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Abstract—Wire form springs are made by bending spring 

wires into various shapes and designed to perform many 

different functions. There are a multitude of applications for 

wire form springs, which include load carrying links, clips, 

clamps, electrical resistance units, decoration items, or furniture 

parts. Although wire form springs have been widely used for 

various applications, there are no general design formulas or 

equations for them. Wire form springs are mainly designed by 

try-and-error or intuitive approaches. In this paper, a 

systematic method is introduced for analyzing and synthesizing 

wire from springs. To analyze a wire form spring, a B-spline 

curve is first employed to interpolate the center curve of the 

wire form spring. The stress and deflection of the wire form 

spring are then analyzed based on its piecewise parametric 

interpolation. To synthesize a wire form spring, the center curve 

of the wire form spring is first modelled as a B-spline curve and 

described by the control polygon of the B-spline curve. The 

synthesis of a wire form spring then becomes the optimization of 

the control parameters of the B-spline curve. Examples on the 

analysis and synthesis of wire form springs are presented in the 

paper to verify the effectiveness and demonstrate the procedure 

of the introduced method.  

Keywords—wire form spring; analysis; synthesis; B-

spline; interpolation; control parameter. 

I.  INTRODUCTION 

Wire form springs are made by bending spring wires into 
various shapes and designed to perform many different 
functions [1]. There are a multitude of applications for wire 
form springs, which include load carrying links, clips, clamps, 
electrical resistance units, decoration items, or furniture parts. 
Springs are usually classified into four general categories 
based on their primary functions: push, pull, twist or energy 
storage [2]. Besides these primary functions, wire form 
springs are also applied for other functions such as decorating, 
clipping or clamping purposes. 

There are a lot of different configurations for springs. 
Based on configuration features, springs are commonly 
divided into types that include helical, conical, spiral, washer, 
beam, leaf, volute, garter [3]. In a configuration type, a pattern 
is often followed and some feature dimensions are used to 
define the specific configuration (structural details or shape 
and size) of a spring in the type. For example, the 
configuration of a helical compression spring is defined by its 
coil diameter, coil pitch, number of coils and wire diameter. A 
spiral torsion spring has spring wire wound on itself (zero 
pitch) and open space between coils. The center curve of a 

spiral torsion spring is usually an Archimedean spiral curve, 
so the configuration of a spiral torsion spring is defined by its 
center Archimedean spiral curve, number of turnings and 
cross sectional sizes. 

Wire form springs have various shapes for miscellaneous 
applications. It is difficult to use a single configuration pattern 
or feature (such as helix for helical springs) to characterize 
and define their shapes. Although wire form springs have been 
widely used for various applications and purposes, there are 
still no general design formulas or equations for them [4]. 
Wire form springs are mainly designed by try-and-error or 
intuitive approaches. Practical wire form springs are 
commonly composed of arcs and their tangent lines. Although 
arcs and their tangents are easy and convenient to apply, the 
shape varieties and flexibilities of wire form springs are 
compromised by using them only. 

The research motivation of this work is to establish general 
formulas for analyzing and synthesizing wire form springs. 
The research objectives of this work are that: (1) the shape 
varieties and flexibilities of wire form springs are not 
compromised in the introduced analysis and synthesis 
formulas; (2) it is easy and convenient to use the introduced 
analysis and synthesis formulas. The research outcomes of this 
work are that: (1) any existing two-dimensional or three-
dimensional wire form spring can be readily analyzed under 
the analysis formula presented in this paper; (2) a wire form 
spring can be satisfactorily synthesized to meet the needs by 
following the synthesis formula of the paper. 

To analyze a wire form spring, the configuration of the 
analyzed wire form spring is already there. The stress and 
deflection of the wire form spring under the external loading 
condition usually need to be analyzed. In this paper, a B-spline 
curve is first employed to interpolate the center curve of the 
analyzed wire form spring. The stress and deflection of the 
wire form spring are then analyzed based on its piecewise 
parametric interpolation. 

