Analysis Of Locus Of Point On Rotating Disc In The Proposed Mechanism For Delivering Sago Granules S. M. Raj Kumar

EBET Group of Institutions, Tirupur, Tamilnadu, India.

R. Malayalamurthi

Government college of Engineering, Salem, Tamilnadu, India R. Marappan K.S.R. College of Engineering, Namakkal, Tamilnadu, India

Abstract

In a novel mechanism for delivering sago granules in a disc rotating about an inclined axis plays the vital role. It is observed that the locus of a point on the rotating circular plate tends to move away from the centre, which confirms the delivery of sago granules from the plate when system of force applied in that point. This study is carried out through analytically as well as numerical simulation using ADAMS package. These results will provide some insight into the scaling transformation analysis and fabrication of the automatic simple granulation machine which enhances the granular production minimizes the granulation difficulty and labour requirement.

Keywords: Sago, Granulation, Point

1. Introduction

Granulation is one of the methods of processing powder materials into granulated products which are more suitable for storage, transport and further processing. The process consist the formation and growth of particles in a rotating drum or in a disc. This study will focus on the granulation of powder particle using a disc granulator as this equipment gives a product with high density and high sphericity. The efficiency of wet granulation process using disc granulator depends on many factors including binder content, rotational speed, surface roughness, size of plate, starch content of the raw material. This study provides analytical and numerical solutions for locus of particle in granulator mechanism. Several analytical as well as experimental studies have been performed for particle trajectories. Nakagawa [1] performed DEM simulation and checked against MRI result for granules flows in a rotating cylinder. From the Heim [2] observation the value of reduced torques are higher for

big diameter disk in the disk granulation process and also the angle of disk inclination on the reduced Torque was observed significantly. Heim [3] proposed the model for bed dynamics during the drum granulation by dimensionless equations and presenting the relation between power number Froude number and dimensionless parameters. Also he [4] showed a significant effect of bed wetting parameters on the kinetics of wet drum granulation and presents the effect of jet break up on the granule related to surface tension. Grift [5] analysis showed that the friction coefficient can be measured using a single radial velocity measurement of particle at a distance of 4m from the edge of the disc. The data showed that the larger particles attained slightly higher velocities than the smaller ones, and the friction coefficients showed a moderate inverse relationship with the particle diameter. Rioul [6] presented a dynamical transition between a rolling and sliding at the regime and also the purely sliding regime as function of the friction coefficient and elongation of the particle.

Vilketel [7] demonstrates that the every velocity component can be deduced from the horizontal outlet angle measurement and the rotational speed. Rioul [8] studies the trajectory of solid spherical particle bouncing at high velocity along the rotating plate with accurate statistical analysis of the trajectory for both radical and angular velocity. Montira [9] experiment results indicated that the growth of cassava pearl was very sensitive to binder content. At the initial stage to granulation stage (after 4 minute), cassava peal obtained from all treatments exhibited the maximum growth rate. Also showed that particle size enlargement decreased as the binder content increased. The result of drum filling degree indicated that growth behaviour of cassava pearl is dependent on drum filling degree. Alexadru [10] studied that the functional optimization of wiper mechanism was made by using virtual model

which was realized with ADAMS software. The optimization will be described as parametrizing the model, defining the design variables, performing studies to identify the main design variables and constraints. SitiMazlina [11] replacing the method of extracting sago starch by integration of both blending and mechanized squeezing into one unit operation aided by controlled amount of water. Labour and energy requirements could also be reduced reasonably owing to the fact that a few separate steps are combined into a single unit operation.

2. Present process & Innovative concepts

Traditionally wet starch is agglomerated in a cloth cradle which is used as a generator until larger granules are formed. Use of cloth cradle as a granulator can cause many problems because quality and productivity of granules produced from cloth cradle depend entirely on human skill. Additionally it makes it difficult to follow Good Manufacturing Practice (GMP) guidelines and regulations. In order to overcome these problems and achieve higher productivity, a new type of granulator need to be developed for powder granulation. In this new mechanism, delivery of various dimensions of granules can be obtained by varying rotational speed of circular plate. When sago powder is spilt on the rotating circular plate, the spherical shaped sago balls are formed by the addition of sprinkling water. The formed sago granules are in globules size and are roll over the edge of the circular plate and finally pushed out of the circular plate due to the centrifugal force.

