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Abstract — Among cloud computing systems, performance 

diagnosis is labor intensive in production. These type of systems 

face many real world challenges, which the existing diagnosis 

techniques for such distributed systems cannot effectively solve. 

An efficient, unsupervised diagnosis tool for locating fine-grained 

performance anomalies is still lacking in production cloud 

computing systems. This paper proposes CloudDiag to bridge this 

gap. Combining a statistical technique and a fast matrix recovery 

algorithm, CloudDiag can efficiently pinpoint fine-grained causes 

of the performance problems, which does not require any 

domain-specific knowledge to the target system.  
.  

Keywords- Cloud computing, performance diagnosis and request 

tracing 

I. INTRODUCTION 

     Performance diagnosis is labor-intensive, especially for 

typical production cloud computing systems. In such systems, 

a lot of software components bear a large number of replicas 

(component instances) distributed in different physical nodes 

in the cloud. They can be assembled into multiple types of 

services, serving large amounts of user requests. The services 

provisioned by the cloud are often prone to various 

performance anomalies caused by software faults, unexpected 

workload, or hardware failures. Such defects may however be 

manifested only in a small part of component replicas, hiding 

themselves in a large number of normal component replicas. 

    Main objective of this paper is to achieve fine grained, 

unsupervised and scalable performance diagnosis for 

production cloud computing systems.  In order to achieve this 

objective we propose CloudDiag. CloudDiag periodically 

collects the end-to-end tracing data (In particular, execution 

time of method invocations) from each physical node in the 

cloud. It then employs a customized Map-Reduce algorithm to 

proactively analyze the tracing data. Specifically, it assembles 

the tracing data of each user request, and classifies the tracing 

data into different categories according to call trees of the 

requests. When the cloud system is suffering performance 

degradation (e.g., average response time of user requests is 

larger than a threshold), a cloud operator can access 

CloudDiag with its web interfaces to conduct a performance 

diagnosis. With the request tracing data, CloudDiag will 

perform a fast customized matrix recovery algorithm to 

instantly identify the method invocations (together with the 

replicas they locate) which contribute the most to the 

performance anomaly. The whole process requires no domain 

specific knowledge to the target service. 

II.   RELATED WORK 

    Extensive work has employed explicit annotation 

basedinstrumentation to conduct performance monitoring, 

tuning and debugging for distributed systems. Work from past, 

applies application-specific event schemas to correlate the 

resource consumption of individual requests with the goal of 

understanding performance also compare users’ actual 

behavior with self-defined expectation to determine whether a 

request is anomalous or not. It is very hard to construct these 

models because they require much specific domain knowledge. 

Compared to them, CloudDiag considers the intrinsic 

characteristics of request latencies to determine the anomalous 

method invocations, which requires no specific domain 

knowledge[1][2]. 

     Existing system traces request call relationship in multi-

layers of Web service components and adopts a clustering 

algorithm to group failure and success logs. It can only find 

out the anomalous components. In comparison, CloudDiag can 

identify the latency anomalous methods together with 

corresponding physical replicas. Methods in past can be 

utilized to identify the performance anomalies that manifest 

themselves as the change in the ratios of the chosen call trees, 

while CloudDiag can localize the latency-anomalous methods 

within call trees[3][2]. 

     There are also many performance diagnosing techniques 

that rely on specific types of data,  combine console logs with 

source codes to construct performance features and conducts 

the principal component analysis (PCA)  to detect problems. 

However, these techniques generally focus on locating 

anomalous logical components instead of replicas. 

 

III.        FRAMEWORK  OF CLOUD-DIAG 

 

     Performance anomalies in cloud systems will manifest 

themselves as anomalous response time of user requests. Since 

a service is composed of a lot of components, a service with 

anomalous performance must have involved some components 

with performance anomalies. A component typically has a lot 
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of replicas in a production cloud system; however, the 

performance anomaly of a component may be manifested only 

in a small part of its replicas. This will cause the performance 

degradation of the involving service. Such performance 

problems are the most difficult to locate, because the 

anomalous methods hide themselves in numerous well-

functioning replicas. Therefore, to reduce human efforts in 

pinpointing performance anomaly, a performance diagnosis 

tool must first identify which component methods contribute to 

the performance anomaly, and then locate the component 

replicas that execute the methods. An efficient, unsupervised 

diagnosing tool that can pinpoint the fine-grained causes of 

performance anomalies is of critical importance to production 

cloud computing systems. To this end, we propose CloudDiag, 

a tool for performance diagnosis in production cloud 

computing systems. Fig 1 provides a system-level overview of 

CloudDiag. CloudDiag is composed of three major parts, i.e., 

1) collecting the performance data, 2) assembling the 

performance data, and 3) identifying the primary causes of the 

anomalies. These steps are summarized as follows. 

