
Analysis of CPU Scheduling Variants

Hima Mohan
Asst.Professor on Contract,

Carmel College Mala,

Abstract— An operating system is a type of system software that

manages and controls the resources and computing capability of

a computer, and provides users a logical interface for accessing

the computer to execute applications. Scheduling is a

fundamental operating-system function. Almost all programs

have some alternating cycle of CPU number crunching and

waiting for I/O of some kind. A scheduling system allows one

process to use the CPU while another is waiting for I/O, thereby

making full use of CPU. The challenge is to make the overall

system as efficient and fair as possible. A typical process involves

both I/O time and CPU time. In a uniprogramming system like

MS-DOS, time spent waiting for I/O is wasted and CPU is free

during this time. In multi programming systems, one process can

use CPU while another is waiting for I/O. This is possible only

with process scheduling. There are several CPU scheduling

algorithms but all have certain merits and limitations. CPU

scheduling objectives i.e; average waiting time, average

turnaround time, average CPU utilization and average

throughput are discussed. These will form the base parameters

in making a decision for the suitability of the given algorithm for

a given objective.

Index Terms— Operating system, scheduling criteria,

scheduling algorithm

I. INTRODUCTION

An operating system (OS) is software which acts as an

interface between the end user and computer hardware. Every

computer must have at least one OS to run other programs.

The OS helps you to communicate with the computer without

knowing how to speak the computer's language. Computer

operating systems perform basic tasks, such as recognizing

input from the keyboard, sending output to the display screen,

keeping track of files and directories on the storage drives,

and controlling peripheral devices, such as printers. It

is not possible for the user to use any computer or mobile

device without having an operating system.

Objectives of Operating System

• To make the computer system convenient to use in

an efficient manner.

• To hide the details of the hardware resources from

the users.

• To provide users a convenient interface to use the

computer system.

• To act as an intermediary between the hardware and

its users, making it easier for the users to access and

use other resources.

• To manage the resources of a computer system.

• To keep track of who is using which resource,

granting resource requests, and mediating

conflicting requests from different programs and

users.

• To provide efficient and fair sharing of resources

among users and programs.

Characteristics of Operating System

• Memory Management − Keeps track of the primary

memory, i.e. what part of it is in use by whom, what

part is not in use, etc. and allocates the memory when a

process or program requests it.

• Processor Management − Allocates the processor (CPU)

to a process and deallocates the processor when it is no

longer required.

• Device Management − Keeps track of all the devices.

This is also called I/O controller that decides which

process gets the device, when, and for how much time.

• File Management − Allocates and de-allocates the

resources and decides who gets the resources.

• Security − Prevents unauthorized access to programs

and data by means of passwords and other similar

techniques.

• Job Accounting − Keeps track of time and resources

used by various jobs and/or users.

• Control Over System Performance − Records delays

between the request for a service and from the system.

• Interaction with the Operators − Interaction may take

place via the console of the computer in the form of

instructions. The Operating System acknowledges the

same, does the corresponding action, and informs the

operation by a display screen.

• Error-detecting Aids − Production of dumps, traces,

error messages, and other debugging and error-detecting

methods.

• Coordination Between Other Software and Users −

Coordination and assignment of compilers, interpreters,

assemblers, and other software to the various users of

the computer systems.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSDARM - 2020 Conference Proceedings

Volume 8, Issue 04

Special Issue - 2020

1

https://www.webopedia.com/TERM/K/keyboard.html
https://www.webopedia.com/TERM/P/peripheral_device.html
www.ijert.org

II. CPU SCHEDULING CRITERIA

There are many different criteria to check when considering

the "best" scheduling algorithm, they are:

a) CPU Utilization

To make out the best use of CPU and not to waste any CPU

cycle, CPU would be working most of the time(Ideally 100%

of the time). Considering a real system, CPU usage should

range from 40% (lightly loaded) to 90% (heavily loaded.)

b) Throughput

It is the total number of processes completed per unit time or

rather say total amount of work done in a unit of time. This

may range from 10/second to 1/hour depending on the

specific processes.

c) Turnaround Time

It is the amount of time taken to execute a particular process,

i.e. The interval from time of submission of the process to the

time of completion of the process(Wall clock time).

d) Waiting Time

The sum of the periods spent waiting in the ready queue

amount of time a process has been waiting in the ready queue

to acquire get control on the CPU.

e) Load Average

It is the average number of processes residing in the ready

queue waiting for their turn to get into the CPU.

f) Response Time

Amount of time it takes from when a request was submitted

until the first response is produced. Remember, it is the time

till the first response and not the completion of process

execution(final response).

In general CPU utilization and Throughput are maximized

and other factors are reduced for proper optimization.

