Analysis of a Computer System with Software Redundancy Subject to Hardware Preventive Maintenance

V. J. Munday*
*Department of Statistics, Ramjas College, University of Delhi, Delhi – 110007, India

Permila#
#Department of Statistics, Govt. College for Women, Rohtak – 124001, India

S.C. Malik$
$Department of Statistics, M.D. University, Rohtak – 124001, India

Abstract :- The present work is devoted to the analysis of a computer system with software redundancy subject to hardware preventive maintenance. For this purpose, a system model has been developed by considering software redundancy. There is an independent hardware and software failure in the system model. The preventive maintenance of the hardware component has been conducted after a specific operation time ‘t’ (called maximum operation time). A single server is provided immediately to the system for carrying out hardware repair, software up-gradation and hardware preventive maintenance as and when needed. The repair activities conducted by the server are perfect. The failure time of the hardware and software components follow negative exponential distribution whereas the distributions for hardware repair, software up-gradation and preventive maintenance times are taken as arbitrary with different probability density functions. Some important reliability characteristics of the system models have been examined and profit function under different sets of assumptions on the parameters. The profit of the present model has also been compared with the model as discussed in the research paper of [5].

Keywords - Computer System; Software Redundancy; Up-gradation; Preventive Maintenance, Profit Analysis and Stochastic Modelling

I. INTRODUCTION

In past few decades, the importance of computer widely increases in most of areas such as companies, medicals, banks, etc. In the previous research based on computer system, some stochastic models for a computer system have been developed and analyzed in steady state by considering the aspects of component wise redundancy in cold standby, priority in repair disciplines and maximum repair time to hardware. And, a computer system would be more profitable if redundancy is provided to the hardware along with maximum repair time rather than redundancy to the software. [1] examined a two-unit standby redundant system with preventive maintenance. [2] Analyzed a two dissimilar cold standby system with preventive maintenance and replacement of standby. On the other hand, the deterioration rate of a system can be reduced by conducting its preventive maintenance after a maximum operation time. [3] obtained reliability measures of a system under preventive maintenance. Hence, it becomes necessary to examine the effect of preventive maintenance on reliability measures of a computer system with the concepts of preventive maintenance and software redundancy. However, [4] tried to develop stochastic models of operating systems with preventive maintenance and priority subject to maximum operation and repair times. [6] established reliability measures of a computer system with hardware redundancy subject to preventive maintenance. The present work is devoted to the analysis of a computer system with software redundancy subject to hardware preventive maintenance. For this purpose, a system model has been developed by considering software redundancy in cold standby with the concept of hardware preventive maintenance. Hardware and software failures are independent in the system model. The preventive maintenance of the hardware component has been conducted after a specific operation time ‘t’ (called maximum operation time). There is a single server who visits the system immediately for carrying out hardware repair, software up-gradation and hardware preventive maintenance as and when needed. The repair activities conducted by the server are perfect. The failure time of the hardware and software components follow negative exponential distribution whereas the distributions for hardware repair, software up-gradation and preventive maintenance times are taken as arbitrary with different probability density functions. Some important reliability characteristics of the system models have been examined.
stochastically in steady state for particular values of various parameters and costs by using semi-Markov process and regenerative point technique. Graphs are drawn to depict the behaviour of mean time to system failure (MTSF), availability and profit function under different sets of assumptions on the parameters. The profit of the present model has also been compared with the model as discussed in the research paper of [5].

II. SOME IMPORTANT NOTATIONS

O : Computer system is operative
Scs : Software is in cold standby
a/b : Probability that the system has hardware / software failure

\(\lambda_i / \lambda_2 : \) Hardware/Software failure rate
\(\beta_0 : \) The rate by which hardware component undergoes for preventive maintenance

HFU_r / HFW_r : The hardware is failed and under/waiting for repair
SFU_g / SFWU_g : The software is failed and under/waiting for up-gradation
HFUPm / HFWPm : The hardware is under/waiting for preventive maintenance

HFUR / HFWR : The hardware is failed and continuously under/ waiting for repair from previous state
SFUG / SFWUG : The software is failed and continuously under/ waiting for repair from previous state