To synthesize a wire form spring, the center curve of the 
synthesized wire form spring is first modelled as a B-spline 
curve and described by the control polygon of the B-spline 
curve. The synthesis of a wire form spring then becomes the 
optimization of the control parameters of the B-spline curve. 

There is a close relationship between analysis and 
synthesis of wire form springs. Analysis forms the foundation 
and synthesis is considered as the result. The purpose of 
analyzing a wire form spring is to evaluate the design and 
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improve or further optimize the design of a wire form spring. 
Synthesizing a wire form spring relies on analyzing wire form 
springs since there are many candidates to be evaluated or 
analyzed during the synthesis process in order to select the 
optimal or satisfactory solution. 

The remainder of the paper is organized as follows. The 
analysis and synthesis formulations on wire form springs are 
presented in section II. The analysis of wire form springs is 
provided in section III. Section IV is on the synthesis of wire 
form springs. Conclusions are derived in section V. 

II. ANALYSIS AND SYNTHESIS FORMULATIONS 

OF WIRE FORM SPRINGS 

There are various shapes for wire form springs to meet the 
needs of different applications. To analyze or synthesize a 
wire form spring, its center curve has to be described or 
modelled. Currently, Bezier, spline and B-spline curves have 
been extensively employed for shape descriptions. If a curve 
is described by a Bezier curve, the number of control points of 
the Bezier curve will increase in order to get more control 
over the shape of the curve, so is the polynomial degree of the 
Bezier curve since it is coupled with the number of control 
points (which is the total number of control points minus 1) 
[5]. High degree polynomial curves are inefficient to process 
and numerically unstable [6]. A spline curve is a set of 
polynomials of degree p that are smoothly connected at certain 
data points. At each data point where two polynomials 
connect, their derivatives up to (p-1)st are the same at the data 
point [7]. Regular spline curves do not have high degree 
problem but can only offer global shape control, i.e., change 
of any data point will cause the change of the entire spline 
curve. B-spline (B stands for Basis) curves eliminate this 
problem by using a special set of basis functions that has only 
local influence and depends only on a few neighboring control 
points [8]. Changes in one point of the control polygon of a B-
spline curve affect the shape of at most K segments of the 
curve. K denotes the order (which is the degree of basis 
polynomials plus 1) of a B-spline curve. Because of their 
advantages, B-spline curves are adopted in the paper for shape 
descriptions of wire form springs. 

A B-spline curve is defined by the following equation. 
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parameter K is the order of the polynomial segments and 
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In (3), the integer values of k are: 1,,3,2  Kk   where 

K is the order of the B-spline curve. The jt  

( Knj  ,,2,1,0  ) are knot values. The entire set of knot 

values comprises a knot vector that is denoted by T in this 
paper. When parameter t ranges through the interval of 

[ 11,  nK tt ), the B-spline curve is produced. When any 

subscript in (3) is out of range of the summation limit or a 
denominator is zero, its associated fraction is not evaluated 
and becomes zero directly. 

Fig. 1 shows an open quadratic B-spline curve. The 
standard knot vector is used for constructing the curve, which 
is: 

}1,1,1,8.0,6.0,4.0,2.0,0,0,0{

},,2,1,0,{  KnjtT j 
   (4) 

In (4), 6n  and 3K . The interior knots are evenly 

distributed in the normalized interval of [0, 1]. When t goes 
from 0 to 1, the entire curve is generated. The multiplicity of 

the first knot (0) is 3 (K), so the curve starts at P0. The curve 

ends at P6 because of the multiplicity (3) of the last knot (1). 
When t goes through the interval of 

1,,2,1,21   njttt jj  , a curve segment (j) is 

constructed by three consecutive control points Pj-1 Pj Pj+1. 
Curve segment (j) is within the convex hull formed by its 

corresponding control points Pj-1 Pj Pj+1. Its starting and 

ending points are tangent to Pj-1 Pj and Pj Pj+1, respectively. 
There are totally five curve segments in Fig. 1. The ends of 
curve segments are all circled in Fig. 1.  