III. CPU SCHEDULING ALGORITHMS

1. FIRST COME FIRST SERVE SCHEDULING

In the "First come first serve" scheduling algorithm, as the

name suggests, the process which arrives first, gets executed

first, or we can say that the process which requests the CPU

first, gets the CPU allocated first.

• First Come First Serve, is just like FIFO(First in First

out) Queue data structure, where the data element which

is added to the queue first, is the one who leaves the

queue first.

• This is used in Batch Systems.

• It's easy to understand and implement programmatically

using a Queue data structure, where a new process enters

through the tail of the queue, and the scheduler selects

process from the head of the queue.

• A perfect real life example of FCFS scheduling

is buying tickets at ticket counter.

Calculating Average Waiting Time

For every scheduling algorithm, Average waiting time is a

crucial parameter to judge it's performance.

AWT or Average waiting time is the average of the waiting

times of the processes in the queue, waiting for the scheduler

to pick them for execution. Lower the Average Waiting Time,

better the scheduling algorithm.

Consider the processes P1, P2, P3, P4 given in the below

table, arrives for execution in the same order, with Arrival

Time 0, and given Burst Time, let's find the average waiting

time using the FCFS scheduling algorithm.

The average waiting time will be 18.75 ms

For the above given proccesses, first P1 will be provided with

the CPU resources,

• Hence, waiting time for P1 will be 0

• P1 requires 21 ms for completion, hence waiting

time for P2 will be 21 ms

• Similarly, waiting time for process P3 will be

execution time of P1 + execution time for P2, which

will be (21 + 3) ms = 24 ms.

• For process P4 it will be the sum of execution times

of P1, P2 and P3.

Troubles with FCFS Scheduling

Below we have a few shortcomings or problems with the

FCFS scheduling algorithm:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSDARM - 2020 Conference Proceedings

Volume 8, Issue 04

Special Issue - 2020

2

https://www.studytonight.com/operating-system/types-of-os
www.ijert.org

1. It is Non Pre-emptive algorithm, which means

the process priority doesn't matter.

If a process with very least priority is being

executed, more like daily routine backup process,

which takes more time, and all of a sudden some

other high priority process arrives, like interrupt to

avoid system crash, the high priority process will

have to wait, and hence in this case, the system will

crash, just because of improper process scheduling.

2. Not optimal Average Waiting Time.

3. Resources utilization in parallel is not possible,

which leads to Convoy Effect, and hence poor

resource(CPU, I/O etc) utilization.

Convoy Effect: Convoy Effect is a situation where many

processes, which need to use a resource for short time, are

blocked by one process holding that resource for a long time.

This essentially leads to poor utilization of resources and

hence poor performance

2. SHORTEST JOB FIRST(SJF) SCHEDULING

Shortest Job First scheduling works on the process with the

shortest burst time or duration first.

• This is the best approach to minimize waiting time.

• This is used in Batch Systems.

• It is of two types:

1. Non Pre-emptive

2. Pre-emptive

• To successfully implement it, the burst time/duration

time of the processes should be known to the

processor in advance, which is practically not

feasible all the time.

• This scheduling algorithm is optimal if all the

jobs/processes are available at the same time. (either

Arrival time is 0 for all, or Arrival time is same for

all)

a. Non Pre-emptive Shortest Job First

Consider the below processes available in the ready queue for

execution, with arrival time as 0 for all and given burst times.

As you can see in the GANTT chart above, the

process P4 will be picked up first as it has the shortest burst

time, then P2, followed by P3 and at last P1. We scheduled

the same set of processes using the First come first

serve algorithm in the previous tutorial, and got average

waiting time to be 18.75 ms, whereas with SJF, the average

waiting time comes out 4.5 ms.

Problem with Non Pre-emptive SJF

If the arrival time for processes are different, which means all

the processes are not available in the ready queue at time 0,

and some jobs arrive after some time, in such situation,

sometimes process with short burst time have to wait for the

current process's execution to finish, because in Non Pre-

emptive SJF, on arrival of a process with short duration, the

existing job/process's execution is not halted/stopped to

execute the short job first.

This leads to the problem of Starvation, where a shorter

process has to wait for a long time until the current longer

process gets executed. This happens if shorter jobs keep

coming, but this can be solved using the concept of aging.

b. Pre-emptive Shortest Job First

In Preemptive Shortest Job First Scheduling, jobs are put into

ready queue as they arrive, but as a process with short burst

time arrives, the existing process is preempted or removed

from execution, and the shorter job is executed first.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSDARM - 2020 Conference Proceedings

Volume 8, Issue 04

Special Issue - 2020

3

https://www.studytonight.com/operating-system/types-of-os
https://www.studytonight.com/operating-system/first-come-first-serve
https://www.studytonight.com/operating-system/first-come-first-serve
www.ijert.org

As you can see in the GANTT chart above, as P1 arrives first,

hence it's execution starts immediately, but just after 1 ms,

process P2 arrives with a burst time of 3 ms which is less than

the burst time of P1, hence the process P1(1 ms done, 20 ms

left) is preempted and process P2 is executed.