HFUPM / HFWPJM : The hardware is under/ waiting for preventive maintenance continuously from previous state

g(t)/G(t) : pdf/cdf of hardware repair time
f(t)/F(t) : pdf/cdf of software up-gradation time
m(t)/M(t) : pdf/cdf of hardware preventive maintenance time

\(q_{0i}(t) / Q_{0i}(t) : \) pdf/cdf of first passage time from regenerative state \(S_i \) to a regenerative state \(S_j \) or to a failed state \(S_k \) without visiting any other regenerative state in \([0, t] \)

\(q_{0i,k}(t) / Q_{0i,k}(t) : \) pdf/cdf of direct transition time from regenerative state \(S_i \) to a regenerative state \(S_j \) or to a failed state \(S_k \) visiting state \(S_l \) once in \([0, t] \)

\(M_i(t) : \) Probability that the system up initially in state \(S_i \) is up at time \(t \) without visiting to any regenerative state

\(W_i(t) : \) Probability that the server is busy in the state \(S_i \) up to time ‘\(t \)’ without making any transition to any other regenerative state or returning to the same state via one or more non-regenerative states.

\(\mu_i : \) The mean sojourn time in state \(S_i \) which is given by

\[\mu_i = E(T) = \int_0^\infty P(T > t) \, dt = \sum_j m_{ij}, \]

where \(T \) denotes the time to system failure.

\(m_{ij} : \) Contribution to mean sojourn time \((\mu_i) \) in state \(S_i \) when system transits directly to state \(S_j \) so that

\[\mu_i = \sum_j m_{ij} \text{ and } m_{ij} = \int_0^\infty t dQ_{ij}(t) = -q_{ij}^\ast(0) \]

\(\ast/\ast : \) Symbol for Laplace - Stieltjes convolution
\(\ast/\ast \) : Symbol for Laplace Transformation (LT)
\(\ast/\ast \) : Symbol for Laplace Stieltjes Transformation (LST)

\(q_{ij}(t) : \) cdf of first passage time from regenerative state \(S_i \) to a failed state. Regarding the failed state as absorbing state

\(A_i(t) : \) Probability that the system is in up-state at instant \(t \) given that the system entered regenerative state \(S_i \) at \(t = 0 \).

\(B^H_i(t) : \) Probability that the server is busy in repairing the unit due to hardware failure at an instant ‘\(t \)’ given that the system entered state \(S_i \) at \(t = 0 \).

\(B^S_i(t) : \) Probability that the server is busy in up-gradation of the software at an instant ‘\(t \)’ given that the system entered the regenerative state \(S_i \) at \(t = 0 \).

\(B^{Pm}_i(t) : \) Probability that the server is busy in preventive maintenance of the hardware given that the system entered state \(S_i \) at \(t = 0 \).

\(NHR_i(t) : \) Expected number of hardware repairs by the server in \([0, t] \) given that the system entered the regenerative state \(S_i \) at \(t = 0 \).

\(NSU_i(t) : \) Expected number of software up-gradations in \([0, t] \) given that the system entered the regenerative state \(S_i \) at \(t = 0 \).

\(NHPm_i(t) : \) Expected number of hardware preventive maintenances by the server in \([0, t] \) given that the system entered the regenerative state \(S_i \) at \(t = 0 \).

\(K_0 : \) Revenue per unit up – time of the system
\(K_1 : \) Cost per unit time for which server is busy due hardware repair
\(K_2 : \) Cost per unit time for which server is busy due software Up-gradation
\(K_3 : \) Cost per unit repair of the failed hardware
\(K_4 : \) Cost per unit up-gradation of the failed software
\(K_5 : \) Cost per unit time for which server is busy due hardware preventive maintenance
\(K_6 : \) Cost per unit preventive maintenance of the failed hardware

\(P : \) Profit of the present model
\(P1 : \) Profit of the system model [5]
III. ANALYSIS OF SYSTEM MODEL

The state transition diagram is shown in the following figure:

A. Transition Probabilities and Mean Sojourn Times

Simple probabilistic considerations yield the following expressions for the non-zero elements.

