

An Unsupervised Diagnosis Tool for Locating

fine-grained Performance Anomalies in Cloud

Computing Systems

Saleem Malik S
1
, Maruthi G.B

2
, Pratap M.S

3
, S.P Prashanth Kumar 4

1,3,4Asst.Professor, CSE Dept, 2Asst. Professor, ECE Dept
1,2,3,4KVGCE, Sullia, Karnataka, India

1baronsaleem@gmail.com 2maruthgb@gmail.com 3pratapms@gmail.com
4prasahantheshwar2010@gmail.com

Abstract — Among cloud computing systems, performance

diagnosis is labor intensive in production. These type of systems

face many real world challenges, which the existing diagnosis

techniques for such distributed systems cannot effectively solve.

An efficient, unsupervised diagnosis tool for locating fine-grained

performance anomalies is still lacking in production cloud

computing systems. This paper proposes CloudDiag to bridge this

gap. Combining a statistical technique and a fast matrix recovery

algorithm, CloudDiag can efficiently pinpoint fine-grained causes

of the performance problems, which does not require any

domain-specific knowledge to the target system.
.

Keywords- Cloud computing, performance diagnosis and request

tracing

I. INTRODUCTION

 Performance diagnosis is labor-intensive, especially for

typical production cloud computing systems. In such systems,

a lot of software components bear a large number of replicas

(component instances) distributed in different physical nodes

in the cloud. They can be assembled into multiple types of

services, serving large amounts of user requests. The services

provisioned by the cloud are often prone to various

performance anomalies caused by software faults, unexpected

workload, or hardware failures. Such defects may however be

manifested only in a small part of component replicas, hiding

themselves in a large number of normal component replicas.

 Main objective of this paper is to achieve fine grained,

unsupervised and scalable performance diagnosis for

production cloud computing systems. In order to achieve this

objective we propose CloudDiag. CloudDiag periodically

collects the end-to-end tracing data (In particular, execution

time of method invocations) from each physical node in the

cloud. It then employs a customized Map-Reduce algorithm to

proactively analyze the tracing data. Specifically, it assembles

the tracing data of each user request, and classifies the tracing

data into different categories according to call trees of the

requests. When the cloud system is suffering performance

degradation (e.g., average response time of user requests is

larger than a threshold), a cloud operator can access

CloudDiag with its web interfaces to conduct a performance

diagnosis. With the request tracing data, CloudDiag will

perform a fast customized matrix recovery algorithm to

instantly identify the method invocations (together with the

replicas they locate) which contribute the most to the

performance anomaly. The whole process requires no domain

specific knowledge to the target service.

II. RELATED WORK

 Extensive work has employed explicit annotation

basedinstrumentation to conduct performance monitoring,

tuning and debugging for distributed systems. Work from past,

applies application-specific event schemas to correlate the

resource consumption of individual requests with the goal of

understanding performance also compare users’ actual

behavior with self-defined expectation to determine whether a

request is anomalous or not. It is very hard to construct these

models because they require much specific domain knowledge.

Compared to them, CloudDiag considers the intrinsic

characteristics of request latencies to determine the anomalous

method invocations, which requires no specific domain

knowledge[1][2].

 Existing system traces request call relationship in multi-

layers of Web service components and adopts a clustering

algorithm to group failure and success logs. It can only find

out the anomalous components. In comparison, CloudDiag can

identify the latency anomalous methods together with

corresponding physical replicas. Methods in past can be

utilized to identify the performance anomalies that manifest

themselves as the change in the ratios of the chosen call trees,

while CloudDiag can localize the latency-anomalous methods

within call trees[3][2].

 There are also many performance diagnosing techniques

that rely on specific types of data, combine console logs with

source codes to construct performance features and conducts

the principal component analysis (PCA) to detect problems.

However, these techniques generally focus on locating

anomalous logical components instead of replicas.