3. Analytical Models

In analyzing motion the first and most basic problem encountered is that of defining and dealing with the concept of position and displacement. So the position of the point must be defined in terms of some reference coordinate system.

- Origin provides a location from which to measure the location of point.
- Coordinate axes provide the direction along the measurement are to be made and also provides the lines and planes for measurement of angle.
- Unit distance along the axes provides a scale for quantifying distances.

The coordinate of a point P (x, y, z) in the XYZ coordinate reference frame which is rotated θ radians around the ZZ axis. The coordinates and new position of the point P*(x', y', z') can be expressed as in the equation (1) are only considering the rotational transformation and its position can be investigated by numerical iterative approach and initially substituting

the values as follows, Initial coordinate conditions: X=Y=Z=1, transformation angle: 30^{0}

$$x' = x \cdot \cos \theta - y \cdot \sin \theta.$$

$$y' = x \cdot \sin \theta + y \cdot \cos \theta.$$
 (1)

$$z' = z.$$

From the positional results obtained from the equation (1) is shown in figure 1 it can be concluded that the rotational motion of the point is deviated from its circular path as the displacement range of 7.17958×10^{-9} units for one complete rotation in the X coordinates.

Figure 1 Graphical plot for moving point deviation in XY plane

4. Software Models and Simulation

The virtual model of the sago sizing mechanism has been made using ADAMS package and the simulation of this model consists of modelling the prototype, defining variables, solving the model, running simulation, post processing and determining the position of point. The mechanism modelling consists of creating settings, creating points, creating parts, creating variables, creating constrains and adding motion using the ADAMS software. The major components are ground, cylindrical rod, circular plate and revolute joints and after performing all the modeling procedure using the required specification, the three dimensional model was developed in ADAMS/View 12.0.0 shown in figure 2. The motion added to the model with ground is shown in figure 3. The important dimensions are,

- · Length of the Cylindrical Rod
- 1500.0 mm, · Radius of the Cylindrical Rod 25.0 mm,
- Diameter of the circular Plate 500 mm.
 - Thickness of the circular Plate

Figure 2 Views of the model

Figure 3 Motion of 3D model with ground

The analysis of the mechanism can be done by the sequence operations are, setting up the simulations, running and animating a simulation and solving the model for displacement analysis of point. The running time for complete rotation is 6.283 s and steps are 100. The figure 4 shows the recorded results of simulation view in ADAMS 12.0.0. Analyzing of point on the circular plate with respect to origin, the translational displacement of the point with respect to the global XY axes in the X, Y and Z directions are shown in figure 5.

Figure 4 Recorded simulation results

Figure 5 Translational displacement

5. Results and Discussion

The position analysis results of the point on the model are plotted graphically. All the plots are obtained by the last run simulation during the time of 12.566 s and corresponding value of displacement. The following figure and table show the translational displacement of the point at the speed of 1 rad/s in the X Y Z direction.

The figure 6 shows the maximum translational displacement length of the point is at the every half rotation of the model and minimum translational displacement length of the point is at the every quarter rotation of the model in the X axis direction and the maximum translational displacement length of the point is at the every quarter rotation of the model and minimum translational displacement length of the point is at the every half rotation of the model in the Y axis direction. From the table 1 it is clear that the point will move outward from its centre as it displaced away by 0.0331mm in one complete rotation of the model in time period of 6.4087 seconds in the X axis direction and the point is deviate as the displacement range of - 0.0025 mm. in one complete rotation of the model in time period of 6.4087 seconds in the X axis direction.

The force on the point at the speed of 1 rad/sec in the X Y Z direction is Zero. No force is acting on the point in the mechanism as shown in Table 1.