\[p_{ij} = Q_i(\infty) = \int_0^\infty q_{ij}(t)dt \]

\[p_{01} = \frac{a\lambda_1}{a\lambda_1 + b\lambda_2 + \beta_0}, \quad p_{02} = \frac{b\lambda_2}{a\lambda_1 + b\lambda_2 + \beta_0}, \quad p_{03} = \frac{\beta_0}{a\lambda_1 + b\lambda_2 + \beta_0} \]

\[p_{10} = g'(0), \quad p_{20} = f^*(a\lambda_1 + b\lambda_2 + \beta_0), \quad p_{24} = \frac{\beta_0}{a\lambda_1 + b\lambda_2 + \beta_0} \]

\[p_{25} = \frac{a\lambda_1}{a\lambda_1 + b\lambda_2 + \beta_0} \]

\[m'(0), \quad p_{40} = p_{52} = f^*(0) \]

For \(f(t) = \theta e^{-\theta t} \), \(g(t) = \alpha e^{-\alpha t} \) and \(m(t) = \gamma e^{-\gamma t} \)

we have

\[p_{23.4} = \frac{\beta_0}{a\lambda_1 + b\lambda_2 + \beta_0} (1 - f^*(a\lambda_1 + b\lambda_2 + \beta_0)) f(t) \]

\[p_{22.5} = \frac{a\lambda_1}{a\lambda_1 + b\lambda_2 + \beta_0} (1 - f^*(a\lambda_1 + b\lambda_2 + \beta_0)) f(t) \]

\[p_{21.6} = \frac{a\lambda_1}{a\lambda_1 + b\lambda_2 + \beta_0} (1 - f^*(a\lambda_1 + b\lambda_2 + \beta_0)) f(t) \]

But, \(f'(0) = g'(0) = m'(0) = 1 \) and \(a + b = 1 \) (1)

It can be easily verified that

\[p_{01} + p_{02} + p_{03} = p_{0} = p_{20} + p_{24} + p_{25} + p_{26} = p_{20} + p_{23.4} + p_{22.5} + p_{21.6} = p_{30} = p_{43} = p_{52} = 1 \] (2)

The mean sojourn times \((\mu_i) \) in the state \(S_i \) are

\[\mu_0 = \frac{1}{a\lambda_1 + b\lambda_2 + \beta_0}, \quad \mu_1 = \frac{1}{\alpha}, \quad \mu_2 = \frac{1}{a\lambda_1 + b\lambda_2 + \beta_0 + \theta} \]

\[\mu_3 = \frac{1}{\gamma} \]

Also

\[\mu_0 = m_{01} + m_{02} + m_{03}, \quad \mu_1 = m_{10}, \quad \mu_2 = m_{20} + m_{24} + m_{25} + m_{26} \]

And \(\mu_3 = m_{20} + m_{21.6} + m_{22.5} + m_{23.4} \) (3)

B. Reliability and Mean Time to System Failure (MTSF)

The recursive relations for \(\phi_i(t) \) are as follows:

\[\phi_0(t) = Q_0(t) + Q_2(t) \]

\[\phi_2(t) = Q_2(t) \quad \& \quad \phi_0(t) + Q_2(t) + Q_3(t) + Q_6(t) \] (4)

Taking LST of above relations (4) and solving for \(\phi_0^*(s) \), we have

\[R^*(s) = \frac{1 - \phi_0^*(s)\gamma^*}{s} \]

The reliability of the system model can be obtained by taking Laplace inverse transform of the above equation.

The mean time to system failure (MTSF) is given by

\[MTSF = \lim_{s \to 0} \frac{1 - \phi_0^*(s)}{s} \]

Where \(N_1 = \mu_0 + p_{02} \) and \(D_1 = 1 - p_{02}p_{20} \) (6)
C. Steady State Availability

