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Abstract—Cantilever springs are clamped at one end and 

loaded at the other end. They are widely used in suspension 

systems such as railway carriages and automobiles. A cantilever 

spring usually takes the form of long slender beam with 

rectangular cross section, and is mainly subjected to bending. 

Although a cantilever spring with constant rectangular cross 

section is simple and easy to manufacture, its material is not 

efficiently utilized especially in the region that is close to the 

loading end. That is because the bending stress is proportional 

to the distance from the loading end. The bending stress is zero 

at the loading end and reaches its maximum at the clamping 

end. To improve the material utilization efficiency of a 

cantilever spring, its width or thickness or both can be made 

variable. It is not trivial to design a cantilever spring with 

variable width or thickness for a practical need. In this paper, 

variable width and thickness of cantilever springs are described 

by linear or spline interpolation. A systematic approach is 

introduced to analyze and design cantilever springs. Examples 

on analyzing and designing cantilever springs with different 

variable widths and thicknesses are presented in the paper to 

verify the effectiveness and demonstrate the procedure of the 

introduced method. 

Keywords—Cantilever Spring; Spring Rate; Analysis; Design; 

Optimization. 

I.  INTRODUCTION 

Cantilever springs are clamped at one end and loaded at 
the other end. They are widely used in suspension systems 
such as railway carriages and automobiles. A typical example 
of cantilever springs is the diving board in a swimming pool. 
The diving board is fixed at one end and free at the other end, 
and is typically of uniform rectangular cross section. The 
board is initially straight and horizontal. A diver stands at the 
free end of the board, initiates an up and down swing of the 
board, and then utilizes the spring action of the board for 
jumping. 

Although a cantilever spring with constant rectangular 
cross section is simple and easy to manufacture, its material is 
not efficiently utilized especially in the region that is close to 
the loading end [1]. This is because the primary stress of a 
cantilever beam is from its bending and the bending stress is 
proportional to the distance from the loading end. The bending 
stress is zero at the loading end and reaches its maximum at 
the clamping end. Figure 1 shows a cantilever beam with 
uniform rectangular cross section. The bending stress along 
the beam axis can be calculated by the following formula [2]. 
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b and t here are the width and thickness of the beam, 
respectively. P is the vertical force applied at the free end of 

the beam. The maximum bending stress ( 2
max 6 btPL ) 

occurs at the fixed end of the beam. L is the total length of the 
beam. Bending stress is tensile on the top of the beam and 
compressive on the bottom of the beam. 

If beam width b is allowed to vary along the beam axis, 
bending stress can be made constant. As shown in equation 

(1), the ratio xxb )(  has to be constant if )(x  is constant 

and beam thickness t does not change. The cantilever beam 
with a constant bending stress has a shape of triangular width, 
which is shown in Figure 2. If b0 is the maximum width at the 

fixed end of the triangular beam, )(xb  can be represented as 

follows.  

L
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Fig. 1 A cantilever beam with uniform cross section. 

 

Fig. 2 A cantilever beam with triangular width. 
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If beam width b does not change, beam thickness t must 
vary parabolically with x to make bending stress constant 
along the beam axis [3]. As shown in equation (1), the ratio 

xxt )(2  has to be constant if )(x  is constant and beam 

width b is uniform. Figure 3 shows a cantilever beam with 
parabolic thickness in which t0 is the maximum thickness at 

the fixed end of the parabolic beam. )(xt  can be represented 

by the following equation.  

L

x
txt 0)(   (3) 

 

Fig. 3 A cantilever beam with parabolic thickness. 

