
Analysis of Effectiveness of Concurrency Control Techniques in

Databases

 Ruchi Dagar

M. Tech Student, CSE Deptt

MRIU, Faridabad

Rachna Behl

Assistant Professor, CSE Deptt

MRIU, Faridabad

ABSTRACT
There is an ever-increasing demand for more complex

transactions and higher throughputs in transaction

processing systems leading to higher degrees of transaction

concurrency. In this paper, we have analyzed different

techniques of concurrency control in distributed databases

and compared their performance. Ideas that are used in the

design, development, and performance of concurrency

control mechanisms have been summarized. The locking,

time-stamp, optimistic-based mechanisms are included.

Keywords
Distributed database management system, locking protocol,

timestamp, optimistic, transaction processing.

1. INTRODUCTION
The databases are the best way of storing the data. A

distributed system can be visualized as a set of sites, each

site consisting of a number of independent transactions.

A distributed database is a database in which storage

devices are not all attached to a common CPU. It may be

stored in multiple computers located in the same physical

location, or may be dispersed over a network of

interconnected computers. A database state represents the

values of the database objects that represent some real-

world entity. The database state is changed by the

execution of a user transaction. Individual transactions

running in isolation are assumed to be correct. When

multiple users access multiple database objects residing on

multiple sites in a distributed database system, the problem

of concurrency control arises.

The database system through a scheduler must monitor,

examine, and control the concurrent accesses so that the

overall correctness of the database is maintained. There are

two criteria for defining the correctness of a database:

database integrity and serializability. The database integrity

is satisfied by assigning a set of constraints (rules) that

must be satisfied for a database to be correct. The

serializability ensures that database transitions from one

state to the other are based on a serial execution of all

transactions. This paper presents various concurrency

control techniques that maintains both the properties.

2. CONCURRENCY CONTROL

Concurrency control deals with preventing concurrently

running processes from improperly inserting, deleting or

updating the same data i.e. it ensures that correct results for

concurrent operations are generated, while getting those

results as quickly as possible. Our main concern in

designing a concurrency control techniques is to correctly

process transactions that are in conflict. Each transaction

has a read set and a write set. Two transactions conflict if

the two operations belong to different transactions, the read

set of one transaction intersects with the write set of the

other transaction and the write set of one transaction

conflicts with the write set of the other transaction.

2.1. Concurrency Control Problem
If transactions are executed serially, i.e., sequentially with

no overlap in time, no transaction concurrency exists.

However, if concurrent transactions with interleaving

operations are allowed in an uncontrolled manner, some

unexpected, undesirable result may occur. Problems that

can occur due to multiple transactions executing

concurrently are:

Lost update problem: This problem occurs when two

transactions that access the same database items have their

operations interleaved in a way that makes the value of

some database item incorrect. Suppose that two

transactions are submitted at the same time and their

operations are interleaved in as shown in figure, then the

final value of the item X is incorrect because transaction T2

reads the value of X before T1 changes it in the database

and hence the updated value resulting from T1 is lost.

For example if X=80 at the start (originally there were 80

reservations on the flight) and N=5 (T1 transfers 5 seat

reservations from the flight corresponding to X to the flight

corresponding to Y) and M=4 (T2 reserves 4 seats on X).

The final result should be X=79 but it is X=84 because the

update in T1 that removed the 4 seats from X was lost. This

is shown in fig 1.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

1www.ijert.org

T1 T2

 r(X);

 X=X-N;

 r(X);

 X=X+M;

 w(X);

 r(Y);

 w(X)

 Y=Y+N;

 w(Y);

Fig1: Transactions showing Lost Update Problem

Temporary update problem (dirty read problem): This

problem occurs when one transaction updates a database

item and then the transaction fails for some reason. The

updated item is accessed by another transaction before it is

changed back to its original value.

For example T1 updates item X and then fails before

completion, so the system must change X back to its

original value. Before it can do so, transaction T2 reads the

temporary value of X which will not be recorded

permanently in the database because of the failure of the

T1.

