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Abstract- This paper describes finite elemental analysis of 

a cracked cantilever beam and analyzes the relation between 

the modal natural frequencies with crack depth, modal 

natural frequency with crack location. Also the relation 

among the crack depth, crack location and natural frequency 

has been analyzed. Only single crack at different depth and at 

different location are evaluated and the analysis revels 

relationship between crack depth and modal natural 

frequency. As we know when a structure suffers from damage 

its dynamic property can change and it was observed that 

crack caused a stiffness reduction with an inherent reduction 

in modal natural frequencies. Consequently it leads to change 

in dynamic response of the beam. The analysis was performed 

using ANSYS software. The material of the beam is taken as 

aluminum. The proposed technique represents actually a 

modal analysis having great benefits for health monitoring of 

structures. For this 3D model of cantilever beam with single 

crack is created in ANSYS. Total 49 model of crack cantilever 

beam has been analyzed. Thus result obtained from ANSYS 

software we can draw the graph of modal natural frequency 

Vs crack depth for constant crack location and modal natural 

frequency Vs crack location keeping crack depth constant. 

And finally the value obtained from ANSYS is checked with 

result obtained from analytical method. 

Kew words: Free vibrations; crack; modal natural 

frequency; ANSYS software; cantilever beam. 

I. INTRODUCTION 

Being very commonly used in steel construction and 
machinery industries, health monitoring and the analysis of 
damage in the form of crack in Beam structures poses a 
vital mean. Since long efforts are on their way to find a 
feasible solution for crack detection in beam structures in 
this regard many approaches have so far being taken place. 
When a structure suffers from damages, its dynamic 
properties can change. Crack damage leads to reduction in 
stiffness also with an inherent reduction in natural 
frequency and increase in modal damping. The work gives 
a feasible relationship between the modal natural frequency 
and the crack depth at different location. Since free 
vibration analysis has frequently become a topic of many 
studies therefore attention is focused it only. 

Crack localization and sizing in a beam from the free 
and forced response measurements method is indicated by 
Karthikeyan et al. [1]. In the beam Timoshenko beam 
theory is used for modeling transverse vibrations.FEM is 
used for the free and forced vibration analysis of the 
cracked beam and open transverse crack is selected for the 
crack model .Being iterative in nature the iteration starts 

with a guess for the crack depth ratio and iteratively 
estimates the crack location and crack depth until the 

desired convergence for both is reached. 

In the most general terms, damage can be defined as 
changes appearing in a system that may affect its current or 
future performance. From this definition of damage once 
can see that damage is not meaningful without a 
comparison between two different states of the system, one 
of which is assumed to represent the initial (pristine) state, 
and  the other the damaged state. The definition of damage 
can also be limited to changes to the material and/or 
geometric properties of the system, including changes to 
the boundary conditions and system connectivity, which 
adversely affect the current or future performance of that 
system.  

The basic premise in modal analysis based damage 
detection is that damage will  significantly change the 
stiffness, mass, or energy dissipation properties of a 
system,  which in turn, modifies the measured dynamic 
response of the system. One of the most challenging 
aspects of modal analysis based damage detection is that 
damage is typically a local phenomenon and may not 
significantly influence the lower-frequency response of  the 
structure that is normally measured during  FFT  analyzer 
tests. 

II. LITERATURE REVIEW 

Many attempts for modeling and studying the dynamic 
characteristics of cracked beams have been conducted. 
Expressions for bending vibrations of an Euler–Bernoulli 
cracked beam have been suggested by Matveev and 
Bovsunovsky (2002). Ross and Matthews (1995) identified 
some important cases and motives for SHM, in order to 
validate modifications to an existing structure, assess the 
safety and performance of structures affected by external 
induced vibrations, as well as an assessment of post 
earthquake structural integrity. Chondros and 
Dimarogonas(1998) used the Hu-Washizu-Barr variationa l 
analysis to develop the differential equation and boundary 
conditions for a cracked beam considered as a one-
dimensional (1-D) continuum. Qiao (2009) has applied a 
signal-based pattern-recognition method to detect structural 
damages with a single or limited number of input/output 
signals. This method is based on the acquisition of 
sensitive features of the structural response under a specific 
excitation that represents a unique pattern for any particular 
damage scenario. Rao et al. (2010) have presented a 
method for crack identification in beam structures by 
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analyzing the fundamental mode of cracked cantilever 
beam using continuous wavelet transform. The crack in the 
beam is modeled as a combination of spiral and linear 
springs under consideration of the coupling of bending and 
longitudinal vibration of cracked cantilever beam. Rezaei 
(2010) has recorded critical data concerning the SH state 
on a continuous or periodic basis through a sensoring 
system. The data are then processed and interpreted using a 
proper algorithm, e.g. Hilbert–Huang Transform (HHT), in 
order to detect abnormalities and damages in the structure. 

