed for the velocity profile in wall bounded 
turbulent flows for smooth walls and rough walls [1] [6]. The 
velocity profile for a smooth pipe is given as  

𝑢+ = 𝑦+ for 0 ≤ 𝑦+ ≤ 5  (2) 

𝑢+ = 2.44𝑙𝑛𝑦+ + 4.9   for   30 < 𝑦+and 
𝑦

𝑅
< 0.15

       (3) 

 𝑢𝑚𝑎𝑥
+ − 𝑢+ = 2.44𝑙𝑛 (

𝑅

𝑦
) + 0.8 for the outer region

       (4) 

where R is the internal radius of the pipe and umax is the 
maximum velocity. In the buffer zone (5 < 𝑦+ < 30), the two 
curves (equations (2) and (3)) are merged. For rough pipes, 
the viscous sublayer has less influence because the protruding  
wall elements dorminate the generation of turbulence, so the 
velocity profile becomes a function of pipe roughness, e, and 
is given as [1] 

𝑢+ = 2.44𝑙𝑛 (
𝑦

𝑒
) + 8.5   for   30 < 𝑦+and 

𝑦

𝑅
< 0.15 

       (5) 

The maximum velocity is given as [1] 

 𝑢𝑚𝑎𝑥
+ = 2.44𝑙𝑛 (

𝑢𝜏𝑅

𝜐
) + 5.7 for smooth pipes

       (6) 

and 𝑢𝑚𝑎𝑥
+ = 2.44𝑙𝑛 (

𝑅

𝑒
) + 9.3  for rough pipes

       (7) 

The wall shear stress, if not measured directly for example 
by the new micro-pillar shear-stress sensor, can be found by 
using pressure sensors and the equation 

 𝜏0 = −
𝑅

2

𝑑𝑃

𝑑𝑥
    (8) 

where dP/dx is the pressure gradient. 𝜏0 can also be found 
using the coefficient of friction, 𝑓, with the equation [1] 

 𝜏0 =
1

8
𝜌𝑓𝑉2    (9) 

where V is the average velocity. Additionally, a simpler 
velocity profile which adequately describes the turbulent flow 
velocity in a pipe is the power-law profile given as [1] 

 
𝑢

𝑢𝑚𝑎𝑥
= (

𝑦

𝑅
)
1 𝑛⁄

    (10) 
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where the maximum velocity is given as 

 𝑢𝑚𝑎𝑥 =
(𝑛+1)(2𝑛+1)

2𝑛2
𝑉   (11) 

and n is an integer between 5 and 10 related to the 
coefficient of friction by the empirical relation 

 𝑛 =
1

√𝑓
      (12) 

The power law fails to adequately describe velocity in the 
wall region and would yield infinite shear stress at the wall 
[1]. 

There is insufficient theoretical analysis to interpret the 
experimental observations of turbulence close to the wall [3]. 
Some authors have contributed theoretically [3] [13] [14] [15] 
[16] and the theory has been trying to catch up with 
experimental observation starting with assumption of laminar 
flow in the region to the assumption of  turbulent flow in the 
region with the region being pointed as the key source of 
turbulence. Some of the theories have used assumption that 
there is slip at the wall [5] [13]. 

In this paper, the outer region described by the power law is 
combined with a selected empirical friction model to develop 
a model for describing the viscous sublayer. 

II. METHODS 

Turbulent flows in pipes are dependent on the wall 
condition which is either smooth or rough, so two cases will 
be treated in the analysis of turbulent flow in pipes. 

A. Case 1: Turbulent flow in smooth pipes 

 

The simplest form of the velocity profile for a turbulent flow 
is the power-law profile [1] which will be adopted for this 
work, but due to its limitation at the centerline and at the wall, 
appropriate equations from common solutions of the Navier 
Stokes equation will be used as presented below 

 𝑢(𝑟) =

{
 
 

 
 𝑢0 = 𝑢𝑚𝑎𝑥 (1 − (

𝑟

𝑅
)
2

)                                             0 ≤ 𝑟 ≤ 𝑟0

𝑢1 = 𝑢𝑚𝑎𝑥 (1 −
𝑟

𝑅
)
1 𝑛⁄

                                           𝑟0 ≤ 𝑟 ≤  𝑟1

𝑢2 = 𝐴𝑙𝑛(𝑟) + 𝐵𝑟2 + 𝐶                                         𝑟1 ≤ 𝑟 ≤  𝑅
       (13) 