 

     
Fig 1: Overview of CloudDiag 

    First, CloudDiag traces user requests at a given sampling 

rate to expose performance data. For the sampled requests, 

each component replica records the performance data and 

saves them in its local storage. An important consideration is 

what kind of performance data CloudDiag should collect and 

how. CloudDiag adopts an instrumentation-based approach 

that collects the execution time of each component 

method. Second, Assemble performance data. CloudDiag 

should first assemble the performance data distributed in 

numerous component replicas in a requestoriented way. In 

other words, the performance data belonging to the same 

requests are correlated together. CloudDiag will then analyze 

such request-oriented performance data and infer the call tree 

of each sampled request. A customized map-reduce process is 

utilized to group requests into different categories based on 

their call trees. Requests within one category share the same 

call tree. Third, Identify the primary causes of anomalies. 

CloudDiag then identifies the anomalous categories according 

to their latency distribution. Then for each anomalous 

category, a fast customized matrix recovery algorithm is 

employed to identify the anomalous method invocations 

together with the replicas they are located. [6][7] 

IV.        PERFORMANCE DATA COLLECTION 

      We introduce what kind of performance data that 

CloudDiag should collect and how to collect them. Our 

instrumentation-based tracing approach will produce 

performance data when a sampled request is being processed 

in each component replica. Specifically, each component 

method, when being invoked or returning, will generate a log 

entry. The data structure of a tracing log entry is shown in Fig 

3, which contains five items. Host indicates the machine where 

the component replica locates. Timestamp records the time of 

the event occurrence (i.e., a method invocation or a method 

return). RequestID is the global identifier of a request. MID is 

a unique identifier for request tracing purpose, which will be 

discussed later. The Method field saves the name of the 

method invoked. Lastly, Flag indicates whether this is a 

method invocation or a method return. Fig 1 also shows two 

example log entries that record the invocation of the 

AliStorage.readFile method and its return. RequestID should 

be unique for every request. It is assigned when a request 

arrives the system. Typically a cloud service may have 

multiple entry nodes for the same type of requests. To 

guarantee the uniqueness of RequestID, an entry node will 

assign the RequestID (a unique 64-bit integer) as the 

concatenation of two integers: one is the unique number to 

identify the entry node per se, and the other is incremental 

with each new request. CloudDiag uses the invocation 

relationship between methods to model a request. To obtain 

such relationship, CloudDiag resorts to the chronological order 

of the method invocations. One challenge of request tracing is 

to cope with the clock drifts of nodes, which are inevitable in 

production cloud systems. Previous approaches generally 

assume that the clock drifts are negligible. However, this is not 

true in production cloud computing systems[6][7]. 

    Even with a Network Time Protocol (NTP) to synchronize 

the clocks, the deviations between the clocks of different cloud 

nodes are still in millisecond-level.  Previous approaches 

simply employ only a global identifier (i.e., RequestID) to 

mark the distributed tracing record and use their timestamps to 

infer the invocation relationships with methods. As a result, 

clock drifts may lead to the wrong order of method invocations 

when merging the distributed logs generated in processing a 

request. For example, the start time-stamp of the callee in one 

host may be earlier than the start timestamp of the caller in 

another host. To guarantee the order of the invoked methods, 

we design hierarchical identifiers to trace a request. 

Specifically, before a node calls a method in another node, 

besides passing the RequestID to the callee, the caller also 

generates an MID, a unique integer, for the callee. When a 

request enters the first component method in the system (i.e., 

the request entry method), the MID of the method is initially 

set identical to the RequestID. CloudDiag then records the 

MIDs of the caller and the callee in the logs of the caller as 

well. Fig 3 shows such a log format. Thus, CloudDiag can 

recover the caller-callee relationships according to the MIDs. 

The order of method invocations can then be correctly 

recovered and an entire performance trace of a  
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request can thus be obtained.  

V.       DIAGNOSING ANOMALIES WITHOUT DOMAIN 

KNOWLEDGE 

   In this section, CloudDiag first employs a statistical 

technique to detect anomalous categories that contain latency-

anomalous requests. Then, from anomalous categories, a fast 

matrix recovery algorithm, namely, robust principal 

component analysis (RPCA), is adopted to identify the 

anomalous methods and instances. Details are as follows. 

    A) Identifying Anomalous Categories 

    Normal and anomalous replicas exist simultaneously when 

performance problems occur. For a component, the same 

service requests may pass through normal instances as well as 

anomalous instances. The response latency of a request will be 

influenced by anomalous instances that it passes through. 

Normal and anomalous requests may share the same call tree 

and be grouped into one category.  Hence, the latency 

distribution of requests within the same category 

could be utilized to detect whether it contains latency 

anomalous requests or not. Requests within one category have 

the same call tree; hence, the response latencies should be 

close to each other. A category is considered to be normal if 

the latencies of requests within the category are clustered in a 

specific range; on the contrary, a category is considered to be 

anomalous if the latencies are over dispersed. In this regards, 

we choose the coefficient of variation (CV)  to measure the 

distribution of a set of data. Let α be the threshold. A category 

is defined to be anomalous if its CV is larger than α. 