In addition to normal stress from bending, there is also 
shear stress on each cross section of a cantilever beam. For 
rectangular cross section, the maximum shear stress occurs at 
the neutral axis of the beam and can be calculated by the 
following formula. 

bt

P

2

3
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At the loading end, the triangular beam shown in Figure 2 
has zero width while the parabolic beam in Figure 3 has zero 
thickness. When width b or thickness t in equation (4) is zero, 
shear stress reaches infinity. Because of the zero width or 
thickness, the loading end becomes a line and has zero area in 
Figures 2 and 3. To make the shear stress reasonable at the 
loading end, its width in Figure 2 or thickness in Figure 3 has 
to be nonzero. Then comes this question: what is the best 
width for a cantilever beam spring with uniform thickness to 
meet practical needs and efficiently utilize its material, or 
what is the best thickness for a cantilever beam spring with 
uniform width to meet practical needs and efficiently utilize 
its material? If both width and thickness are allowed to vary, 
the question becomes: what is the best shape for a cantilever 
beam spring to meet practical needs and efficiently utilize its 
material? The motivation of this paper is to provide answers to 
these questions. The research objective of this paper is to 
introduce a systematic approach to analyze and design 
cantilever beam springs. 

The remainder of the paper is organized as follows. The 
analysis on cantilever beam springs is presented in section II. 
The design optimization procedure is provided in section III. 
Section IV is on the design of cantilever beam springs. 
Conclusions are drawn in section V. 

II. ANALYSIS OF CANTILEVER BEAM SPRINGS 

The cantilever beam in Figure 1 has uniform rectangular 
cross section. Its deflection ( ) at the loading end can be 

calculated by the following formula. 
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E in equation (4) is the Young's modulus of the cantilever 
beam material. 

When the cantilever beam is used as a spring, its spring 
stiffness or rate (k) is the ratio of P and  . 
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Cantilever springs are made of ductile materials for which 
distortion energy theory has been introduced to explain their 
yielding failure and von Mises stress has been widely used as 
a criterion in determining the onset of yielding failure. The 

von Mises stress ( v ) that combines bending normal stress 

( ) and shear stress ( ) acting at the same point of a cross-

section of a cantilever beam spring can be calculated as 
follows [4]. 

22 3 v  (7) 

If the width at the loading end of the cantilever beam 
shown in Figure 2 is nonzero, its triangular width becomes 
trapezoidal width, which is shown in Figure 4.  

 

Fig. 4 A cantilever beam with trapezoidal width. 

The width function, )(xb , now becomes: 

L

xbb
bxb

)(
)( 10

1


  (8) 

The moment of inertia of the cross-section about the 
neutral axis of the cantilever beam is then: 
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If the vertical deflection along the beam axis is represented 

as )(xv , and the slope xdxvd )(  of the deflected beam is 

very small, )(xv  can be derived from the following equation. 

)(

)()(
2
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xIE
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xvd
  (10) 

)(xM is the bending moment and equals to xP . The two 

needed boundary conditions for solving equation (10) are: 

0)( xv and 0)( xdxvd  when Lx  . For a specific width  

ratio ( 01 bb ), equation (10) can be solved, and the deflection 

( ) at the loading end and the beam spring stiffness (k) can 

be obtained.  

Correction factor (  ) has been introduced and used to 

calculate the deflection at the loading end for trapezoidal 
beam springs [5]. 

3
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 depends on the beam width ratio of 01 bb and can be 

found from related chart [5]. 

The thickness at the loading end of the cantilever beam 
shown in Figure 3 can be made nonzero to make its shear 
stress reasonable. If the two symmetric parabolic thickness 
curves are simplified as symmetric straight lines, the beam 
spring with variable thickness is shown in Figure 5. 

 

Fig. 5 A cantilever beam with variable thickness. 

The variable thickness along the cantilever beam axis can 
be represented as 

L
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With the variable thickness, the moment of inertia of the 
cross-section about the neutral axis of the cantilever beam is 
then: 

12
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The deflection )(xv  of the cantilever beam with variable 

thickness can still be derived from equation (10), but the 
moment of inertia of the cross-section is now calculated by 
equation (13). 

If both width and thickness are made linearly variable 
along the beam axis, the moment of inertia of the cross-section 
about the neutral axis of the cantilever beam becomes: 

12

)()(
)(

3xtxb
xI   (14) 

Equations (8) and (12) are applicable for calculating )(xb  

and )(xt , respectively. The derivation of beam deflection can 

still rely on equation (10).  

The width or thickness change along the beam axis does 
not have to be linear or quadratic. It can be different based on 
the practical requirements for the designed beam spring. 
Variable beam width is used here as an example to explain the 
procedure to establish a general change. Figure 6 shows a 
cantilever beam with variable width that is described by two 
symmetric spline curves. 