Where umax is the maximum velocity, A and B are 
constants, while r0 and r1 are the points where the centerline 
velocity and wall velocity matches the power-law profile 
respectively. The boundary conditions (BCs) are 

 𝑢0 = 𝑢1                                     @  𝑟 = 𝑟0 (14) 

 𝑢1 = 𝑢2                                      @  𝑟 = 𝑟1 (15) 

 
𝑑𝑢1

𝑑𝑟
=

𝑑𝑢2

𝑑𝑟
                                @  𝑟 = 𝑟1 (16) 

 𝑢2 = 0                                     @  𝑟 = 𝑅 (17) 

Applying the first BC (equation (14)) gives 

 𝑟0 = 1.2036𝑅𝑛
−1.058   (18) 

Applying BC 2 (equation (15)) gives 

𝑢𝑚𝑎𝑥 (1 −
𝑟1

𝑅
)
1 𝑛⁄

= 𝐴𝑙𝑛(𝑟1) + 𝐵𝑟1
2 + 𝐶  (19) 

Applying BC 3 (equation (15)) gives 

−
𝑢𝑚𝑎𝑥

𝑛𝑅
(1 −

𝑟1

𝑅
)

1

𝑛
−1

=
𝐴

𝑟1
+ 2𝐵𝑟1  (20) 

Applying BC 4 (equation (16)) gives 

𝐴𝑙𝑛(𝑅) + 𝐵𝑅2 + 𝐶 = 0   (21) 

Solving equations (19), (20) and (21) gives 

𝐴 =
(
𝑢𝑚𝑎𝑥
𝑛

)(
𝑟1
𝑅
)(2𝑛

𝑟1
𝑅
(1−

𝑟1
𝑅
)
1 𝑛⁄

−(1−(
𝑟1
𝑅
)
2
)(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

    (22) 

𝐵 =
(
𝑢𝑚𝑎𝑥
𝑛𝑅2

)(−𝑛(1−
𝑟1
𝑅
)
1 𝑛⁄

−(
𝑟1
𝑅
)ln (

𝑟1
𝑅
)(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

    (23) 

And 

𝐶 =

(
𝑢𝑚𝑎𝑥
𝑛

)(𝑛(1−2(
𝑟1
𝑅
)
2
ln (𝑅))(1−

𝑟1
𝑅
)
1 𝑛⁄

+((
𝑟1
𝑅
)
2
ln(

𝑟1
𝑅
)−(

𝑟1
𝑅
)
3
ln (𝑅))(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

       (24) 

Where r1 and umax are still unknown. umax can be found from 
the average velocity value as shown below 

𝑉 =
∫ 𝑢0(𝑟)2𝜋𝑟𝑑𝑟+∫ 𝑢1(𝑟)2𝜋𝑟𝑑𝑟

𝑅
𝑟0

𝑟0
0

𝜋𝑅2
=

∫ 𝑢𝑚𝑎𝑥(1−(
𝑟

𝑅
)
2
)2𝜋𝑟𝑑𝑟+∫ 𝑢𝑚𝑎𝑥(1−

𝑟

𝑅
)
1 𝑛⁄

2𝜋𝑟𝑑𝑟
𝑅
𝑟0

𝑟0
0

𝜋𝑅2
  

Here it is assumed that the error in using u1 to cover for u2 is 
negligible since integration is involved. Therefore, integrating 
and solving for umax gives 

𝑢𝑚𝑎𝑥 = 1.4611𝑉𝑛0.8885   (25) 

r1 is found by applying equation (19) at r = R 

𝜏0 =
1

8
𝜌𝑓𝑉2 = −𝜇

𝑑𝑢2

𝑑𝑟
|
𝑟=𝑅

= −𝜇 (
𝐴

𝑅
+ 2𝐵𝑅) (26) 