The recursive relations for $A_t(t)$ are given as:

$$A_0(t) = M_0(t) + q_0(t) \otimes A_0(t) + q_02(t) \otimes A_2(t) + q_03(t) \otimes A_3(t)$$

$$A_1(t) = q_1(t) \otimes A_0(t)$$

$$A_2(t) = M_2(t) + q_2(t) \otimes A_0(t) + q_21(t) \otimes A_1(t) + q_22(t) \otimes A_2(t)$$

$$A_3(t) = q_3(t) \otimes A_0(t)$$

where

$$M_0(t) = e^{-\left(\alpha_1+\beta_2+\beta_3\right)t},$$

$$M_1(t) = e^{-\left(\alpha_1+\beta_2+\beta_3\right)t}F(t)$$

Taking LT of equation (7) and solving for $A_0^*(s)$, the steady state availability is given by $A_0^*(\infty) = \lim_{s \to 0} sA_0^*(s)$

$$= \frac{N_2}{D_2}$$

(8)

Where

$$N_2 = \mu_0(1 - p_{22.5}) + p_{20}\mu_2$$

$$D_2 = \mu_0(1 - p_{22.5}) + \mu_1(p_{f}(1 - p_{22.5}) + p_{20}p_{21.6}) + p_{20}p_{22.5} + \mu_3(p_{03}(1 - p_{22.5}) + p_{23.4})$$

(9)

D. Busy Period of the Server

(a). Due to Hardware Repair

The recursive relations for $B^H_0(t)$ are as follows:

$$B^H_0(t) = q_01(t)\otimes B^H_0(t) + q_02(t)\otimes B^H_2(t) + q_03(t)\otimes B^H_2(t) + q_04(t)\otimes B^H_4(t)$$

$$B^H_1(t) = W^H_1(t) + q_{21.5}(t)\otimes B^H_0(t)$$

$$B^H_2(t) = q_{20}(t)\otimes B^H_0(t) + q_{21.6}(t)\otimes B^H_1(t)$$

$$B^H_3(t) = q_{22.5}(t)\otimes B^H_2(t) + q_{23.4}(t)\otimes B^H_3(t)$$

(10)

where $W^H_1(t) = \tilde{G}(t)$

(b). Due to Software Up-gradation

The recursive relations for $B^S_1(t)$ are as follows:

$$B^S_0(t) = q_{01}(t)\otimes B^S_0(t) + q_{02}(t)\otimes B^S_2(t) + q_{03}(t)\otimes B^S_2(t) + q_{04}(t)\otimes B^S_4(t)$$

$$B^S_1(t) = q_{10}(t)\otimes B^S_1(t)$$

$$B^S_2(t) = W^S_2(t) + q_{20}(t)\otimes B^S_0(t) + q_{21.6}(t)\otimes B^S_1(t)$$

$$B^S_3(t) = q_{22.5}(t)\otimes B^S_2(t) + q_{23.4}(t)\otimes B^S_3(t)$$

(11)

where $W^S_2(t) = e^{(\alpha_1+\beta_2+\beta_3)t}F(t) + (\alpha_1e^{(\alpha_1+\beta_2+\beta_3)t}1)F(t) + (\beta_2e^{(\alpha_1+\beta_2+\beta_3)t}1)F(t)$

(c). Due to Preventative Maintenance

The recursive relations for $B^{PM}_m(t)$ are as follows:

$$B^{PM}_0(t) = q_{01}(t)\otimes B^{PM}_0(t) + q_{02}(t)\otimes B^{PM}_2(t) + q_{03}(t)\otimes B^{PM}_2(t)$$

$$B^{PM}_1(t) = q_{10}(t)\otimes B^{PM}_0(t)$$

$$B^{PM}_2(t) = q_{20}(t)\otimes B^{PM}_0(t) + q_{21.6}(t)\otimes B^{PM}_1(t) + q_{22.5}(t)\otimes B^{PM}_2(t) + q_{23.4}(t)\otimes B^{PM}_3(t)$$

$$B^{PM}_3(t) = W^P_3(t) + q_{30}(t)\otimes B^{PM}_0(t)$$

(12)

where $W^P_3(t) = M(t)$

Taking LT of relations (10), (11) & (12), solving for $B^H_0(t), B^S_0(t)$ and $B^{PM}_m(t)$. The time for which server is busy due to repairs, up-gradations and preventative maintenances respectively are given by $B^H_0(t), B^S_0(t)$ and $B^{PM}_m(t)$.