 

Fig. 6 The variable width described by spline interpolation. 

Each spline curve in Figure 6 interpolates five points along 
the horizontal beam axis. Because of the symmetry of the two 
spline curves, the line segment formed by two corresponding 
interpolation points on the two curves is in the vertical 
direction and has the value of beam width at that position. The 
variable beam width shown in Figure 6 can thus be considered 
as the spline interpolation of five beam widths along the beam 
axis (b0, b1, b2, b3 and b4). The five interpolation beam widths 
in Figure 6 are evenly distributed along the beam axis. 
Generally, the number of interpolation points and the 
distribution of the interpolation points are based on specific 
design situations. The linear change of width in Figure 4 or 
thickness in Figure 5 is just a special case of general spline 
interpolation and has only two width or thickness values to 
interpolate, which is a linear interpolation. 

Spline interpolation uses piecewise polynomials to 
interpolate all required points. Different from Lagrange 
interpolation, the number of interpolation points and the 
degree of polynomials in spline interpolation are 
independence each other, which leads to smooth and tight 
interpolation curve that passes through all interpolation points 
in the desired order [6-7]. Cubic spline interpolation has been 
widely adopted for different applications and is composed of a 
set of third degree polynomials. Any two neighboring 
polynomials are smoothly connected and have continuous 
slope and curvature at their shared internal interpolation point. 
The two end interpolation points of a cubic spline curve can 
have different conditions that include natural end conditions 
(two end curvatures are set as zero), not-a-knot end conditions 
(the third derivative is continuous at both the first and last 
internal points) or clamped end conditions (two end slopes are 
specified). 
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Both width and thickness changes of cantilever beam 
springs can be described by linear or cubic spline 
interpolations. 

III. PARAMETER OPTIMIZATION OF CANTILEVER BEAM 

SPRINGS 

The deflection, stress and material volume of cantilever 
beam springs are analyzed in the paper by using popular finite 
element analysis software ANSYS [8-9]. To analyze a beam 
spring, its solid model has to be created first. The Design 
Modeler of ANSYS is used in this work to establish solid 
models of analyzed beam springs. ANSYS Design Modeler 
[10] is an ANSYS Workbench application that provides 
modeling functions for analyses and simulations that include 
detailed geometry creation, CAD geometry modification, 
simplification and concept model creation tools. A beam 
spring can also be first generated by a solid modeling software 
such as SolidWorks [11] and then imported to ANSYS for 
analysis. 

The configuration of a designed beam spring is modeled 
based on its geometric control parameters, which are the 
independent design parameters to describe its variable width 
or thickness or both. These geometric control parameters fully 
define and control a beam spring. The design of a beam spring 
can be systematized as optimizing its geometric control 
parameters for its specific application and requirements.  

The geometric control parameters of a designed beam are 
optimized in this paper based on the Design Exploration of 
ANSYS [12]. One of ANSYS Workbench applications is 
ANSYS Design Exploration, which supports design 
optimization through ANSYS simulation results. Simulations 
are based on ANSYS Mechanical that is also a Workbench 
application to perform engineering simulations including 
stress, thermal, vibration simulations. The Direct Optimization 
toolbox of ANSYS Design Exploration is one of the goal 
driven optimization systems and is chosen for parameter 
optimization of cantilever beam springs in the paper. The 
Adaptive Multiple-Objective (AMO) method is used for 
parameter optimization. AMO supports multiple objectives 
and aims at finding the global optimal solution [13]. 

IV. DESIGN OF CANTILEVER BEAM SPRINGS 

The horizontal cantilever beam spring shown in Figure 7 
has uniform cross section. Its length, width and thickness are 
100 mm, 10 mm and 2 mm, respectively. The material of the 
spring is structural steel that has Young's modulus of 200000 
MPa, Poisson' ratio of 0.3, yield strength of 250 MPa. The left 
end of the spring is fixed. The downward force that is applied 
on its right end is 10 N. Figure 8 shows the finite element 
mesh of the beam spring.  