Equations (23) and (23) into (26) gives 

1

8
𝜌𝑓𝑉2 =

−𝜇(
1

𝑅
(
(
1.4611𝑉𝑛0.8885

𝑛
)(
𝑟1
𝑅
)(2𝑛

𝑟1
𝑅
(1−

𝑟1
𝑅
)
1 𝑛⁄

−(1−(
𝑟1
𝑅
)
2
)(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

) +

2(
(
1.4611𝑉𝑛0.8885

𝑛𝑅2
)(−𝑛(1−

𝑟1
𝑅
)
1 𝑛⁄

−(
𝑟1
𝑅
)ln (

𝑟1
𝑅
)(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

)𝑅)

       (27) 

Equation (27)  simplifies to  
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𝑅𝑒

23.3776
= −𝑛2

(

 
 
(
(
𝑟1
𝑅
)(2𝑛

𝑟1
𝑅
(1−

𝑟1
𝑅
)
1 𝑛⁄

−(1−(
𝑟1
𝑅
)
2
)(1−

𝑟1
𝑅
)

1
𝑛
−1
)

𝑛0.1115(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

)+

2(
(−𝑛(1−

𝑟1
𝑅
)
1 𝑛⁄

−(
𝑟1
𝑅
)ln (

𝑟1
𝑅
)(1−

𝑟1
𝑅
)

1
𝑛
−1
)

𝑛0.1115(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

)

)

 
 

  (28) 

Assuming that r1 falls in the wall region such that r1/R ranges 
from 0.805 to 1, equation (28) can be simplified to  

𝑅𝑒

23.3776
=

17.029𝑛 2− 168.745𝑛 + 443.692

1−
𝑟1
𝑅

  (29) 

Therefore, 

𝑟1

𝑅
= 1 −

23.3776

𝑅𝑒
(17.029𝑛 2 −  168.745𝑛 +  443.692)

        (30) 

At this point all unknowns can be estimated for the 
velocity profile of turbulent flow in a smooth pipe as given by 
equation (13), so that appropriate analysis can be performed 
with it. Equation (30) can also be used to estimate r1/R by 
using an equation for the friction coefficient for a smooth 
pipe. An equation similar to that of Petukov [17] was 
developed using more recent experimental data published in 
McKeon et al work [18] 

 𝑛 =
1

√𝑓
= 0.762 ln(𝑅𝑒) − 1.3328                  (31) 

 (valid for 4000 ≤ 𝑅𝑒 ≤ 36000000) 

The value of y+ corresponding to r1 can be found from a 
further simplified form of equation (1) 

𝑦+ =
𝑦

𝜐
√
𝜏0

𝜌
=

𝑦

𝜐
√
𝜌𝑉2𝑓

8𝜌
=

𝑦

𝐷

𝑅𝑒

2
√
𝑓

2
=

(𝑅−𝑟)

𝐷

𝑅𝑒

2
√
𝑓

2
=

(1−
𝑟

𝑅
)

2

𝑅𝑒

2
√
𝑓

2
= (

1

2
−

𝑟

𝐷
)
𝑅𝑒

2
√
𝑓

2
   (32) 

 

B. Case 2: Turbulent flow in rough pipes 

 

The simplest form of the velocity profile for a turbulent flow 
is the power-law profile [1] will also be adopted for this case, 
and the common solutions of the Navier Stokes equation used 
in case 1 will also be used as presented below 

𝑢(𝑟) =

{
 
 

 
 

 

𝑢0 = 𝑢𝑚𝑎𝑥 (1 − (
𝑟

𝑅
)
2

)                     0 ≤ 𝑟 ≤ 𝑟0

𝑢1 = 𝑢𝑚𝑎𝑥 (1 −
𝑟

𝑅
)
1 𝑛⁄

                 𝑟0 ≤ 𝑟 ≤  𝑟1

𝑢2 = 𝐴𝑙𝑛(𝑟) + 𝐵𝑟
2 + 𝐶                𝑟1 ≤ 𝑟 ≤  𝜀

 𝑢3 = 𝐸𝑟
2 + 𝐹𝑟 + 𝐺                        𝜀 ≤ 𝑟 ≤  𝑅 

       (33) 