 T1 T2

 r(X);

 X=X-N;

 w(X);

 r(X);

 X=X+M;

 w(X)

 r(Y);

Fig2: Transactions showing Temporary Update

Problem

The value of item X that is read by T2 is called DIRTY

DATA, because it has been created by a transaction that

has not committed yet, hence the problem is known as dirty

read problem.

Incorrect summary problem: If one transaction is

calculating an aggregate summary function on a number of

records while other transactions are updating some of these

records, the aggregate function may calculate some values

before they are updated and others after they are updated.

 T1 T2

 sum=0;

 r(A);

 sum=sum+A;

 r(X);

 X=X-N;

 w(X);

 r(X);

 sum=sum+X;

 r(Y);

 sum=sum+Y;

 r(Y);

 Y=Y+N;

 w(Y);

Fig3: Transactions showing Incorrect Summary

Problem

3. CONCURRENCY CONTROL

TECHNIQUES
Different concurrency control techniques are defined by

different people. These techniques are unique in their own

representation and method.

3.1. Lock Based Concurrency Control

Technique
Concurrency control technique used in the development of

the current database uses locking technology. In order to

ensure serializability scheduling, locking protocol must be

observed, that is, if a transaction requests the system for a

lock on an entity, and the lock has been given to some other

transaction, the requesting transaction must wait. To

reduce the waiting time when a transaction wants to
read, there are two types of locks that can be employed,

based on whether the transaction wants to do a read

operation or a write operation on an entity:

Read lock: The transaction locks the entity in a shared

mode. Any other transaction waiting to read the same entity

can also obtain a read lock.

Write lock: The transaction locks the entity in an exclusive

mode. If one transaction wants to write on an entity, no

other transaction may get either a read lock or a write lock.

After a transaction has finished operations on an entity, the

transaction can do an unlock operation. After an unlock

operation, either type of lock is released, and the entity is

made available to other transactions that may be waiting.

Locking an entity gives rise to two new problems:

live_lock and deadlock. Live_lock occurs when a

transaction repeatedly fails to obtain a lock. Deadlock

occurs when various transactions attempt locks on several

entities simultaneously; each transaction gets a lock on a

different entity and waits for the other transactions to

release the lock on the entities that they have succeeded in

securing. The problem of deadlock can be resolved by the

following approaches:

Each transaction locks all entities at once.

Assign an arbitrary linear ordering to the items, and require

all transactions to request locks in this order.

Gray and Reuter [1] has described experiments in which

it was observed that deadlocks in database systems are

very rare and it may be cheaper to detect and resolve

them rather than to avoid them.
Since the correctness criterion for concurrently processing

several transactions is serializability, locking must be done

correctly to assure the above property. One simple protocol

that all transactions can obey to ensure serializability is

called Two-phase Locking (2PL). The protocol simply

requires that in any transaction, all locks must precede all

unlocks. A transaction operates in two phases: The first

phase is the growing phase, in which a transaction obtains

more and more locks without releasing any. By releasing a

lock, the transaction is considered to have entered the

shrinking phase. During the shrinking phase the transaction

releases more and more locks and is prohibited from

obtaining additional locks. When the transaction

terminates, all remaining locks are automatically released.

The instance just before the release of the first lock is

called lockpoint.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

2www.ijert.org

 T1 T2

 read_lock(Y); read_lock(X);

 read(Y); read(X); expanding

 write_lock(X) write_lock(Y); phase

 unlock(Y); unlock(X);

 read(X); read(Y);

 X=X+Y; Y=Y+X; shrinking

 write(X); write(Y); phase

 unlock(X); unlock(Y);

Fig4: Two-Phase Locking

It is important to point out that locking approaches are in

general pessimistic. For example, two-phase locking is a

sufficient condition rather than the necessary condition for

serializability. As an example, if an entity is only used by a

single transaction, it can be locked and unlocked freely.

The question is, “How can we know this?” Since this

information is not known to the individual transaction, it is

usually not utilized.