 

B) Identifying Anomalous Methods 

 In an anomalous category of requests, our aim now is to 

pinpoint the anomalous method invocations that are responsive 

for the performance anomaly of the requests. For such a 

category of requests, we can create an m × n matrix M, where 

n is the number of the invoked methods in the corresponding 

call tree and m is the number of the requests that bear the same 

call tree. Mij denotes the execution time of the jth method 

when depth-first traversing the call tree ofthe ith request. 

Column M(j) denotes the invocation time vector of the jth 

method. Intuitively, we can identify the anomalous method by 

measuring the execution time deviation of each method one by 

one. However, this cannot capture the correlations of the 

invoked methods, and will hence cause imprecise diagnosis 

results. Furthermore, such a statistical analysis can only 

identify anomalous methods, but cannot find out on which 

replicas the anomalous methods are executed. Hence, we 

design an unsupervised machine learning algorithm to 

automatically learn the characteristics of the invoked methods 

and identify which methods are anomalous together with on 

which replicas they are executed.  

     Although PCA is one of the most popular algorithms for 

anomaly detection, it only works well to the data in which the 

errors (in our problem domain, errors in the data are caused by 

the performance anomaly) follows the Gaussian distribution. 

However, the execution time of the anomalous methods is 

actually corrupted by large errors, which does not follow the 

Gaussian-distribution assumption of PCA. Such large errors 

caused by anomalous methods will cause PCA to produce 

imprecise diagnosing results .  

    To solve the problem, we propose to use the robust principal 

component analysis (RPCA)  for the anomaly detection task. 

RPCA is an algorithm for high dimensional matrix completion. 

When a matrix M is corrupted by gross sparse errors, RPCA 

can decompose the full matrix M as: M = L+E, where L is a 

low-rank matrix with non-corrupted columns and E is a sparse 

matrix with a few non-zero corrupted columns. The matrix M 

is the input of RPCA. Therefore, the problem of identifying 

anomalous methods in a category is transferred into the 

process of recovering a matrix with unknown corrupted 

latency columns. After obtaining the non-corrupted matrix L 

and error matrix E, we can identify the corrupted columns (i.e., 

the anomalous methods) from E. The anomalous methods refer 

to those columns that are farthest from the true column space. 

For the i-th column in original matrix M and non-corrupted 

matrix L, the extension of deviation can be measured as: 

β=cos θ= ǀǀM(i) ・L(i)ǀǀ1│ǀǀM(i)ǀǀ2ǀǀL(i)ǀǀ2                            (1) 

where θ represents the angle between column M(i) and column 

L(i). The larger the angle is, the more deviation the column 

L(i) is away from the true space. A method is defined to be 

anomalous if β is smaller than a given threshold. For each 

anomalous method (i.e., the corrupted column), anomalous 

replicas are located by checking the entries of the corrupted 

column in Matrix E. With the row and column indices of the 

corrupted entries, we can get the physical addresses of 

anomalous replicas from physical paths. Since the same 

method (running on the same component replica) may be 

identified to be anomalous in different categories, we calculate 

the times that it is identified to be anomalous. The larger the 

number of times is, the more suspicious the method is. Cloud-

Diag can then rank the methods in descending order of the 

number of times that they are identified to be anomalous, 

which can direct the operators to localize the primary cause of 

performance anomaly 

V. FUTURE WORK AND CONCLUSION 

     Request tracing technologies have been proven effective in 

performance debugging. In this paper, Cloud-Diag resorts to a 

white-box instrumentation mechanism to trace service 

requests, since the source codes of services are generally 

available in typical production cloud systems. Note that such a 

white-box performance data acquisition component of 

CloudDiag can also be substituted with another tracing 

mechanism if it can obtain the latency data of method 

invocations. Another way to trace requests is via black-box 

mechanisms.  

     Black-box tracing mechanisms  assume no knowledge of 

the source codes. But, existing approaches generally cannot 

directly obtain the latency data of method invocations. In this 

regard, a black-box tracing mechanism can be deemed as a 

tracing mechanism with the large granularity (e.g., in node 
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level). There is a tradeoff between tracing granularity and 

debugging effort. As a result, more effort will be  

increased in trouble-shooting the performance anomalies if a 

black-box tracing mechanism is applied. To incorporate black-

box tracing mechanisms with CloudDiag, a future direction is 

to explore blackbox tracing mechanisms so that a fine 

granularity (i.e., in method invocation level) can be achieved. 

To this end, the runtime instrumentation  can be a promising 

technique[7].  

    This paper proposes CloudDiag, an efficient, unsupervised 

diagnosis tool for locating finegrained performance anomalies.  
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