Additionally, a parabolic velocity profile was adopted for 
the rough region since it very thin and Popovich and Hummel 
[19] found in their experimental work that the thin layer of 
fluid at the wall was characterized with a linear velocity 
gradient, so a parabolic profile over an infinitesimal will look 
linear and the constant E will be small after the analysis.  
Compared to case 1, E, F and G are new constants to be found 

and ε is pipe roughness and is known for the pipe material. 
The boundary conditions (BCs) are 

𝑢0 = 𝑢1                                                       @  𝑟 = 𝑟0 (34) 

𝑢1 = 𝑢2                                                       @  𝑟 = 𝑟1 (35) 

𝑑𝑢1

𝑑𝑟
=

𝑑𝑢2

𝑑𝑟
                                                    @  𝑟 = 𝑟1 (36) 

𝑢2 = 𝑢3                                                 @  𝑟 = 𝑅 − 𝜀 (37) 

𝑢3 = 0                                                          @  𝑟 = 𝑅 (38) 

Applying the first BC 1 (equation (34)) gives 

 𝑟0 = 1.2036𝑅𝑛
−1.058   (39) 

Applying BC 2 (equation (35)) gives 

 𝑢𝑚𝑎𝑥 (1 −
𝑟1

𝑅
)
1 𝑛⁄

= 𝐴𝑙𝑛(𝑟1) + 𝐵𝑟1
2 + 𝐶 (40) 

Applying BC 3 (equation (36)) gives 

 −
𝑢𝑚𝑎𝑥

𝑛𝑅
(1 −

𝑟1

𝑅
)

1

𝑛
−1

=
𝐴

𝑟1
+ 2𝐵𝑟1  (41) 

Applying BC 4 (equation (37)) gives 

𝐴𝑙𝑛(𝑅 − 𝜀) + 𝐵(𝑅 − 𝜀)2 + 𝐶 = 𝐸(𝑅 − 𝜀)2 + 𝐹(𝑅 − 𝜀) + 𝐺
       
 (42) 

Applying BC 4 (equation (38)) gives 

 𝐸𝑅2 + 𝐹𝑅 + 𝐺 = 0   (43) 

Assuming that R >> ε, equation (42) can be expanded so that 
the method of matched asymptotic expansion can be applied: 

𝐴(ln(𝑅) −
𝜀

𝑅
−

𝜀2

2𝑅2
−

𝜀3

3𝑅3
−

𝜀4

4𝑅4
−⋯− 𝒪(𝜀5)) + 𝐵(𝑅2 − 2𝑅𝜀 −

𝜀2) + 𝐶 = 𝐸(𝑅2 − 2𝑅𝜀 − 𝜀2) + 𝐹(𝑅 − 𝜀) + 𝐺  (44) 

Equating coefficients 

ε0: 𝐴𝑙𝑛(𝑅) + 𝐵𝑅2 + 𝐶 = 0   (45) 

ε1: −
𝐴

𝑅
− 2𝐵𝑅 = −2𝐸𝑅 − 𝐹   (46) 

ε2: −
𝐴

2𝑅2
+ 𝐵 = 𝐸    (47) 

Equations (40), (41) and (45) retains the terms from case 
one, so the solution for A, B and C are the same as that of case 
1, but E and F needs to be found by solving equations (46) and 
(47) simultaneously, we have 

𝐴 =
(
𝑢𝑚𝑎𝑥
𝑛

)(
𝑟1
𝑅
)(2𝑛

𝑟1
𝑅
(1−

𝑟1
𝑅
)
1 𝑛⁄

−(1−(
𝑟1
𝑅
)
2
)(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

 (48) 

𝐵 =
(
𝑢𝑚𝑎𝑥
𝑛𝑅2

)(−𝑛(1−
𝑟1
𝑅
)
1 𝑛⁄

−(
𝑟1
𝑅
)ln (

𝑟1
𝑅
)(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

  (49) 

𝐶 =
(
𝑢𝑚𝑎𝑥
𝑛

)(𝑛(1−2(
𝑟1
𝑅
)
2
ln (𝑅))(1−

𝑟1
𝑅
)
1 𝑛⁄

+((
𝑟1
𝑅
)
2
ln(

𝑟1
𝑅
)−(

𝑟1
𝑅
)
3
ln (𝑅))(1−

𝑟1
𝑅
)