 

Fig. 7 The solid model of a cantilever beam spring with uniform cross 
section. 

 

 

Fig. 8 The finite element mesh of the cantilever beam spring with 
uniform cross section. 

The maximum vertical deflection at the free end is 2.48 
mm while the maximum von Mises stress within the beam 
spring is 155.22 MPa, which are shown in Figures 9 and 10, 
respectively. With the force of 10 N at the free end and its 
corresponding deflection of 2.48 mm at the loading end, the 
spring rate is 4.03 N/mm. The spring rate from Equation (6) is 
4.0 N/mm, which is very close to that from finite element 
analysis result. ANSYS Workbench 15 is used here to analyze 
the beam spring. 

 

Fig. 9 The vertical deflection of the cantilever beam spring with uniform 
cross section. 

 

Fig. 10 The von Mises Stress of the cantilever beam spring with uniform 
cross section. 

The material volume of the uniform beam spring is 2000 
mm3. To improve the material utilization efficiency of the 
beam spring, we first make its width variable and keep its 
thickness fixed at 2 mm. The beam spring with variable width 
has the same length (100 mm), free end load (10 N) and spring 
rate (4.03 N/mm) as the beam spring with uniform width, so 
the beam spring with variable width can fulfil the same 
function as that with the uniform width. In addition, the 
maximum von Mises within the beam spring with variable 
width is constrained to be no higher than that within the beam 
spring with uniform width, which is 155.22 MPa. 

For trapezoidal width, there are two independent 
parameters to optimize, b0 and b1. If their range is set from 5 
mm to 13 mm, their optimal values from ANSYS Design 
Exploration are found to be 11.80 mm and 5.28 mm. The solid 
model and finite element mesh of the optimal trapezoidal 
beam spring are shown in Figures 11 and 12, respectively.  
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Fig. 11 The cantilever beam spring with trapezoidal width. 

The deflection at the free end is 2.48 mm and the 
maximum von Mises stress is 134.67 MPa, which are shown 
in Figures 13 and 14. The material volume of the trapezoidal 
beam spring is 1706.6 mm3, which is decreased by 14.7% 
compared with that of the uniform beam spring. 

 

Fig. 12 The finite element mesh of the cantilever beam spring with 
trapezoidal width. 

 

Fig. 13 The deflection of the cantilever beam spring with trapezoidal 
width. 

 

Fig. 14 The von Mises Stress of the cantilever beam spring with 
trapezoidal width. 

To further improve the material utilization efficiency, the 
straight lines of trapezoidal width can be replaced by spline 
interpolation curves as shown in Figure 6. There are now five 
independent width parameters (b0, b1, b2, b3 and b4) to be 
optimized. Their optimal values from ANSYS Design 
Exploration are (11.98, 10.63, 7.84, 6.42 and 5.17). The solid 
model and finite element mesh of the beam spring are shown 
in Figures 15 and 16, respectively.  

The deflection at the free end is 2.48 mm and the 
maximum von Mises stress is 133.34 MPa, which are shown 
in Figures 17 and 18. The material volume of the beam spring 
with spline width is 1693.1 mm3, which is a little below that of 
the trapezoidal beam spring. The material volume difference 
between spline and trapezoidal beam springs is minor. Using 
spline interpolation curves to replace straight lines does not 
contribute a lot in this case, but trapezoidal beam spring is just 
a special case of general spline beam spring although spline 
width takes more parameters to describe. 

 

Fig. 15 The cantilever beam spring with spline width. 

 

 

Fig. 16 The finite element mesh of the cantilever beam spring with spline 
width. 

 

 

Fig. 17 The deflection of the cantilever beam spring with spline width. 

 

 

Fig. 18 The von Mises Stress of the cantilever beam spring with spline 
width. 
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If the width of a beam spring is kept constant, its material 
utilization can be improved by making its thickness variable. 
As shown in Figure 5, there are two independent parameters 
(t0 and t1) to be optimized for a tapered beam spring. If their 
range is set from 1.0 mm to 3.0 mm, their optimal values from 
ANSYS Design Exploration are 2.45 mm and 1.02 mm. The 
solid model and finite element mesh of the tapered beam 
spring are shown in Figures 19 and 20, respectively.  