$$B^H_0(t) = \lim_{s \to 0} s B^H_0(t) = \frac{N^H_2}{D_2}$$

(13)

$$B^S_0(t) = \lim_{s \to 0} s B^S_0(t) = \frac{N^S_2}{D_2}$$

(14)

$$B^{PM}_m(t) = \lim_{s \to 0} s B^{PM}_m(t) = \frac{N^{PM}_2}{D_2}$$

(15)

where

$$N^H_2 = p_{01}(p_{10}(1 - p_{22.5}) + p_{20}p_{21.6})W^H_4(0)$$

$$N^P_2 = p_{02}W^P_2$$

$$N^{PM}_2 = (p_{20}p_{23.4}+p_{30}p_{03}(1 - (\frac{7}{22.5}))W^P_2(0)$$

and D_2 is already mentioned.

(16)

E. Expected Number of Hardware Repairs

The recursive relations for $NHR_1(t)$ are given as:

$$NHR_0(t) = Q_{01}(t) & NHR_1(t) + Q_{02}(t) & NHR_2(t) + Q_{03}(t) & NHR_3(t)$$

$$NHR_1(t) = Q_{21.5}(t) + (1 + NHR_0(t))$$

$$NHR_2(t) = Q_{20}(t) & NHR_1(t) + Q_{21.6}(t) & NHR_1(t)$$

$$+ Q_{22.5}(t) & NHR_2(t)$$

$$+ Q_{23.4}(t) & NHR_3(t)$$

(17)

Taking LST of relations (17) and solving for $NHR_0^*(s)$. The expected number of hardware repairs are given by $NHR_0 = \lim_{s \to 0} sNHR_0^*(s)$.

$$N_4 = p_{01}(p_{10}(1 - p_{22.5}) + p_{20}p_{21.6})$$

Where

$$D_2$$ and D_2 are already mentioned. (19)

F. Expected Number of Software Up-gradations

The recursive relations for $NSU_0(t)$ are given as:

$$NSU_0(t) = Q_{01}(t) & NSU_1(t) + Q_{02}(t) & NSU_2(t) + Q_{03}(t) & NSU_3(t)$$

$$NSU_1(t) = Q_{10}(t) & NSU_0(t)$$

$$NSU_2(t) = Q_{20}(t) & (1 + NSU_0(t)) + Q_{21.6}(t) & (1 + NSU_1(t)) + Q_{22.5}(t) & (1 + NSU_2(t)) + Q_{23.4}(t) & (1 + NSU_3(t))$$

$$NSU_3(t) = Q_{30}(t) & NSU_0(t)$$

(20)

Taking LST of relations (20) and solving for $NSU_0^*(s)$. The expected numbers of software up-gradations are given by $NSU_0(\infty) = \lim_{s \to 0} sNSU_0^*(s)$.

$$N_5 = p_{02}$$

Where

NS_5 and D_2 are already mentioned. (22)

G. Expected Number of Preventative Maintenance

The recursive relations for $NHPM_1(t)$ are given as:

$$NHPM_0(t) = Q_{01}(t) & NHPM_1(t) + Q_{02}(t) & NHPM_2(t) + Q_{03}(t) & NHPM_3(t)$$

$$NHPM_1(t) = Q_{10}(t) & NHPM_0(t)$$

$$NHPM_2(t) = Q_{20}(t) & NHPM_3(t)$$

$$+ Q_{21.6}(t) & NHPM_1(t)$$

$$+ Q_{22.5}(t) & NHPM_2(t)$$

$$+ Q_{23.4}(t) & NHPM_3(t)$$

\[NHPm_3(t) = Q_{30}(t) \& (1 + NHPm_0(t)) \]

Taking LST of relations (23) and solving for \(NHPm_0^*(s) \). The expected numbers of hardware preventative maintenances are given by:

\[NHPm_0 = \lim_{s \to 0} sNHPm_0^*(s) = \frac{N_6}{D_2} \]

where

\[N_6 = p_{02}p_{23.4}p_{30} + p_{03}p_{30}(1 - \frac{p_{22.5}}{25}) \]

and \(D_2 \) is already mentioned.