1
𝑛−1)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

 

       (50) 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS050010
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 05, May-2021

19

www.ijert.org
www.ijert.org
www.ijert.org


𝐸 =

(
𝑢𝑚𝑎𝑥
𝑛𝑅2

)(−𝑛(1−
𝑟1
𝑅
)
1 𝑛⁄

−(
𝑟1
𝑅
) ln(

𝑟1
𝑅
)(1−

𝑟1
𝑅
)

1
𝑛−1

−
1

2
(
𝑟1
𝑅
)(2𝑛

𝑟1
𝑅
(1−

𝑟1
𝑅
)
1 𝑛⁄

−(1−(
𝑟1
𝑅
)
2
)(1−

𝑟1
𝑅
)

1
𝑛−1))

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
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       (51) 

𝐹 =

2

𝑅
(
𝑢𝑚𝑎𝑥
𝑛

)(
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𝑅
)(2𝑛
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𝑅
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𝑟1
𝑅
)
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𝑅
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2
)(1−

𝑟1
𝑅
)

1
𝑛−1)
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𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

 (52) 

𝐺 =

−

(
𝑢𝑚𝑎𝑥
𝑛

)(−𝑛(1−
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𝑅
)
1 𝑛⁄
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𝑅
) ln(
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𝑅
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𝑅
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1
𝑛
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−
1
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𝑟1
𝑅
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𝑅
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−(1−(
𝑟1
𝑅
)
2
)(1−
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𝑅
)

1
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(1−(
𝑟1
𝑅
)
2
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𝑟1
𝑅
)
2
ln (
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𝑅
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−

2(
𝑢𝑚𝑎𝑥
𝑛

)(
𝑟1
𝑅
)(2𝑛

𝑟1
𝑅
(1−

𝑟1
𝑅
)
1 𝑛⁄

−(1−(
𝑟1
𝑅
)
2
)(1−

𝑟1
𝑅
)

1
𝑛
−1
)

(1−(
𝑟1
𝑅
)
2
+2(

𝑟1
𝑅
)
2
ln (

𝑟1
𝑅
))

    (53) 

Just as was done for case 1, umax can be found from the 
average velocity value as shown below 

𝑉 =
∫ 𝑢0(𝑟)2𝜋𝑟𝑑𝑟+∫ 𝑢1(𝑟)2𝜋𝑟𝑑𝑟

𝑅
𝑟0

𝑟0
0

𝜋𝑅2
=

∫ 𝑢𝑚𝑎𝑥(1−(
𝑟

𝑅
)
2
)2𝜋𝑟𝑑𝑟+∫ 𝑢𝑚𝑎𝑥(1−

𝑟

𝑅
)
1 𝑛⁄

2𝜋𝑟𝑑𝑟
𝑅
𝑟0

𝑟0
0

𝜋𝑅2
  

Again, it is assumed that the error in using u1 to overlap u2 
and u3 is negligible since integration is involved and (R-r1) 
and ε are much smaller than r1. Therefore, integrating and 
solving for umax gives 

 𝑢𝑚𝑎𝑥 = 1.4611𝑉𝑛0.8885   (25) 

Finding r1 for case 2 is more challenging than case 1, since 
we have assumed that the fluid structure has been 
discontinued due to the protruding rough spikes. Therefore, 
the friction coefficient has to be treated separately for the 
rough region and for the clear region. Consider the electrical 
analogy in Fig 1. 

 

Fig 1: Electrical analogy of separate friction effect in rough 
region and clear region. 