Figure 6 Translational displacement of the point in the X and Y component

S. No	Time	Displacement X	Displacement Y	Force
1	0.0	400.0	1515.0	0.0
2	0.1257	388.7231	1515.8403	0.0
3	6.283	400.0	1515.0	0.0
4	6.4087	388.7562	1515.8378	0.0

Table 1 Translational displacement of the point in the X and Y component

6. Conclusion

Results from the analytical solution, the rotational motion of the point is deviated from its circular path as the displacement range of 7.18×10^{-9} units for one complete rotation and from the software solution also the point will move outward from its centre as the displacement range of 0.0331 units in one complete rotation. This is clear that these deviations are

accumulation of numerical error since the particle on that specified point in the plate will not deviate without action of force, but the system of force is added to particle in that particular point it will deviate from its path when rolling and automatically delivered from the plate. It is used to conclude that the rotational motion of the particle will move outward from the centre of the plate due to centrifugal force, mro^2 with respect to the angular velocities of the circular plate.

7. References

[1] M.Nakagawa, K.Yamane, S.A.Altobelli, T.Tanaka and Y.Tsuji. Steady particulate flows in a horizontal rotating cylinder. Physics of fluids 1998; 10(6):1419-1427.

[2] Anderzej Heim, Robert kazmierczak and Anderzej Obraniak. The effect of equipment and process parameters on torque during disk granulation of bentonite. Physicochemical problems of mineral processing 2004; 38: 157-166.

[3] Anderzej Heim, Tadeusz Gluba, Anderzej Obraniak. Bed dynamics during drum granulation. Physicochemical problems of mineral processing 2004; 38: 167-176.

[4] Anderzej Heim, Tadeusz Gluba, Anderzej Obraniak, Estera Gawot-Mlynarczyk, Michal Blaszczyk. The effect of wetting on silica flour granulation. Physicochemical problems of mineral processing 2006; 40: 307-315.

[5] T.E.Grift, G.Kweon, J.W.Hofstee, E.Piron and S.Villete. Dynamic friction coefficient measurement of granular fertilizer particles. Biosystems Enineering 2006; 95(4): 507-515.

[6] F.Rioual, E.Piron and E.Tisjkens. Rolling and sliding dynamics in centrifugal spreading. Applied Physics Letters 2007; 90: no 2,021918.

[7] S.VIllete, E.Piron, F.Cointault and B.Chopinet. Centrifugal spreading of fetiliser: Deducing three dimensional velocities from horizontal outlet angle using computer vision. Biosystems Enineering 2008; 99: 496-507.

[8] F.Rioual, A.Le Quiniou, P.Heritier and Y.Lapusta . Experimental study of the bouncing trajectory of a particle along a rotating wall. Physics of fluid 2009; 21(12):10p.

[9] Wanassanan Chansataporn and Montira Nopharatana. Effects of binder content and drum filling degree on cassava pearl granulation using drum granulator. Asian journal of Food and Agro-Industry 2009; 2(04):739-748.

[10] C.Alexadru. Functional optimization of wind shield wiper mechanisms in MBS(Multi Body System) concept. Bulletin of the Transilvania University of Brasov 2009; 2(51): Series I.

[11] Siti Mazlina Mustapa Kamal, Siti Norfadhillah Mahmud, Siti Aslina Hussain and Fakrul Razi Ahmadun. Improvement on sago flour processing. International Journal of Engineering and Technology, Vol.4, No. 1, 2007, pp.8-14.