III. FRAMEWORK OF CLOUD-DIAG

 Performance anomalies in cloud systems will manifest

themselves as anomalous response time of user requests. Since

a service is composed of a lot of components, a service with

anomalous performance must have involved some components

with performance anomalies. A component typically has a lot

1

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

of replicas in a production cloud system; however, the

performance anomaly of a component may be manifested only

in a small part of its replicas. This will cause the performance

degradation of the involving service. Such performance

problems are the most difficult to locate, because the

anomalous methods hide themselves in numerous well-

functioning replicas. Therefore, to reduce human efforts in

pinpointing performance anomaly, a performance diagnosis

tool must first identify which component methods contribute to

the performance anomaly, and then locate the component

replicas that execute the methods. An efficient, unsupervised

diagnosing tool that can pinpoint the fine-grained causes of

performance anomalies is of critical importance to production

cloud computing systems. To this end, we propose CloudDiag,

a tool for performance diagnosis in production cloud

computing systems. Fig 1 provides a system-level overview of

CloudDiag. CloudDiag is composed of three major parts, i.e.,

1) collecting the performance data, 2) assembling the

performance data, and 3) identifying the primary causes of the

anomalies. These steps are summarized as follows.

Fig 1: Overview of CloudDiag

 First, CloudDiag traces user requests at a given sampling

rate to expose performance data. For the sampled requests,

each component replica records the performance data and

saves them in its local storage. An important consideration is

what kind of performance data CloudDiag should collect and

how. CloudDiag adopts an instrumentation-based approach

that collects the execution time of each component

method. Second, Assemble performance data. CloudDiag

should first assemble the performance data distributed in

numerous component replicas in a requestoriented way. In

other words, the performance data belonging to the same

requests are correlated together. CloudDiag will then analyze

such request-oriented performance data and infer the call tree

of each sampled request. A customized map-reduce process is

utilized to group requests into different categories based on

their call trees. Requests within one category share the same

call tree. Third, Identify the primary causes of anomalies.

CloudDiag then identifies the anomalous categories according

to their latency distribution. Then for each anomalous

category, a fast customized matrix recovery algorithm is

employed to identify the anomalous method invocations

together with the replicas they are located. [6][7]

IV. PERFORMANCE DATA COLLECTION

 We introduce what kind of performance data that

CloudDiag should collect and how to collect them. Our

instrumentation-based tracing approach will produce

performance data when a sampled request is being processed

in each component replica. Specifically, each component

method, when being invoked or returning, will generate a log

entry. The data structure of a tracing log entry is shown in Fig

3, which contains five items. Host indicates the machine where

the component replica locates. Timestamp records the time of

the event occurrence (i.e., a method invocation or a method

return). RequestID is the global identifier of a request. MID is

a unique identifier for request tracing purpose, which will be

discussed later. The Method field saves the name of the

method invoked. Lastly, Flag indicates whether this is a

method invocation or a method return. Fig 1 also shows two

example log entries that record the invocation of the

AliStorage.readFile method and its return. RequestID should

be unique for every request. It is assigned when a request

arrives the system. Typically a cloud service may have

multiple entry nodes for the same type of requests. To

guarantee the uniqueness of RequestID, an entry node will

assign the RequestID (a unique 64-bit integer) as the

concatenation of two integers: one is the unique number to

identify the entry node per se, and the other is incremental

with each new request. CloudDiag uses the invocation

relationship between methods to model a request. To obtain

such relationship, CloudDiag resorts to the chronological order

of the method invocations. One challenge of request tracing is

to cope with the clock drifts of nodes, which are inevitable in

production cloud systems. Previous approaches generally

assume that the clock drifts are negligible. However, this is not

true in production cloud computing systems[6][7].

 Even with a Network Time Protocol (NTP) to synchronize

the clocks, the deviations between the clocks of different cloud

nodes are still in millisecond-level. Previous approaches

simply employ only a global identifier (i.e., RequestID) to

mark the distributed tracing record and use their timestamps to

infer the invocation relationships with methods. As a result,

clock drifts may lead to the wrong order of method invocations

when merging the distributed logs generated in processing a

request. For example, the start time-stamp of the callee in one

host may be earlier than the start timestamp of the caller in

another host. To guarantee the order of the invoked methods,

we design hierarchical identifiers to trace a request.