 

The pressure change is given by Darcy Weisbach equation as 
[1] 

 ∆𝑃 =
𝜌𝐿𝑓

2

𝑉2

𝐷
=

8𝜌𝐿𝑓𝑄2

𝜋2𝐷5
   (54) 

Summing the two flow rates 

 𝑄 = 𝑄𝐶𝑙 + 𝑄𝑅𝑜    (55) 

Equation (54) into equation (55) gives 

(
𝜋2𝐷5∆𝑃

8𝜌𝐿𝑓
)

1
2
= (

𝜋2𝐷𝐶𝑙
5 ∆𝑃

8𝜌𝐿𝑓𝐶𝑙
)

1
2

+ (
𝜋2𝐷(𝐷2−𝐷𝐶𝑙

2 )
2
∆𝑃

8𝜌𝐿𝑓𝑅𝑜
)

1
2

 (56) 

Using 𝐷 = 2𝑅 and 𝐷𝐶𝑙 = 2(𝑅 − 𝜀) = 𝐷 − 2𝜀, and dividing 
through by common terms reduces equation (56) to 

(
1

𝑓
)
1
2
= (

(1−2
𝜀

𝐷
)
5

𝑓𝐶𝑙
)

1
2

+ (
16((

𝜀

𝐷
)
2
−2(

𝜀

𝐷
)
3
+(

𝜀

𝐷
)
4
)

𝑓𝑅𝑜
)

1
2

 (57) 

In order to estimate the average velocity in the clear region 

𝑉𝐶𝑙 =
∫ 𝑢0(𝑟)2𝜋𝑟𝑑𝑟+∫ 𝑢1(𝑟)2𝜋𝑟𝑑𝑟

𝑅−𝜀
𝑟0

𝑟0
0

𝜋(𝑅−𝜀)2
=

∫ 𝑢𝑚𝑎𝑥(1−(
𝑟

𝑅
)
2
)2𝜋𝑟𝑑𝑟+∫ 𝑢𝑚𝑎𝑥(1−

𝑟

𝑅
)
1 𝑛⁄

2𝜋𝑟𝑑𝑟
𝑅−𝜀
𝑟0

𝑟0
0

𝜋(𝑅−𝜀)2
  (58) 

Similarly, u2 overlaps over u3 for approximation and umax is 
used from equation (25) so integrating equation (58) gives 

𝑉𝐶𝑙 = 𝑉
[0.9642𝑛0.0122−

2.9222𝑛1.8885

(1+2𝑛)(1+𝑛)
(
𝜀

𝑅
)
1+

1
𝑛(𝑛(2−

𝜀

𝑅
)+1−

𝜀

𝑅
)]

(1−
𝜀

𝑅
)
2  (59) 

𝑄 = 𝑉𝐴 into equation (55) gives 

𝑉𝐴 = 𝑉𝐶𝑙𝐴𝐶𝑙 + 𝑉𝑅𝑜𝐴𝑅𝑜    (60) 

Which expands to 

𝑉𝜋𝑅2 = 𝑉𝐶𝑙𝜋(𝑅 − 𝜀)
2 + 𝑉𝑅𝑜(𝜋𝑅

2 − 𝜋(𝑅 − 𝜀)2) (61) 

Therefore 

 𝑉𝑅𝑜 =
𝑉−𝑉𝐶𝑙(1−

𝜀

𝑅
)
2

(2
𝜀

𝑅
−(
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𝑅
)
2
)
=

𝑉
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𝜀
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𝑅
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𝜀

𝑅
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𝜀

𝑅
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𝜀

𝑅
)
2
)

 (62) 

fCl is estimated from  

𝜏𝐶𝑙 =
1

8
𝜌𝑓𝐶𝑙𝑉𝐶𝑙

2 = −𝜇
𝑑𝑢2

𝑑𝑟
|
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𝜀
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As 

𝑓𝐶𝑙 =
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1

8
𝜌𝑉𝐶𝑙

2 (
𝐴
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𝜀
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𝑅
))  (64) 

𝑓𝐶𝑙 =
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2
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𝜀

𝑅
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4
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       (65) 

Assuming that r1 falls in the wall region such that r1/R 
ranges from 0.805 to 1, equation (65) can be simplified to  
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𝑓𝐶𝑙 =
16

𝑅𝑒

(

 
 1.1284𝑛(1−
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𝑅
)
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       (66) 

fRo is estimated from  

𝜏𝑅𝑜 =
1

8
𝜌𝑓𝑅𝑜𝑉𝑅𝑜
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Therefore, 
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1

8
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Assuming that r1 falls in the wall region such that r1/R 
ranges from 0.805 to 1, equation (69) can be simplified to 