As P2 is getting executed, after 1 ms, P3 arrives, but it has a

burst time greater than that of P2, hence execution

of P2 continues. But after another millisecond, P4 arrives with

a burst time of 2 ms, as a result P2(2 ms done, 1 ms left) is

preempted and P4 is executed.

After the completion of P4, process P2 is picked up and

finishes, then P2 will get executed and at last P1.

The Pre-emptive SJF is also known as Shortest Remaining

Time First, because at any given point of time, the job with

the shortest remaining time is executed first.

3. PRIORITY CPU SCHEDULING

In the Shortest Job First scheduling algorithm, the priority of

a process is generally the inverse of the CPU burst time, i.e.

the larger the burst time the lower is the priority of that

process.

In case of priority scheduling the priority is not always set as

the inverse of the CPU burst time, rather it can be internally

or externally set, but yes the scheduling is done on the basis

of priority of the process where the process which is most

urgent is processed first, followed by the ones with lesser

priority in order.

Processes with same priority are executed in FCFS manner.

The priority of process, when internally defined, can be

decided based on memory requirements, time limits, number

of open files, ratio of I/O burst to CPU burst etc.

Whereas, external priorities are set based on criteria outside

the operating system, like the importance of the process,

funds paid for the computer resource use, market factor etc.

Priority scheduling can be of two types:

a. Preemptive Priority Scheduling

If the new process arrived at the ready queue has a higher

priority than the currently running process, the CPU is

preempted, which means the processing of the current process

is stopped and the incoming new process with higher priority

gets the CPU for its execution.

b. Non-Preemptive Priority Scheduling

In case of non-preemptive priority scheduling algorithm if a

new process arrives with a higher priority than the current

running process, the incoming process is put at the head of the

ready queue, which means after the execution of the current

process it will be processed.

Example of Priority Scheduling Algorithm

Consider the below table fo processes with their respective

CPU burst times and the priorities.

As you can see in the GANTT chart that the processes are

given CPU time just on the basis of the priorities.

Problem with Priority Scheduling Algorithm

In priority scheduling algorithm, the chances of indefinite

blocking or starvation is high. A process is considered

blocked when it is ready to run but has to wait for the CPU as

some other process is running currently.

But in case of priority scheduling if new higher priority

processes keeps coming in the ready queue then the processes

waiting in the ready queue with lower priority may have to

wait for long durations before getting the CPU for execution.

Using Aging Technique with Priority Scheduling

To prevent starvation of any process, we can use the concept

of aging where we keep on increasing the priority of low-

priority process based on the its waiting time.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSDARM - 2020 Conference Proceedings

Volume 8, Issue 04

Special Issue - 2020

4

https://www.studytonight.com/operating-system/shortest-job-first
www.ijert.org

For example, if we decide the aging factor to be 0.5 for each

day of waiting, then if a process with priority 20(which is

comparatively low priority) comes in the ready queue. After

one day of waiting, its priority is increased to 19.5 and so on.

Doing so, we can ensure that no process will have to wait for

indefinite time for getting CPU time for processing.

4. ROUND ROBIN SCHEDULING

• A fixed time is allotted to each process, called quantum,

for execution.

• Once a process is executed for given time period that

process is preempted and other process executes for given

time period.

• Context switching is used to save states of preempted

processes.

 Characteristics of Round-Robin Scheduling

• Round robin is a pre-emptive algorithm

• The CPU is shifted to the next process after fixed

interval time, which is called time quantum/time

slice.

• The process that is preempted is added to the end of

the queue.

• Round robin is a hybrid model which is clock-driven

• Time slice should be minimum, which is assigned for

a specific task that needs to be processed. However,

it may differ OS to OS.

• It is a real time algorithm which responds to the

event within a specific time limit.

• Round robin is one of the oldest, fairest, and easiest

algorithm.

• Widely used scheduling method in traditional OS.

 Advantage of Round-robin Scheduling

• It doesn't face the issues of starvation or convoy

effect.

• All the jobs get a fair allocation of CPU.

• It deals with all process without any priority

• If you know the total number of processes on the run

queue, then you can also assume the worst-case

response time for the same process.

• This scheduling method does not depend upon burst

time. That's why it is easily implementable on the

system.

• Once a process is executed for a specific set of the

period, the process is preempted, and another process

executes for that given time period.

• Allows OS to use the Context switching method to

save states of preempted processes.

• It gives the best performance in terms of average

response time.

Disadvantages of Round-robin Scheduling

• If slicing time of OS is low, the processor output will

be reduced.

• This method spends more time on context switching

• Its performance heavily depends on time quantum.

• Priorities cannot be set for the processes.