Rezaee et al. (2010) proposed a new approach based on 
the energy equilibrium method for free vibration analysis 
of a cracked cantilever beam taking into account both 
structural damping and damping due to the crack. Yazdi et 
al. (2009) presented transverse vibration of double cracked 
beam using assumed mode method. Sinha et al. (2002) 
reported a new simplified approach to model cracks in 
beams undergoing transverse vibration, in which they have 
used a modeling approach based on Euler–Bernoulli beam 
elements with small modifications to the local flexibility in 
the vicinity of cracks. Stephen (2009) has studied the 
vibration, aero-elasticity and crack detection of damaged 
composite wings. Wing damage has been considered as a 
through thickness edge crack for all proposed theoretical 
formulations and numerical investigation. Sanchez and 
Carlos (2006) examined structural damage identification 
methods based on changes in the dynamic characteristics of 
the structure and developed new approaches, which are 
based on the modal curvature matrix, the Frequency 
Response Function (FRF), the curvature and the Discrete 
Wavelet Transform. 

In general, it can be stated that damage detection 
comprises five goals, each of which is gained with 
increasing difficulty and complexity. The first is the 
exploration of damage in a specimen. The second is the 
estimation of the severity extent of damage. The third goal 
is the ability to differentiate between different types of 
damage. The fourth is the calculation of the damage 
locations. The final is the estimation of the damage size. In 
the present paper it’s focused only on the first two goals. 

III. EQUATION OF MOTION 

Dynamic response of the structure affected by the 

following aspects of the crack 

 Position of crack  

 Depth of crack 

 Number of cracks 

 

A. specification 

 Material Of Beam- Aluminum 

 Span- 400mm  

 Density Of Material- 2700 kg/m³ 

 Cross-Section Of Beam- 16*16 mm² 

 Young’s Modulus Of Elasticity- 70 GPa 

 Crack Nature-Transverse to beam axis and open           
          nature 

 Poission’s ratio- 0.33 

B. Governing equation of motion 

The free bending vibration of an Euler-Bernoulli beam 
of a constant rectangular cross-section is given by the 
following differential equation as given in: 

    (1) 

Where m is the mass of the beam per unit length (kg/m) 
wi is the natural frequency of the ith mode(rad/sec), E is 
the modulus of elasticity (N/m²) and I is the moment of 
inertia (m4). By defining  

 

equation (1) is rearranged as a fourth-order differential 
equation as follows: 

    (2) 

The general solution to equation (2) is 

 

                                                                                     (3) 

Where A, B, C, D are constants and is a frequency 
parameter. Since the bending vibration is studied,edge 
crack is modeled as a rotational spring with a lumped 
stiffness. The crack is assumed open. Basedon this 
modeling, the beam is divided into two segments: the first 
and second segments are left andright-hand side of the 
crack, respectively. Adopting Hermitian shape functions, 
the stiffness matrix of thetwo-noded beam element without 
a crack is obtained using the standard integration based on 
the variation  

    (4) 

where 

                (5) 

H1(x), H2(x), H3(x), H4(x)   (6) 

 Hermitian shape functions defined as 

H1(x) = 1 –3x2 /12 + 2x3/3+…….   (7)                                                       

H2(x) = x – 2x2/1 + x3/12  +…….        (8)                                                                                          

H3(x) = 3x2/12 – 2x3/13+……          (9) 

H4(x)=-2x2/1+x3/12+………   (10) 
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Assuming the beam rigidity EI is constant and is given 
by EI0 within the element, and then the element stiffness is 

  

Assuming the stiffness reduction caused by as open 
crack falls within a single element, and then the stiffness 
matrix of the cracked element can be written as 

   (11) 

Where [ Kc] is the reduction in the stiffness matrix due 
to the crack. According to Penet al. [8], the matrix  is[ Kc] 

 (12) 

 Where K is the change in stiffness due to crack at 
different location. It is supposed that the crack does not 
affect the mass distribution of the beam. Therefore, the 
consistent mass matrix of the beam element can be 
formulated directly as 

  (13) 

  (14)                                                                                             

In the dynamic analysis, the system matrix is usually 
required to be inverted. From this aspect, a diagonalized 
mass matrix has a computational advantage. In this study, a 
diagonalized mass matrix is adopted, which is developed 
from the consistent mass matrix .The natural frequency 
then can be calculated from the relation 

           (15)                                                                      

The natural frequency of the ith mode for uncracked and 
cracked beams is finally obtained as follows 

    (16)    

    (17)    

                                                                                                                                                                                                                       

Where ωi0 is the ith mode frequency of the uncracked 
beam and ci is a constant depending on the mode number 
and beam end conditions (for clamped-free beam, ci is 
3.516 and 22.034 for the first and second mode, 
respectively), ωi is the ith mode frequency of the cracked 
beam. ri is the ratio between the natural frequencies of the 
cracked and uncracked beam. l is the length of the beam.  

IV. FINITE ELEMENT ANALYSIS 

In this paper model preparation has been done in FEA 
software. CAD model as follows  

Fig. 1.  Figure I. Cantilever Beam In Ansys Nature 
 

 

Fig. 2. Cantilever Beam With Crack In Ansys Nature 
 

Also, Analysis work has been done with FEA software 
mode shapes found as follows. 