𝑓𝑅𝑜 =
32
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Equations (66) and (70) into equation (57) gives 

𝑛 =
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For the purpose of estimation, equation (71) can be reduced to 
a solvable equation 

1
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       (72) 

Assuming that ε/D falls with the range of  0.0000001 to 0.1, 
equation (72) can be simplified to  

1

𝑅𝑒0.5(1−
𝑟1
𝑅
)
0.95 = (−0.2163𝑛

2 + 6.4502𝑛 − 23.4472)
𝜀

𝐷
−

0.0035𝑛3 + 0.0982𝑛2  − 0.8934𝑛 + 2.7457  
       
       (73) 

Therefore, 

𝑟1

𝑅
= 1 −

1

𝑅𝑒0.5263((−0.2163𝑛2+ 6.4502𝑛 − 23.4472)
𝜀

𝐷
−0.0035𝑛3 + 0.0982𝑛2 − 0.8934𝑛 + 2.7457)

1.0526

       (74) 

Equation (74) can also be used to estimate r1/R by 
adopting the total friction given by [20] 

𝑛 =
1

√𝑓
= −1.8Log [

6.9

𝑅𝑒
+ (

𝜀 𝐷⁄

3.7
)
1.11

] = −0.7817ln  [
6.9

𝑅𝑒
+ (

𝜀 𝐷⁄

3.7
)
1.11

]

       (75) 

The value of y+ corresponding to r1 and ɛ can be found from 
equation (32). 

 

III. RESULTS 

Numerical values for Reynolds number were selected and 
used to check the results obtained for the case of turbulent 
flow in a smooth pipe [See Table 1.] The calculation results 
showed that y+ at r1 ranges from 21 to 295 for the Re range 
covered by equation (31). Similarly, numerical values for Re 
and ɛ were selected for the case of turbulent flow in rough 
pipe, and the resulting values r1/D and y+ are presented in 
Table 2.  In order to obtain extreme values for turbulent flow 
in a rough pipe, Re = 4000 with low and high values of ɛ/D 
and Re = 108 with low and high values of ɛ/D. The values of 
ɛ/D were selected to keep n within 5 and 10 where most of the 
developed equations are valid. 

 
Table 1: r1/R and corresponding y+ for a smooth pipe 

at selected Re values 

Re ε/D ƒ (31) r1/R (30) y+ @ r1 (32) 

4.00E+03 - 0.040205 0.849896 21.28207 

4.00E+04 - 0.022001 0.953207 49.07798 

1.00E+05 - 0.018065 0.969406 72.69179 

1.00E+06 - 0.011829 0.992243 149.1419 

1.00E+07 - 0.008341 0.998509 240.6645 

3.60E+07 - 0.007032 0.999446 295.6495 
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Table 2: r1/R and ɛ along with corresponding y+ values for a 

rough pipe at selected Re and ɛ values 
Re ε/D ƒ  

(75) 

r1/R  (74) Y @ r1/D y+ @ 

r1  

(32) 

y+ @ ε  

(32) 

1.00 

E+04 

0.01 0.043 0.976668 0.011666 8.558 7.336 

4.00 

E+04 

0.006 0.034 0.984487 0.007757 20.23 15.651 

6.50 

E+05 

0.0004 0.017 0.989747 0.005127 152.3 11.88 

6.50 

E+05 

0.004 0.029 0.995294 0.002353 91.5 155.6 

7.00 

E+05 

0.01 0.038 0.997164 0.001418 68.47 482.8 

8.00 

E+06 

0.0000001 0.008 0.998186 0.000907 235.1 0.026 

2.50 

E+07 

0.00001 0.009 0.999006 0.000497 405.0 8.145 

Table 3: r1/R and ɛ along with corresponding y+ values for a 

rough pipe with Re and ɛ values for extreme y+ 
Re ε/D ƒ (75) n r1/R (y@r1)/D y+ @ r1 y+ @ ε 

4.00 

E+03 

0.0000001 0.0404 4.97 0.9550 0.0225 6.4000 2.8435 

E-05 

4.00 

E+03 

0.001 0.0412 4.93 0.9568 0.0216 6.2088 0.2871 

1.00 

E+08 

0.00003 0.0097 10.1 0.9995 0.0003 881.99 104.52 

1.00 

E+08 

0.013 0.0416 4.90 0.9998 9.24 

E-05 

666.22 93735.0 

 