• Round-robin scheduling doesn't give special priority

to more important tasks.

• Decreases comprehension

• Lower time quantum results in higher the context

switching overhead in the system.

• Finding a correct time quantum is a quite difficult

task in this system.

5. MULTILEVEL QUEUE SCHEDULING

Another class of scheduling algorithms has been created for

situations in which processes are easily classified into

different groups.

A common division is made between foreground (or

interactive) processes and background (or batch) processes.

These two types of processes have different response-time

requirements, and so might have different scheduling needs.

In addition, foreground processes may have priority over

background processes.

A multi-level queue scheduling algorithm partitions the ready

queue into several separate queues. The processes are

permanently assigned to one queue, generally based on some

property of the process, such as memory size, process priority,

or process type. Each queue has its own scheduling algorithm.

Separate queues might be used for foreground and

background processes. The foreground queue might be

scheduled by Round Robin algorithm, while the background

queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues,

which is commonly implemented as fixed-priority preemptive

scheduling. For example: The foreground queue may have

absolute priority over the background queue.

Let us consider an example of a multilevel queue-scheduling

algorithm with five queues:

1. System Processes

2. Interactive Processes

3. Interactive Editing Processes

4. Batch Processes

5. Student Processes

Each queue has absolute priority over lower-priority queues.

No process in the batch queue, for example, could run unless

the queues for system processes, interactive processes, and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSDARM - 2020 Conference Proceedings

Volume 8, Issue 04

Special Issue - 2020

5

www.ijert.org

interactive editing processes were all empty. If an interactive

editing process entered the ready queue while a batch process

was running, the batch process will be preempted.

6. MULTILEVEL FEEDBACK QUEUE SCHEDULING

In a multilevel queue-scheduling algorithm, processes are

permanently assigned to a queue on entry to the system.

Processes do not move between queues. This setup has the

advantage of low scheduling overhead, but the disadvantage

of being inflexible.

Multilevel feedback queue scheduling, however, allows a

process to move between queues. The idea is to separate

processes with different CPU-burst characteristics. If a

process uses too much CPU time, it will be moved to a lower-

priority queue. Similarly, a process that waits too long in a

lower-priority queue may be moved to a higher-priority

queue. This form of aging prevents starvation.

A multilevel feedback queue scheduler is defined by the

following parameters:

• The number of queues.

• The scheduling algorithm for each queue.

• The method used to determine when to upgrade a

process to a higher-priority queue.

• The method used to determine when to demote a

process to a lower-priority queue.

• The method used to determine which queue a

process will enter when that process needs service.

The definition of a multilevel feedback queue scheduler

makes it the most general CPU-scheduling algorithm. It can

be configured to match a specific system under design.

Unfortunately, it also requires some means of selecting values

for all the parameters to define the best scheduler. Although a

multilevel feedback queue is the most general scheme, it is

also the most complex.

IV. CONCLUSION

A lot of attempts were developed to find a solution for the

high turnaround time, high waiting time and the overhead of

extra context switches in all types of algorithms. It is

recommended to use the shortest burst time concept because it

will give the operating system the ability to adapt to the user

behavior which may lead us to rethink building an intelligent,

learnable and adaptable operating system. Scheduling

algorithms should not affect the behavior of the system. The

algorithms impact the system's efficiency and scheduling

criteria.

V. REFERENCES
[1] Silberschatz,A. and P.B. Galvin,1997. Operating System

concepts, Fifth Edition, John Wiley & Sons, Inc.,

[2] Stallings,W., 1996. Computer Organization and Architecture;

Designing for Performance, Fourth Edition, Prentice Hall
[3] https://www.studytonight.com/operating-system/multilevel-queue-

scheduling

[4] https://www.quora.com/What-are-the-goals-of-CPU-scheduling
[5] http://www.uniassignment.com/essay-

[6] https://study.com/academy/lesson/scheduling-policies-for-

operating-systems-importance-criteria.html
[7] https://www.researchgate.net/publication/281615591

[8] https://www.researchgate.net/publication/317426546
[9] https://www.guru99.com/round-robin- scheduling-example.html

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NSDARM - 2020 Conference Proceedings

Volume 8, Issue 04

Special Issue - 2020

6

https://www.studytonight.com/operating-system/multilevel-queue-scheduling
https://www.studytonight.com/operating-system/multilevel-queue-scheduling
https://www.quora.com/What-are-the-goals-of-CPU-scheduling
http://www.uniassignment.com/essay-
https://study.com/academy/lesson/scheduling-policies-for-operating-systems-importance-criteria.html
https://study.com/academy/lesson/scheduling-policies-for-operating-systems-importance-criteria.html
https://www.researchgate.net/publication/317426546
https://www.guru99.com/round-robin-%20scheduling-example.html
www.ijert.org