 

The deflection at the free end is 2.48 mm and the 
maximum von Mises stress is 104.06 MPa, which are shown 
in Figures 21 and 22. The material volume of the spline beam 
spring is 1738.6 mm3, which is decreased by 13% compared 
with the original uniform beam spring. The maximum von 
Mises stress for tapered beam spring is much lower than that 
of the uniform beam spring.  

 

Fig. 19 The cantilever beam spring with tapered thickness. 

 

Fig. 20 The finite element mesh of the cantilever beam spring with tapered 
thickness. 

 

Fig. 21 The deflection of the cantilever beam spring with tapered 
thickness. 

 

 

 

Fig. 22 The von Mises Stress of the cantilever beam spring with tapered 
thickness. 

Both its width and thickness of a cantilever beam spring 
can be made variable. When trapezoidal width and tapered 
thickness are adopted for a beam spring, four parameters (b0, 
b1, t0, t1) are needed to define its geometry. Their optimal 
values from ANSYS Design Exploration are 10.63 mm, 5.00 
mm, 2.43 mm, 1.33 mm. Their allowed change ranges are set 
as the same as above to get their optimal values. The solid 
model and finite element mesh of the beam spring with 
trapezoidal width and tapered thickness are shown in Figures 
23 and 24, respectively. 

The deflection at the free end is 2.48 mm and the 
maximum von Mises stress is 109.05 MPa, which are shown 
in Figures 25 and 26. The material volume of the beam spring 
is now 1520.2 mm3, which is decreased by 24% compared 
with the original uniform beam spring and is the smallest 
among all designs. 

 

Fig. 23 The cantilever beam spring with trapezoidal width and tapered 
thickness. 

 

Fig. 24 The finite element mesh of the cantilever beam spring with 
trapezoidal width and tapered thickness. 
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Fig. 25 The deflection of the cantilever beam spring with trapezoidal width 
and tapered thickness. 

 

Fig. 26 The von Mises Stress of the cantilever beam spring with 
trapezoidal width and tapered thickness. 

The design results from uniform cross section, trapezoidal 
width, tapered thickness, and combined trapezoidal width and 
tapered thickness are summarized in the following table. In 
each case, the beam spring has the same load (10 N), same 
deflection (-2.48 mm), and same spring rate (4.03 N/mm). 

 

Table 1   Design results for the cantilever beam spring  

Beam Spring 

Configuration 
Material Volume 

Maximum von 

Mises Stress 

Uniform Cross Section 2000 mm3 155.22 MPa 

Trapezoidal Width 1706.6 mm3 134.67 MPa 

Tapered Thickness 1738.6 mm3 104.06 MPa 

Combined Trapezoidal 

Width and Tapered 

Thickness 

1520.2 mm3 109.05 MPa 

 

As shown in Table 1, the beam spring with uniform cross 
section has the lowest material utilization efficiency and the 
highest maximum von Mises stress although it has the 
simplest shape and is the easiest to manufacture. The beam 
spring with combined trapezoidal width and tapered thickness 
has the highest material utilization efficiency, and its 
maximum von Mises stress is little bit higher than that of the 
beam spring with tapered thickness.  

 

 

 

 

V. CONCLUSIONS 

Although a cantilever beam spring with uniform cross 
section is simple and convenient for manufacturing, its 
material is not efficiently utilized. To improve the material 
utilization efficiency of a cantilever beam spring, its width or 
thickness or both can be made variable. A method for 
designing cantilever beam springs with nonuniform cross 
sections is presented in the paper. A designed cantilever beam 
spring is optimized for its minimum material volume under 
the constraints of desired spring rate, allowable stress, 
practical dimensions and external load.  

To design a cantilever beam spring, its solid model is 
created based on its geometric control parameters in ANSYS 
Design Modeler. Finite element analysis of the modeled 
cantilever beam spring is then conducted in ANSYS 
Mechanical to simulate its performance. The geometric 
control parameters are optimized in ANSYS Design 
Exploration through simulation results. The AMO 
optimization method is adopted in the paper to obtain optimal 
solutions. 
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