SI.No	X - Unts	Y - Units	Z - Units	θ Rotation (Radian)		Difference	
1	1.0000000000000000	1.0000000000000000	1.00000000000000000	0	0		
2	0.366025404601730	1.366025403565440	1.0000000000000000000000000000000000000	30	0.52333		
3	-0.366025402149855	1.366025404222420	1.00000000000000000	60	1.04667		
4	-0.999999998205103	1.00000001794890	1.0000000000000000000000000000000000000	90	1.57		
5	-1.366025402908460	0.366025407053604	1.0000000000000000000000000000000000000	120	2.09333		
6	-1.366025404879400	-0.366025399697980	1.0000000000000000000000000000000000000	150	2.61667	After	
7	-1.00000003589790	-0.999999996410206	1.0000000000000000000000000000000000000	180	3.14	One rotation for	XY plane
8	-0.366025409505479	-1.366025402251490	1.0000000000000000000000000000000000000	210	3.66333		
9	0.366025397246106	-1.366025405536370	1.0000000000000000000000000000000000000	240	4.18667		
10	0.999999994615309	-1.00000005384680	1.0000000000000000000000000000000000000	270	4.71		
11	1.366025401594510	-0.366025411957353	1.0000000000000000000000000000000000000	300	5.23333		
12	1.366025406193350	0.366025394794231	1.0000000000000000000000000000000000000	330	5.75667		
13	1.00000007179580	0.999999992820412	1.0000000000000000000000000000000000000	360	6.28	0.00000007179580	7.17958E-09
14	0.366025414409228	1.366025400937530	1.0000000000000000	30	0.52333	0.00000009807498	9.8075E-09
15	-0.366025392342357	1.366025406850330	1.0000000000000000	60	1.04667	0.00000009807498	9.8075E-09
16	-0.999999991025515	1.00000008974480	1.0000000000000000000000000000000000000	90	1.57	0.00000007179588	7.17959E-09
17	-1.366025400280550	0.366025416861103	1.0000000000000000	120	2.09333	0.00000002627910	2.62791E-09
18	-1.366025407507310	-0.366025389890482	1.0000000000000000	150	2.61667	-0.00000002627910	-2.62791E-09
19	-1.00000010769380	-0.999999989230618	1.0000000000000000000000000000000000000	180	3.14	-0.00000007179590	-7.17959E-09
20	-0.366025419312977	-1.366025399623570	1.0000000000000000	210	3.66333	-0.00000009807498	-9.8075E-09
21	0.366025387438607	-1.366025408164290	1.00000000000000000	240	4.18667	-0.00000009807499	-9.8075E-09
22	0.999999987435721	-1.00000012564270	1.0000000000000000000000000000000000000	270	4.71	-0.00000007179588	-7.17959E-09
23	1.366025398966600	-0.366025421764852	1.0000000000000000000000000000000000000	300	5.23333	-0.00000002627910	-2.62791E-09
24	1.366025408821260	0.366025384986732	1.0000000000000000	330	5.75667	0.00000002627910	2.62791E-09
25	1.00000014359170	0.999999985640824	1.0000000000000000	360	6.28	0.00000014359170	1.43592E-08
26	0.366025424216726	1.366025398309620	1.0000000000000000	30	0.52333	0.00000019614996	1.9615E-08
27	-0.366025382534858	1.366025409478240	1.0000000000000000	60	1.04667	0.00000019614997	1.9615E-08

Appendix A. Analytical solution:

Appendix B. Software Solution:

Translational Displacement Point in XYZ				1.6336	-230.2243	1536.2201	205.5472	3.5185	583.5782	1416.1548	-330.4046	
Time	Current X	Current Y	Current Z		1.7592	-186.7061	1526.5628	299.953	3.6441	498.8871	1427.1279	-411.8767
0.0	400.0	1515.0	0.0		1.8849	-120.4511	1514.6757	382.7192	3.7698	398.7504	1440.2707	-471.0026
0.1257	388.7231	1515.8403	-79.6712		2.0106	-34.7587	1500.9795	448.4166	3.8955	288.9779	1454.9383	-504.8479
0.2513	355.657	1518.2873	-153.4172		2.1362	65.8158	1486.0215	492.5782	4.0211	175.9005	1470.4234	-511.995
0.377	303.0462	1522.1241	-215.6997		2.2619	175.7344	1470.4466	511.9857	4.1468	65.9725	1485.9988	-492.6257
0.5026	234.4705	1527.0057	-261.7297		2.3875	288.8121	1454.9607	504.8782	4.2724	-34.62	1500.9582	-448.4985
0.6283	154.6218	1532.4817	-287.7795		2.5132	398.5941	1440.2914	471.0717	4.3981	-120.338	1514.6567	-382.8299
0.754	68.9905	1538.0279	-291.437	ſ	2.6389	498.7509	1427.1458	411.9803	4.5238	-186.6245	1526.5468	-300.085
0.8796	-16.4731	1543.0811	-271.7615		2.7645	583.4674	1416.169	330.5391	4.6494	-230.178	1536.2076	-205.692
1.0053	-95.7502	1547.0784	-229.3586		2.8902	647.7999	1407.9078	231.0322	4.7751	-249.1464	1543.3662	-105.6972
1.1309	-163.1385	1549.4961	-166.351		3.0158	687.9834	1402.7767	118.8331	4.9007	-243.2293	1547.9095	-6.3834
1.2566	-213.6229	1549.8873	-86.2535		3.1415	701.6588	1401.0353	0.0884	5.0264	-213.6827	1549.8862	86.1249
1.3823	-243.2026	1547.9143	6.2405		3.2672	688.0235	1402.7716	-118.661	5.1521	-163.2266	1549.4983	166.2444
1.5079	-249.1559	1543.3748	105.5487		3.3928	647.8781	1407.8978	-230.8738	5.2777	-95.8597	1547.0832	229.2802