The open cubic B-spline curve shown in Fig. 2 is from the 
same control polygon of Fig. 1. K is now 4, so its knot vector 
is 

}1,1,1,1,75.0,50.0,25.0,0,0,0,0{

},,2,1,0,{  KnjtT j 
   (5) 

The curve starts at P0 and ends at P6 because of the 
multiplicity (4) of the first and last knots (0 and 1). When t 

changes in the interval of 2,,2,1,32   njttt jj  , a 

curve segment (j) is constructed by four consecutive control 

points Pj-1 Pj Pj+1 Pj+2. Curve segment (j) is within the convex 

hull formed by its corresponding control points Pj-1 Pj Pj+1 

Pj+2. Different from the quadratic B-spline curve, the interior 
ends of the curve segments in the cubic situation are not 
located on the line segments formed by consecutive control 
points. 

 

Fig. 1 An open quadratic B-spline curve. 
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Fig. 2 An open cubic B-spline curve. 

In light of the above two curves from the same control 
polygon, we can see that the quadratic B-spline curve is closer 
to its control polygon than the cubic B-spline curve. However, 
the cubic B-spline curve has C

2
 continuity and the quadratic 

one has only continuity of C
1
. Each segment in a quadratic B-

spline curve is from the barycentric (or affine) combination of 
three control points. Its shape is always planar and can only be 
either concave or convex, and there is no inflection in the 
interior of the segment. The shape of a segment in a cubic B-
spline curve can be planar or spacial, and is not restricted to be 
either concave or convex (inflection might appear within a 
curve segment as shown in Fig. 2) since the segment is from 
the barycentric combination of four control points. Although 
the shape flexibility of a quadratic B-spline curve segment is 
limited compared with that of a cubic B-spline curve segment, 
it has a unique feature, which is the tangency to the two legs 
of its control polygon. This feature makes the shapes of 
quadratic B-spline curves convenient to be controlled by their 
control polygons, which is beneficial for them to be applied 
for wire form springs. 

Fig. 3 shows a closed quadratic B-spline curve, which is 
composed of four segments that come from control point 

triads of P0 P1 P2, P1 P2 P3, P2 P3 P0 and P3 P0 P1, 
respectively. The knot vector for this quadratic B-spline curve 
is as follows. 

}1,8/7,8/6,8/5,8/4,8/3,8/2,8/1,0{

},,2,1,0,{  KnjtT j 
   (6) 

In (6), n is 5 (not 3) and K is 3. Four segments have to be 

used to close the B-spline curve. If the edge between P3 and 

P0 in Fig. 3 is removed, the control polygon formed by P0 P1 

P2 P3 will become open and there will only be two segments 
for an open quadratic B-spline curve. The knot vector 
represented in (6) is uniform and different from the 
nonuniform knot vectors shown in (4) and (5). When t goes 

through the interval of 8/68/2  t  (four subintervals for 

four segments), the entire closed quadratic B-spline curve is 
produced. 

The closed cubic B-spline curve from the same control 
polygon of Fig. 3 is shown in Fig. 4. The four segments in Fig. 

4 now come from control point quartets of P0 P1 P2 P3, P1 P2 

P3 P0, P2 P3 P0 P1 and P3 P0 P1 P2, respectively. The knot 
vector for this cubic B-spline curve is as follows. 

}1,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0,0{

},,2,1,0,{  KnjtT j 
   (7) 

n in (7) is 6 (not 3) and K is 4. When t goes through the 
interval of 7.03.0  t  (four subintervals for four segments), 

the entire closed cubic B-spline curve is produced. 

As shown in Figs. 3 and 4, the closed quadratic B-spline is 
tangent to its control polygon, but the closed cubic B-spline is 
not tangent to the same control polygon. 

When a wire form spring is synthesized in this paper, its 
center curve is modelled by a B-spline curve (either open or 
closed based on its application and needs), its shape is 
modified through changing the locations of the control points 
in the control polygon. 

 

Fig. 3 A closed quadratic B-spline curve. 

 

Fig. 4 A closed cubic B-spline curve. 

