

Analysis of Sorting Algorithms Using Time

Complexity

Shubham V, Ganmote,

2nd Semester, Dept. of MCA

R.V. College of Engineering,

Mysore Road, Bengaluru-59,

Affiliated to VTU, Belagavi

Vishwas G R S

2nd Semester, Dept. of MCA

R.V. College of Engineering,

Mysore Road, Bengaluru-59,

Affiliated to VTU, Belagavi

Anupama Kumar

Associate Prof., Dept. of MCA

R.V. College of Engineering,

Mysore Road, Bengaluru-59,

Affiliated to VTU, Belagavi

Abstract: Analysis of algorithms is one of the important

phase in developing a project. The algorithms can be analyzed

using two methods : Space and Time complexity. Sorting

algorithms are used worldwide to arrange the data / files for

efficient working. This paper discusses about the different

sorting algorithms and their analysis using time complexity.

The different sorting techniques like bubble sort, selection

sort, insertion sort, quick sort and merge sort are

implemented using C. The input values varying from 100 to

1000 are system generated. The time complexity of these

algorithms are calculated and recorded. For the given data

set, quick sort is found very efficient and has taken 168 ms for

1000 data inputs. The algorithm is in place and not stable

since it takes extra memory space to divide and combine the

solution.

I. INTRODUCTION

 Sorting algorithm in computer science, is an algorithm that

puts elements of a list in a certain order. The most used

orders are numerical ordering and lexicographical ordering.

Efficiently sorting a list is important for optimizing the use

of other algorithms (such as search and merge algorithms)

which require input data to be stored in lists.

There are a lot of sorting algorithms available for sorting

the given data or file. Some algorithms are efficient for

some inputs and some are not. The efficiency or

performance of an algorithm depends on the time and space

complexity of the algorithm. The space complexity of an

algorithm is the amount of memory it needs to run to

completion. The time complexity of an algorithm is the

amount of computer time it needs to run to completion. [1].

Any sorting algorithm should satisfy the following

properties (i) The output must be

sorted, and (ii) It must still contain the same elements.[4].

In [8] the various sorting technique using the stability and

the time efficiency. In this paper we discuss the efficiency

of the algorithms using the number of inputs and the time

taken to sort the elements. This paper deals with the

following sorting techniques:

Bubble Sort: Bubble sort uses brute force method to sort

the elements. Bubble sort is also called as sinking sort, is a

simple sorting algorithm that repeatedly steps through the

list to be sorted, it compares each pair of adjacent items

and swaps them if they are in the wrong order. This

algorithm is stable; since it only swaps two items if the

latter one is strictly greater, so equal-valued items will stay

in their original order. When the elements are already in

sorted order, bubble sort takes minimum time. It can be

applied to smaller set of data [1]

Selection sort: It is implemented using Brute force

technique. The selection sort algorithm sorts an array by

repeatedly finding the minimum element (considering

ascending order) from unsorted part and putting it at the

beginning of the array. The algorithm maintains two sub

arrays in a given array. The first sub array is the array

which is already sorted. And the second is the remaining

sub array which is unsorted. One of the application of

selection sort is to find the unique element in a data set.[3]

Insertion Sort: Decrease and conquer method is used to sort

the elements using insertion sort. Insertion sort is a

simple sorting algorithm that builds the final sorted

array (or list) one item at a time. The algorithm is more

useful if the first few objects are already sorted, an

unsorted object can be inserted in the sorted set in proper

place[5].

Quick Sort: Quick-sort uses Divide and Conquer technique.

It picks an element as pivot element and partitions the

given array around the picked pivot element. There are

many different versions of quick-sort that picks the pivot

element in different ways. Always pick first element as

pivot element. Always pick last element as pivot elements.

Pick a random element as pivot element. Pick median as

pivot element[1]. The sorting technique is best suited to

sort large number of data. This performs better than

MergeSort and HeapSort which has same asymptotic time

complexity O(n log n) on average case but the constant

factors hidden in the asymptotic time complexity for quick

sort are pretty small[6]. The algorithm is implemented in

medical monitoring system, Google pages for fast retrieval,

life support or control systems etc.

Merge Sort: Merge Sort uses Divide and

Conquer algorithm. It divides the input array into two

halves, calls itself for the two sorted halves and then

merges the two sorted halves. [1]. The author in [2] has

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

1

discussed the optimum solution of merge sort and

explained the sequence in detail.

The following sections discuss about the implementation of

the algorithms.

II. IMPLEMENTATION

C programming is used in this work for demonstrating the

sorting algorithm. The input is varied from 100 to 1000 and

generated automatically in the program. The figure 3.1

shows the main menu of the implementation:

Fig 3.1 Snapshot of Main Menu

The figure 3.2 shows the implementation of bubble sort

technique.The time taken for sorting 100 inputs is 53

Millie-seconds and the time taken for sorting 1000 inputs is

3323 Millie-seconds. As the number of inputs increases,

the time taken to sort the data also increases.

Fig 3.2 Snapshot of time taken of Bubble Sorting program

The figure 3.3 shows the implementation of selection sort

technique.The time taken for sorting 100 inputs is 27

Millie-seconds and the time taken for sorting 1000 inputs is

2842 Millie-seconds. As the number of inputs increases,

the time taken to sort the data also increases.

Fig 3.3 Snapshot of time taken of Selection Sorting

program

The figure 3.4 shows the implementation of insertion sort

technique.The time taken for sorting 100 inputs is 23

Millie-seconds and the time taken for sorting 1000 inputs is

3738 Millie-seconds. As the number of inputs increases,

the time taken to sort the data also increases.

Fig 3.4 Snapshot of time taken of Insertion Sorting program

The figure 3.5 shows the implementation of Quick sort

technique.The time taken for sorting 100 inputs is 13

Millie-seconds and the time taken for sorting 1000 inputs is

168 Millie-seconds. As the number of inputs increases, the

time taken to sort the data also increases.

Fig 3.5 Snapshot of time taken of Quick Sorting program

The figure 3.6 shows the implementation of merge sort

technique.The time taken for sorting 100 inputs is 17

Millie-seconds and the time taken for sorting 1000 inputs is

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

2

201 Millie-seconds. As the number of inputs increases, the

time taken to sort the data also increases.

Fig 3.6 Snapshot of time taken of Merge Sorting program

III CONCLUSION

The below graph shows the time taken by the sorting

algorithms. The graph shows that the quick sort and merge

sort are more efficient compared to the bubble,selection

and insertion sorting techniques, When there is more

number of inputs the quick sort and merge sort take less

time to sort compared to the other sorting techniques.

REFERENCES:
[1] Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran.

Fundamentals of Computer Algorithms second edition,

Introduction, 2007

[2] www2.latech.edu/~choi/Bens/Teaching/Development/A

lgorithm/PDF/CH04.pdf

[3] www8.cs.umu.se/kurser/TDBA77/VT06/algorithms/

[4] www- bcf.usc.edu/~dkempe/CS104/10-31.pdf

[5] http://www.personal.kent.edu/ rmuhamma

[6] SadaKurupathi, Quicksort – a practical and efficient

sorting algorithm, https://sadakurapati.wordpress.com

[7] Marcin Sydow, Algorithms and Data structures

[8] https://www.saylor.org/site/wp-
content/uploads/2011/06/Sorting-Algorithm.pdf

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NLPGPS - 2017 Conference Proceedings

Volume 5, Issue 21

Special Issue - 2017

3