Specifically, before a node calls a method in another node,

besides passing the RequestID to the callee, the caller also

generates an MID, a unique integer, for the callee. When a

request enters the first component method in the system (i.e.,

the request entry method), the MID of the method is initially

set identical to the RequestID. CloudDiag then records the

MIDs of the caller and the callee in the logs of the caller as

well. Fig 3 shows such a log format. Thus, CloudDiag can

recover the caller-callee relationships according to the MIDs.

The order of method invocations can then be correctly

recovered and an entire performance trace of a

2

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

request can thus be obtained.

V. DIAGNOSING ANOMALIES WITHOUT DOMAIN

KNOWLEDGE

 In this section, CloudDiag first employs a statistical

technique to detect anomalous categories that contain latency-

anomalous requests. Then, from anomalous categories, a fast

matrix recovery algorithm, namely, robust principal

component analysis (RPCA), is adopted to identify the

anomalous methods and instances. Details are as follows.

 A) Identifying Anomalous Categories

 Normal and anomalous replicas exist simultaneously when

performance problems occur. For a component, the same

service requests may pass through normal instances as well as

anomalous instances. The response latency of a request will be

influenced by anomalous instances that it passes through.

Normal and anomalous requests may share the same call tree

and be grouped into one category. Hence, the latency

distribution of requests within the same category

could be utilized to detect whether it contains latency

anomalous requests or not. Requests within one category have

the same call tree; hence, the response latencies should be

close to each other. A category is considered to be normal if

the latencies of requests within the category are clustered in a

specific range; on the contrary, a category is considered to be

anomalous if the latencies are over dispersed. In this regards,

we choose the coefficient of variation (CV) to measure the

distribution of a set of data. Let α be the threshold. A category

is defined to be anomalous if its CV is larger than α.

B) Identifying Anomalous Methods

 In an anomalous category of requests, our aim now is to

pinpoint the anomalous method invocations that are responsive

for the performance anomaly of the requests. For such a

category of requests, we can create an m × n matrix M, where

n is the number of the invoked methods in the corresponding

call tree and m is the number of the requests that bear the same

call tree. Mij denotes the execution time of the jth method

when depth-first traversing the call tree ofthe ith request.

Column M(j) denotes the invocation time vector of the jth

method. Intuitively, we can identify the anomalous method by

measuring the execution time deviation of each method one by

one. However, this cannot capture the correlations of the

invoked methods, and will hence cause imprecise diagnosis

results. Furthermore, such a statistical analysis can only

identify anomalous methods, but cannot find out on which

replicas the anomalous methods are executed. Hence, we

design an unsupervised machine learning algorithm to

automatically learn the characteristics of the invoked methods

and identify which methods are anomalous together with on

which replicas they are executed.

 Although PCA is one of the most popular algorithms for

anomaly detection, it only works well to the data in which the

errors (in our problem domain, errors in the data are caused by

the performance anomaly) follows the Gaussian distribution.

However, the execution time of the anomalous methods is

actually corrupted by large errors, which does not follow the

Gaussian-distribution assumption of PCA. Such large errors

caused by anomalous methods will cause PCA to produce

imprecise diagnosing results .

 To solve the problem, we propose to use the robust principal

component analysis (RPCA) for the anomaly detection task.

RPCA is an algorithm for high dimensional matrix completion.

When a matrix M is corrupted by gross sparse errors, RPCA

can decompose the full matrix M as: M = L+E, where L is a

low-rank matrix with non-corrupted columns and E is a sparse

matrix with a few non-zero corrupted columns. The matrix M

is the input of RPCA. Therefore, the problem of identifying

anomalous methods in a category is transferred into the

process of recovering a matrix with unknown corrupted

latency columns. After obtaining the non-corrupted matrix L

and error matrix E, we can identify the corrupted columns (i.e.,

the anomalous methods) from E. The anomalous methods refer

to those columns that are farthest from the true column space.