5.4034	-16.5961	1543.0878	271.7154	
5.529	68.863	1538.0358	291.4252	
5.6547	154.4984	1532.4899	287.8019	
5.7804	234.3612	1527.0132	261.7827	
5.906	302.9559	1522.1306	215.7804	
6.0317	355.5927	1518.292	153.5196	
6.1573	388.69	1515.8428	79.7859	
6.283	400.0	1515.0	0.119	
6.4087	388.7562	1515.8378	-79.5566	
6.5343	355.7209	1518.2826	-153.3156	
6.66	303.1365	1522.1175	-215.6187	
6.7856	234.5812	1526.9979	-261.6758	
6.9113	154.7453	1532.4734	-287.7572	
7.037	69.1182	1538.0199	-291.4487	
7.1626	-16.3502	1543.0743	-271.8076	
7.2883	-95.6408	1547.0735	-229.437	
7.4139	-163.0505	1549.4939	-166.4575	
7.5396	-213.563	1549.8884	-86.382	
7.6653	-243.1759	1547.919	6.0976	
7.7909	-249.1653	1543.3834	105.4002	
7.9166	-230.2706	1536.2325	205.4023	

8.0422	-186.7877	1526.5788	299.8209
8.1679	-120.564	1514.6947	382.6085
8.2936	-34.8972	1501.0008	448.3346
8.4192	65.6592	1486.0442	492.5307
8.5449	175.5684	1470.4697	511.9764
8.6705	288.6462	1454.9831	504.9085
8.7962	398.4378	1440.3121	471.1407
8.9219	498.6132	1427.1637	412.0848
9.0475	583.3564	1416.1833	330.6737
9.1732	647.7221	1407.9178	231.1897
9.2988	687.9432	1402.7819	119.0049
9.4245	701.6588	1401.0353	0.2651
9.5502	688.0635	1402.7665	-118.4892
9.6758	647.9559	1407.8878	-230.7162
9.8015	583.6891	1416.1405	-330.2699
9.9271	499.0247	1427.11	-411.7721
10.0528	398.9067	1440.25	-470.9335
10.1785	289.1438	1454.9159	-504.8175
10.3041	176.0665	1470.4003	-512.0042

r			
10.4298	66.1292	1485.9762	-492.6731
10.5554	-34.4814	1500.9369	-448.5804
10.6811	-120.2249	1514.6378	-382.9405
10.8068	-186.5428	1526.5309	-300.217
10.9324	-230.1316	1536.1952	-205.8369
11.0581	-249.1369	1543.3575	-105.8457
11.1837	-243.2559	1547.9047	-6.5263
11.3094	-213.7425	1549.8851	85.9964
11.4351	-163.3145	1549.5004	166.1378
11.5607	-95.9692	1547.0881	229.2017
11.6864	-16.719	1543.0946	271.6692
11.812	68.7354	1538.0438	291.4134
11.9377	154.3749	1532.4981	287.8241
12.0634	234.2504	1527.021	261.8366
12.189	302.8655	1522.1371	215.8613
12.3147	355.5287	1518.2967	153.6211
12.4403	388.6569	1515.8452	79.9004
12.566	399.9999	1515.0	0.238