 

When an existing wire from spring is analyzed, its center 
curve is already known. To analyze the stress and deflection, 
the center curve of the wire form spring is first interpolated by 
a B-spline curve. Suppose a set of points 

},,2,1,0,{ njj Q  on the known center curve of a wire 

form spring are chosen to be interpolated by a B-spline curve 

of order K. The parameter value for each Qj is assumed to be 

},,2,1,0,{ nju j  . All u values form a special knot 

vector that is denoted by U in this paper. A set of (n+1) x 
(n+1) linear equations can then be set up with the (n+1) 
unknowns of control points of the interpolation B-spline 

curve, },,2,1,0,{ nii P . 





n

i
jKiij uN

0
, )(PQ  (8) 

To solve equation set (8), two knot vectors U and T have 
to be decided. U is selected by the chord length method that 
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has been widely used for curve interpolation. Let D be the 
total chord length that is calculated as follows. 





n

j
jjD

1
1QQ    (9) 

u0 and un are set at 0 and 1, respectively. Other uj values 
are calculated as follows. 

1,,2,1,
1

1 





 nj
D

uu
jj

jj 
QQ

  (10) 

T is decided by the averaging method [6] as follows.  

1,,1,0,0  Kjt j    (11) 

Knnnjt j  ,,2,1,1    (12) 

1,,2,1,
1

1 2

1 


 



 Knju

K
t

Kj

ji
iKj    (13) 

Fig. 5 shows the center curve of a wire form spring, which 
is composed of two circular arcs that have different radii and 
are connected by an inscribed tangent. The points to be 
interpolated on the curve are circles. 

The dotted curve in Fig. 6 is the interpolation curve from a 
quadratic B-spline curve. The solid line in Fig. 6 is from Fig. 5 
and is almost overlapping to the dotted curve. 

When a cubic B-spline curve is employed to interpolate 
the solid curve in Fig. 5 through the circled points, the 
interpolation curve is shown in Fig. 7 as the dashed curve. 
Similar to the quadratic situation, it is difficult to separate the 
dashed curve from the solid on in Fig. 7. 

After the center curve of an existing wire form spring is 
interpolated by a B-spline curve, the parametric interpolation 
curve can be conveniently used for the stress and deflection 
analysis of the wire form spring. To analyze the wire form 
spring, it needs to be discretized into beam elements for finite 
element analysis. Discretization of the interpolation curve is 
straightforward since its parameter t has been normalized and 
changes from 0 to 1. When the unit interval [0, 1] of 
parameter t is divided into multiple sub-intervals, the number 
of sub-intervals is the number of beam elements for analysis. 
ANSYS [9-10] is adopted in the paper for finite element 
analysis of wire form springs. 

 

 

Fig. 5 A wire form curve to be interpolated. 

 

 

Fig. 6 Interpolation by a quadratic B-spline curve. 

 

 

Fig. 7 Interpolation by a cubic B-spline curve. 

 

III. ANALYSIS OF WIRE FORM SPRINGS 

Fig. 8 shows a wire form spring to be analyzed. The spring 
is made of carbon steel wire with Young's modulus of 207 
GPa, Poisson's ratio of 0.3, strength of 1700 MPa and wire 
diameter of 2 mm. As shown in Fig. 8, L is 90 mm, R is 13 
mm and F is 20 N. 

The center curve of the analyzed wire form spring is first 
interpolated by a quadratic B-spline curve, and then 
discretized into elements. The discretized wire form spring is 
shown in Fig. 9. Beam element (BEAM188) in ANSYS is 
employed for the deflection and stress analysis of the wire 
form spring. The input force of 20 N is divided into 4 even 
load steps and geometric nonlinearity command “NLGEOM” 
is turned on when the deflection and stress of the wire form 
spring are analyzed in ANSYS. The deflection and stress of 
the wire form spring are shown in Fig. 10. The horizontal and 
vertical deflections at the left force application point are 10.17 
mm and 1.50 mm, respectively. The maximum stress in the 
deflected wire form spring is 963.38 MPa.  