For the i-th column in original matrix M and non-corrupted

matrix L, the extension of deviation can be measured as:

β=cos θ= ǀǀM(i) ・L(i)ǀǀ1│ǀǀM(i)ǀǀ2ǀǀL(i)ǀǀ2 (1)

where θ represents the angle between column M(i) and column

L(i). The larger the angle is, the more deviation the column

L(i) is away from the true space. A method is defined to be

anomalous if β is smaller than a given threshold. For each

anomalous method (i.e., the corrupted column), anomalous

replicas are located by checking the entries of the corrupted

column in Matrix E. With the row and column indices of the

corrupted entries, we can get the physical addresses of

anomalous replicas from physical paths. Since the same

method (running on the same component replica) may be

identified to be anomalous in different categories, we calculate

the times that it is identified to be anomalous. The larger the

number of times is, the more suspicious the method is. Cloud-

Diag can then rank the methods in descending order of the

number of times that they are identified to be anomalous,

which can direct the operators to localize the primary cause of

performance anomaly

V. FUTURE WORK AND CONCLUSION

 Request tracing technologies have been proven effective in

performance debugging. In this paper, Cloud-Diag resorts to a

white-box instrumentation mechanism to trace service

requests, since the source codes of services are generally

available in typical production cloud systems. Note that such a

white-box performance data acquisition component of

CloudDiag can also be substituted with another tracing

mechanism if it can obtain the latency data of method

invocations. Another way to trace requests is via black-box

mechanisms.

 Black-box tracing mechanisms assume no knowledge of

the source codes. But, existing approaches generally cannot

directly obtain the latency data of method invocations. In this

regard, a black-box tracing mechanism can be deemed as a

tracing mechanism with the large granularity (e.g., in node

3

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

level). There is a tradeoff between tracing granularity and

debugging effort. As a result, more effort will be

increased in trouble-shooting the performance anomalies if a

black-box tracing mechanism is applied. To incorporate black-

box tracing mechanisms with CloudDiag, a future direction is

to explore blackbox tracing mechanisms so that a fine

granularity (i.e., in method invocation level) can be achieved.

To this end, the runtime instrumentation can be a promising

technique[7].

 This paper proposes CloudDiag, an efficient, unsupervised

diagnosis tool for locating finegrained performance anomalies.

REFERENCES

[1] A. Chanda, A. Cox, and W. Zwaenepoel, ―Whodunit:

Transactional profiling for multi-tier applications,‖ in ACM

SIGOPS Operating Systems Review, vol. 41, no. 3, 2007, pp. 17–

30.

[2] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, and Z.

Zhang, ―Precise, scalable, and online request tracing for multi-

tier services of black boxes,‖ IEEE Transactions on Parallel and

Distributed Systems, no. 99, pp. 1–16, 2010.

[3] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai, ―P-tracer:

Path-base performance profiling in cloud computing systems,‖ in

Proceedings of IEEE COMPSAC, 2012, pp. 509–514.

[4] A. Chanda, A. Cox, and W. Zwaenepoel, ―Whodunit:

Transactional profiling for multi-tier applications,‖ in ACM

SIGOPS Operating Systems Review, vol. 41, no. 3, 2007, pp. 17–

30. Z. Lin, M. Chen, L. Wu, and Y. Ma, ―The augmented

lagrange multiplier method for exact recovery of corrupted low

rank matrices,‖ Arxiv preprint arXiv:1009.5055, 2010.

[5] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal,

D. Beaver, S. Jaspan, and C. Shanbhag, ―Dapper, a large-scale

distributed systems tracing infrastructure,‖ Technical report

dapper-2010-1. Google, Tech. Rep., 2010.

[6] V. Emeakaroha, M. Netto, R. Calheiros, I. Brandic, R. Buyya,

and C. De Rose, ―Towards autonomic detection of sla violations

in cloud infrastructures,‖ Future Generation Computer Systems,

vol. 28, pp. 1017–1029, 2011.

[7] M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,

and E. Brewer, ―Path-based faliure and evolution management,‖

in Proceedings of USENIX NSDI, 2004, pp. 23– 36.

4

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14 Conference Proceedings

ISSN: 2278-0181