3.2 Time stamp based Concurrency

Control Technique

Concurrency control based on timestamp ordering do not

use locks, hence deadlocks cannot occur. Timestamp is a

mechanism in which the serialization order is selected a

priori. Timestamp is a unique identifier created by DBMS

to identify a transaction. Timestamp values are assigned by

the scheduler in the order in which the transactions are

submitted to the system. To achieve unique timestamps for

transactions arriving at different nodes of a distributed

system, all clocks at all nodes must be synchronized or else

two identical timestamps must be resolved. Lamport [3] has

described an algorithm to synchronize distributed clocks

via message passing.

A concurrency control protocol that orders transactions in

such a way that older transactions get priority in the event

of a conflict. Read/write proceeds only if last update on that

data item was carried out by an older transaction.

Otherwise, transaction requesting read/write is restarted

and given a new timestamp.

Basic timestamp ordering: Whenever some transaction T

tries to issue a read_item(X) or a write_item(X) operation,

the basic TO algorithm compares the timestamp of T with

read_TS(X) and write_TS(X) to ensure that the timestamp

order of transaction execution is not violated. If this order

is violated, then transaction T is aborted and is resubmitted

to the system as a new transaction with a new timestamp. If

T is aborted and rolled back, any transaction T1 that may

have used value written by T must also be rolled back.

Similarly, any transaction T2 that may have used a value

written by T1 must also be rolled back, and so on. This

effect is known as cascading rollback and is one of the

problems associated with basic TO, since the schedules

produced are not recoverable.

The concurrency control algorithm must check whether

conflicting operations violate the timestamp ordering in the

following two cases:

1. Transaction T issues a write_item(X) operation:

If read_TS(X)>TS(T) or if write_TS(X)>TS(T), then abort

and rollback T and reject the operation. This should be

done because some younger transaction with a timestamp

greater than TS(T), and hence after T in the timestamp

ordering, has already read or written the value of item X

before T had a chance to write X, thus violating the

timestamp ordering.

If the above condition does not occur , then execute the

write_item(X) operation of T and set write_TS(X)=TS(T)

2. Transaction T issues a read_item(X) operation:

If write_TS(X)>TS(T), then abort and rollback T and reject

the operation. This should be done because some younger

transaction with a timestamp greater than TS(T), and hence

after T in the timestamp ordering, has already written the

value of item X before T had a chance to read X.

If write_TS(X)<=TS(T), then execute the read_item(X)

operation of T and set read_TS(X) to the larger of TS(T)

and the current read_TS(T).

Strict timestamp ordering: A variation of basic TO called

strict TO ensures that the schedules are both strict(for easy

recoverability) and (conflict) serializable. In this variation a

transaction T that issues a read_item(X) or write_item(X)

such that TS(T)>write_TS(X) has its read or write

operations delayed until the transaction T’ that write the

value of X (hence TS(T’)=write_TS(X)) has committed or

aborted. This algorithm does not cause deadlock, since T

waits for T’ only if TS(T)>TS(T’)

Thomas’s Write Rule: A modification of the basic TO

algorithm, known as Thomas’s write rule, does not enforce

conflict Serializability, but it rejects fewer write operations,

by modifying the check for the write_item(X) operation as

follows:

If read_TS(X)>TS(T), then abort and rollback T and reject

the operation.

If write_TS(X)>TS(T), then do not execute the write

operation but continue processing. This is because some

transactions with timestamp greater than TS(T), and hence

after T in the timestamp ordering, has already written the

value of X. hence, we must ignore the write_item(X)

operation of T because it is already outdatesd and obsolete.

If the above two conditions does not occur, then execute

the write_item(X) operation of T and set write_TS(X) to

TS(T).

Secure Concurrency Control Protocol (SCCP): SCCP

based on timestamp ordering provides concurrency control

and maintains security. In a secure distributed database

system a security level is assigned to each transaction and

data. A security level for a transaction represents its

clearance level and the security level for a data represents

its classification level.

In a secure distributed database system, the global database

is partitioned into a collection of local databases stored at

different sites. It consists of a set of N number of sites,

where each site Ni is having a secure database, which is a

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

3www.ijert.org

partition of global database scattered on all the N sites.

Each site has an independent processor.

Simple security property: A transaction T is allowed to

read a data item (object) x , only if Lv (x) <= Lv (T).

Restricted Property: A transaction T is allowed to write a

data item x only if Lv (x)=Lv(T). Thus, a transaction can

read objects at its level or below, but it can write objects

only at its level.