IV. PROFIT ANALYSIS

The profit incurred to the system model in steady state can be obtained as:

\[P = K_0A_0 - K_2B_0^H - K_2B_0^S - K_3NHR_0 - K_4NSU_0 - K_5B_0^{pm} - K_6NHPm_0 \]

where \(A_0, B_0^H, B_0^S, NHR_0, NSU_0, B_0^{pm}, NHPm_0 \) all are already defined.

V. PARTICULAR CASES

Suppose \(g(t) = ae^{-at} \), \(f(t) = \theta e^{-\theta t} \) and \(m(t) = ye^{-\gamma t} \). We can obtain the following results:

- **MTSF (T_0)** = \(\frac{N_1}{D_1} \)
- **Availability (A_0)** = \(\frac{N_2}{D_2} \)
- **Busy Period due to hardware failure (B_0^H)** = \(\frac{N_3^H}{D_2} \)
- **Busy Period due to software failure (B_0^S)** = \(\frac{N_3^S}{D_2} \)
- **Busy Period due to hardware preventive maintenance (B_0^{pm})** = \(\frac{N_3^{pm}}{D_2} \)
- **Expected number of repair at hardware failure (NHR_0)** = \(\frac{N_4}{D_2} \)
- **Expected number of up-gradation at software failure (NSU_0)** = \(\frac{N_5}{D_2} \)
- **Expected number of preventive maintenance of the hardware (NHPm_0)** = \(\frac{N_6}{D_2} \)

Where

\[N_1 = \frac{1 + b\lambda_2}{(a\lambda_1 + b\lambda_2 + \beta_0 + \theta)(a\lambda_1 + b\lambda_2 + \beta_0 + \theta) - \theta b\lambda_2} \]

\[N_2 = \frac{a\lambda_1 + b\lambda_2 + \beta_0 + \theta}{(a\lambda_1 + b\lambda_2 + \beta_0)(a\lambda_1 + b\lambda_2 + \beta_0 + \theta)} \]

VI. CONCLUSION

The reliability measures of a computer system have been obtained by assuming \(g(t) = ae^{-at}, f(t) = \theta e^{-\theta t} \) and \(m(t) = ye^{-\gamma t} \). And, graphs are drawn for the particular results of these measures as shown in figures 2 to 4. It is analyzed that the mean time to system failure (MTSF), availability and profit go on decreasing with the increase of failure rates (\(\lambda_1 \) and \(\lambda_2 \)) and the rate of hardware corrective repair (\(\beta_0 \)) by which hardware undergoes for preventive maintenance after a pre-specified operation time ‘t’ while their values keep on moving up with the increase of hardware repair rate (\(\alpha \)), software up-gradation rate (\(\theta \)) and preventive maintenance rate (\(\gamma \)) provided system has more chances of hardware failure. Further, it is interesting to note that a computer system has more values of these reliability measures when it has more chances of software failure than that of hardware failure. The graphical presentation of the results related to these reliability measures obtained for the system model is shown in the figures 2 to 4.
VII. GRAPHICAL PRESENTATION OF RELIABILITY MEASURES FOR THE SYSTEM MODEL

Fig. 2: MTSF Vs Hardware Failure Rate (\(\lambda_1\))

![MTSF Vs Hardware Failure Rate](image)

Fig. 3: Availability Vs Hardware Failure Rate (\(\lambda_1\))

![Availability Vs Hardware Failure Rate](image)

Fig. 4: Profit (P) Vs Hardware Failure Rate (\(\lambda_1\))

![Profit (P) Vs Hardware Failure Rate](image)
VIII. COMPARATIVE STUDY OF PROFIT OF SYSTEM MODELS

The profit of the present model has been compared with that of the model discussed in the research paper Munday and Malik (2015). It is revealed that the present model is less profitable. And, hence we can say that the concept of hardware preventive maintenance in a computer system with software redundancy in cold standby is not much helpful in making the system more profitable. The behavior of the profit difference of the system model with respect to hardware failure rate (λ_1) has been shown graphically in figure 5.

IX. GRAPHICAL PRESENTATION OF PROFIT DIFFERENCES

Fig. 5: $P - P1$ Vs Hardware Failure Rate (λ_1)

REFERENCES