IV. DISCUSSION 

 

 The results in Table 1 and Table 2 show that r1 is a 
separation between two flow regions. r1 clearly separates the 
outer region from the wall region. Table 1 shows that for 
turbulent flows in smooth pipes, the normalized distance from 
the wall at which the boundary between the two regions occur 
is always greater than 30 and increases logarithmically with 
increase in Reynolds number. Turbulent flow in a smooth pipe 
is therefore expected to have both a viscous sublayer and a 
buffer zone. Experimental investigators have reported that the 
wall/outer region boundary location is dependent on Reynolds 
number [1] [2], but not as detailed as the result presented here. 
For turbulent flows in rough pipes, the results of the analysis 
shows in Table 2 that the normalized distance from the wall at 
which wall/outer region boundary exists is a function of the 
relative roughness of the pipe. In more details, the normalized 
distance from the wall at which the wall/outer region exists 
may increase or decrease depending on the combination of 
variation of the Reynolds number and relative roughness. The 
distance y represented by non-dimensional values y/D and y/R 
decreases with either increase in relative roughness or increase 
in Reynolds number. The observed trends can be explained by 
the relation between the variables as presented in equation 
(31)  which shows that y+ is directly proportional to the 
product of Re and the square root of f and f reduces with 
increase in Re before the flow is completely turbulent but 
always increases with increase in ɛ/D. Extreme values of y+ 
obtained (see Table 3) shows that y+ can go as low as 6.2, so 
for a turbulent flow in a rough pipe, there may not always be  
a buffer zone (5 < y+ < 30).  

Though y+(ɛ) may be greater than y+(r1) of y+ =5, it should not 
be used as a criteria for determining whether the smooth pipe 

friction coefficient equation should be used, rather the 
assumption should be made only when ɛ/D is extremely low 
such that 

  (𝜀 𝐷⁄ )(𝑅𝑒0.725) ≤ 0.5    (76) 

in order to ensure that the error due to the assumption is 
less than 2.5%. It is assumed that empirical friction coefficient 
equation such as equation (75) is developed from 
experimental data that absorbed the effect of whether y+(ɛ) is 
greater or less than 5.  

At the pipe wall, the turbulent flow is characterized by 
bursting from the rough wall [14] and sweeping from 
upstream [21] which all contribute to the turbulence 
production process. Enough information on the wall boundary 
condition is not yet available for a direct solution of the flow 
equations to find r1 and ƒ directly. Case 1 analysis for the 
smooth pipe is more accurate than case 2 analysis for the 
rough pipe, since the effect of ɛ required more work and 
approximation as presented. The equations obtained for case 2 
could not be used to check that it drops to the equations of 
case 1 by writing ɛ/D = 0 since the validity of the empirical 
equations used did not cover ɛ/D = 0 in its range of validity 
without significant error.  

 Additionally, selected equations which were presented in 
small fonts to fit the half page columns in section II have been 
expanded in font size and present in a full page column in the 
appendix. 

CONCLUSION 

Theoretical analysis of turbulent flow profile in pipes 

has been made. Equations, which include the power-law and 

other forms of solution to the Navier-Stokes equation, were 

fitted to sections of the flow field to eliminate the limitations 

of the power-law at the center and at the wall. The outer 

region and outer region boundary or interface location was 

found for both cases of turbulent pipe flow in a smooth pipe 

and in a rough pipe. The boundary layer location trend and 

variation with Reynolds number and relative roughness was 

presented. The normalized distance from the wall to the 

outer/wall region boundary was found to occur at 21- 295 for 

smooth pipes and 6 – 882 for rough pipes with the 

combination of Re and ɛ/D determining its exact location. 

This work calls for further experimentation and 

measurements in the near-wall region and at the wall that will 

provide information for further analysis. The result of this 

work can also be used as a guide during experimentation to 

know where to focus on for measurements. 
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APPENDIX 

A. Expanded form selected equations which were compressed to fit the required two column pages 
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