 

 

Fig. 8 A wire form spring to be analyzed. 
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Fig. 9 The finite element discretization of the analyzed wire form spring. 

 

 

Fig. 10 The deflection and stress of the analyzed wire form spring. 

 

IV. SYNTHESIS OF WIRE FORM SPRINGS 

A wire form spring is synthesized here to act as a load 
carrying link. The design domain of the wire form spring is 
shown in Fig. 11 in which the length (L) and width (H) of the 
design domain are 80 mm and 30 mm, respectively. The upper 
right corner of the rectangular design domain is used as the 
fixed point of the wire form spring while the lower left corner 
of the design domain is the free end on which a downward 
load of 10 N is applied. The wire form spring is synthesized to 
connect the loading point to the fixed point in the specified 
design domain. 

The material and diameter of the spring wire are the same 
as the analysis example. The center curve of the synthesized 
wire form spring is modelled as a quadratic B-spline curve 
whose control polygon is shown in Fig. 12. Six control points 
(P0 to P5) form the control polygon. P0 and P5 are at the 
loading and fixed points of the wire form spring, respectively 
and have their specified locations in the design domain. Other 
control points (P1 to P4) carry design variables. The wire form 
spring are perpendicular to the vertical line at both P0 and P5, 
so line segments P0P1 and P4P5 are horizontal. Thus, there are 
totally six independent design variables from the control 
polygon to define the wire form spring, which are represented 
as a design variable vector X as follows. 

 xyxyxx PPPPPPX 433221   (14) 

The wire form spring is synthesized to maximize its 
stiffness under the constraint that the maximum stress in the 
spring is below its allowable value. Stiffness is measured by 
the vertical deflection at the loading point (P0). The 
optimization of the design variables is conducted by using the 
Global Optimization Toolbox of MATLAB [11-12]. ANSYS 
is used for the deflection and stress analysis during the 
optimization. The connection between MATLAB optimization 

and ANSYS finite element analysis is based on ANSYS 
Parametric Design Language [13]. 

Fig. 13 shows the synthesis result. Its finite element 
discretization is shown in Fig. 14. Fig. 15 shows the deflected 
wire form spring and its stress distribution. The vertical 
deflection of the spring is 9.06 mm at the loading point. The 
maximum stress is 946.94 MPa that happens at the fixed point 
of the wire form spring. 

 

Fig. 11 The design domain of the synthesized wire form spring. 

 

 

Fig. 12 The control polygon of the synthesized wire form spring. 

 

 

Fig. 13 The synthesis result of the wire form spring. 

 

 

Fig. 14 The finite element discretization of the synthesized wire form 
spring. 
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Fig. 15 The deflection and stress of the synthesized wire form spring. 

 

V. CONCLUSIONS 

A method for analyzing and synthesizing wire form 
springs is presented in the paper. To analyze an existing wire 
form spring, its center curve is first interpolated by a B-spline 
curve with normalized parameter interval of [0 1]. The 
parametric B-spline interpolation curve is then discretized by 
subdividing the unit interval into multiple sub-intervals. The 
number of sub-intervals is the number of elements for 
analyzing the wire form spring. ANSYS is adopted in the 
paper for finite element analysis. The beam element 
(Beam188) in ANSYS is employed for the deflection and 
stress analysis with its geometric nonlinearity command 
(NLGEOM) turned on. 

To synthesize a wire form spring, the center curve is 
modeled as a B-spline curve and described by its control 
polygon. The shape of a synthesized wire form spring is 
decided by its control polygon. The shape change is realized 
through modifying the locations of the control points in the 
control polygon. The synthesis of a wire form spring thus 
becomes the optimization of the locations of the control 
points. The design variables are composed of the independent 
coordinates of the control points. The Global Optimization 
Toolbox of MATLAB is employed to optimize the design 
variables in this paper. The deflection and stress of design 
candidates are analyzed by using ANSYS during the 
optimization process. ANSYS Parametric Design Language is 

employed in the paper to communicate between MATLAB 
optimization and ANSYS finite element analysis. 
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