3.3 Optimistic Concurrency Control

Technique

In all the concurrency control techniques a certain degree

of checking is done before a database operation can be

executed. For example in locking a check is done to

determine whether the data item being accessed is locked.

In transaction ordering the transaction timestamp is

checked against read and write timestamp of the item. Such

checking represents overhead during transaction execution

with the effect of slowing down the transactions.

In optimistic concurrency control (Validation) technique no

checking is done while the transaction is executing.

Various concurrency control methods use validation

technique. One such method consists of three phases. The

three phases for OCC protocol are:

Read Phase: Transaction can read values of committed data

items from the database. However, updates are applied only

to local copies of the data items kept in the transaction

workspace.

Validation Phase: Checking is performed to ensure

serializability will not be violated if the transaction updates

are applied to the database.

Write Phase: If the validation phase is successful, the

transaction updates are applied to the database otherwise,

the updates are discarded and the transaction is restarted.

The idea behind OCC is to do all the checks at once.

Hence, transaction execution proceeds with a minimum of

overhead until the transaction validation phase is reached.

The technique is called “optimistic” because it assumes that

little interference will occur and hence there is no need to

do checking during transaction execution.

4. COMPARITIVE STUDY

In this section the effectiveness of various techniques

studied above has been compared. The comparative study

of all the techniques is shown in fig5.

Features/

Techniques

Lock based

Technique

Time

stamp

based

Technique

Optimistic

Technique

Waiting

Time

More

Less

Less than

locking but

more than

TSO

Delay Delay

occurs

Delay

occurs

No delay

Occurrence

of Deadlock

Deadlock

occurs

Deadlock-

free

Deadlock-

free

Serialization

Order

Decided

dynamically

Decided

statically

Decided

dynamically

Fig5: Comparative study of various concurrency

control techniques

5. CONCLUSION
Different techniques show that there are many other ways

to control concurrency in databases. Locking is the simple

technique that prevents concurrency but it is considered as

the pessimistic approach as it results in deadlock.

Timestamp based concurrency control is a deadlock-free

technique. Optimistic technique is prior to other techniques

as it assumes that not too many transactions will conflicts

with each other. It is also a deadlock-free and allows

maximum parallelism. Some studies are being done for

object-oriented systems while others are dealing with

semantics of transactions and weaker form of consistency.

6. REFERRENCES
[1] J.N. Gray and A. Reuter, Transaction Processing:

Concepts and Techniques, Morgan Kaufmann, San Mateo,

Calif., 1993
[2] Bharat Bhargava: Concurrency Control in Database

systems: IEEE Transactions on knowledge and data

engineering, VOL.11, No1,1999 (IEEE)

[3] L. Lamport, “Time Clocks and the Ordering of Events

in a Distributed System,” Comm. ACM, vol. 21, no. 2,

1979.

[4] P.A. Bernstein and N. Goodman, “Concurrency Control

in Distributed Database Systems,” Computing Surveys, vol.

13, no. 2, pp. 85-221, 1981

[5] Abdou R. Ali, Hany M. Harb: Two phase locking

concurrency control in distributed databases with N-Tier

architecture; IEEE 2004.

[6] Michael J. Carey: Improving the performance of an

optimistic concurrency control algorithm through

timestamps and versions; IEEE Transactions on Software

Engineering, vol. SE-13, no. 6, pp. 746-751, June 1987.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

4www.ijert.org

[7] Shashi Bhushan, R. B. Patel and Mayank Dave: A

Secure Time-Stamp Based Concurrency Control Protocol

For Distributed Databases; Journal of Computer Science 3

(7): 561-565, 2007

[8] A. Thomasian: Distributed optimistic concurrency

control methods for high performance transaction

processing; IEEE Transactions on Knowledge and Data

Engineering,10(1):173–189, 1998.

[9] E. Rahm: Concepts for Optimistic Concurrency Control

in Centralized and Distributed Database Systems; IT

Informationstechnik, (in German), vol. 30, no. 1, pp. 28-47,

1988.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012
ISSN: 2278-0181

5www.ijert.org