 

Fig. 3. Crack Meshing 
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Fig. 4. First Mode Deformation Of Beam With Crack At 40mm And 
Depth 4mm 

 

 

Fig. 5. Second Mode Deformation Of Beam With Crack At 40mm 
And Depth 4mm 

 

 

Fig. 6. Third Mode Deformation Of Beam With Crack At 40mm And 
Depth 4mm 

 

V. RESULT AND DISCUSSION  

From theoretical and analysis data the curve-fitted 
results were tabulated, and plotted (in a three dimensional 
plot) in the form of frequency ratio (ωc/ω) (ratio of the 
natural frequency of the cracked beam to that of the un-
cracked beam) versus the crack depth (a) for various crack 
location (X). This will show the variation of the frequency 
ratio as a function of the crack depth and crack location for 
beams with fixed-free ends. 

 

Graph 1. First Mode Natural Frequency Ratio In Terms Of Various 

Crack Position 

 

Graph 2. Second Mode Natural Frequency Ratio In Terms Of Various 

Crack Position 

 

Graph 3. Third Mode Natural Frequency Ratio In Terms Of Various 

Crack Position 
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Graph 4.    First Mode Natural Frequency Ratio In Terms Of Crack 

Position For Various Crack Depths 

 

Graph 5.   Second Mode Natural Frequency Ratio In Terms Of Crack 

Position For Various Crack Depths 

     

Graph 6. Third Mode Natural Frequency Ratio In Terms Of Crack 

Position For Various Crack Depths 

 

Graph 7. Three Dimensional Plot For First Mode 

 

Graph 8. Three Dimensional Plot For Second Mode 

 

Graph 9. Three Dimensional Plot For Third Mode 
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Graph 10. Frequency Contour Plot Of Mode-1 For Normalized Frequency 

0.9761 
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Graph 11. Frequency Contour Plot Of Mode-2 For Normalized Frequency 

0.9861 
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CRACK POSITION
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Graph 12.  Frequency Contour Plot Of Mode-3 For Normalized 

Frequency 0.9707 

DISCUSSION:- 

Graph 1, 2 and 3 shows the plots of the first three 
frequency ratios as a function of crack depths for some of 
the crack positions. Graph 4, 5 and 6 shows the frequency 
ratio variation of three modes in terms of crack position for 
various crack depths respectively. From Graph 1 it is 
observed that, for the cases considered, the fundamental 
natural frequency was least affected when the crack was 
located at 350mm from fixed end. The crack was mostly 
affected when the crack was located at 40mm from the 
fixed end. Hence for a cantilever beam, it could be inferred 
that the fundamental frequency decreases significantly as 
the crack location moves towards the fixed end of the 
beam. This could be explained by the fact that the decrease 
in frequencies is greatest for a crack located where the 
bending moment is greatest. It appears therefore that the 
change in frequencies is a function of crack location. From 
Graph2 it is observed that the second natural frequency was 
mostly affected for a crack located at the center for all 
crack depths of a beam due to the fact that at that location 
the bending moment is having large value. The second 
natural frequency was least affected when the crack was 
located at 350mm from fixed end. From Graph3 it is 
observed that the third natural frequency of beam changed 
rapidly for a crack located at 250 mm. The third natural 
frequency was almost unaffected for a crack located at the 
center of a cantilever beam; the reason for this zero 
influence was that the nodal point for the third mode was 
located at the center of beam 

VI. CONCLUSION  

In the given paper the effects of crack on the first three 
modes of vibrating cantilever beams has been presented. 
From the results it is evident that the vibration behavior of 
the beams is very sensitive to the crack location, crack 
depth and mode number. A simple method for predicting 
the location and depth of the crack based on changes in the 
natural frequencies of the beam is also presented, and 
discussed. This procedure becomes feasible due to the fact 
that under robust test and measurement conditions, the 
measured parameters of frequencies are unique values, 
which will remain the same (within a tolerance level), 
wherever similar beams are tested and responses measured. 
The experimental identification of crack location and crack 
depth is very close to the actual crack size and location on 
the corresponding test specimen. 

The following conclusions were drawn:-  

1. With the presence of crack in the beam the frequency 
of vibration decreases. 

2. The above information can be used to predict the 
failure of beam and preventive steps can be taken. 

 

40 100 150 200 250 300 350
2

3.6

5.2

6.8

8.4

10

Crack Location ( mm )

C
ra

c
k
 D

e
p

th
 (

 m
m

 )

Crack Identification Technique By Using Frequency Contours

0.9761

0.9867

0.9707

 

Graph 13. Crack Identification Technique By Using Frequency Contours 

Of The First Three Modes Of Beam (Mode 1 Normalized 
Frequency=0.9761; Mode 2 Normalized Frequency=0.9867; Mode 3 

Normalized Frequency=0.9707) 
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