International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

An Unsupervised Diagnosis Tool for Locating
fine-grained Performance Anomalies in Cloud
Computing Systems

Saleem Malik S*, Maruthi G.B?, Pratap M.S®, S.P Prashanth Kumar *
134 Asst.Professor, CSE Dept, 2Asst. Professor, ECE Dept
1234KV/GCE, Sullia, Karnataka, India
“maruthgb@gmail.com Spratapms@gmail.com

haronsaleem@gmail.com “prasahantheshwar2010@gmail.com

Abstract — Among cloud computing systems, performance
diagnosis is labor intensive in production. These type of systems
face many real world challenges, which the existing diagnosis
techniques for such distributed systems cannot effectively solve.
An efficient, unsupervised diagnosis tool for locating fine-grained
performance anomalies is still lacking in production cloud
computing systems. This paper proposes CloudDiag to bridge this
gap. Combining a statistical technique and a fast matrix recovery
algorithm, CloudDiag can efficiently pinpoint fine-grained causes
of the performance problems, which does not require any
domain-specific knowledge to the target system.

Keywords- Cloud computing, performance diagnosis and request
tracing

I. INTRODUCTION

Performance diagnosis is labor-intensive, especially: for
typical production cloud computing systems. In such systems,
a lot of software components bear a large number of replicas
(component instances) distributed in different physical nodes
in the cloud. They can be assembled into multiple types of
services, serving large amounts of user requests. The services
provisioned by the cloud are often prone to various
performance anomalies caused by software faults, unexpected
workload, or hardware failures. Such defects may however be
manifested only in a small part of component replicas, hiding
themselves in a large number of normal component replicas.

Main objective of this paper is to achieve fine grained,
unsupervised and scalable performance diagnosis for
production cloud computing systems. In order to achieve this
objective we propose CloudDiag. CloudDiag periodically
collects the end-to-end tracing data (In particular, execution
time of method invocations) from each physical node in the
cloud. It then employs a customized Map-Reduce algorithm to
proactively analyze the tracing data. Specifically, it assembles
the tracing data of each user request, and classifies the tracing
data into different categories according to call trees of the
requests. When the cloud system is suffering performance
degradation (e.g., average response time of user requests is
larger than a threshold), a cloud operator can access
CloudDiag with its web interfaces to conduct a performance
diagnosis. With the request tracing data, CloudDiag will
perform a fast customized matrix recovery algorithm to
instantly identify the method invocations (together with the

replicas they locate) which contribute the most to the
performance anomaly. The whole process requires no domain
specific knowledge to the target service.

Il. RELATED WORK

Extensive work has employed explicit annotation
basedinstrumentation to conduct performance monitoring,
tuning and debugging for distributed systems. Work from past,
applies application-specific event schemas to correlate the
resource consumption of individual requests with the goal of
understanding performance also compare users’ actual
behavior with self-defined expectation to determine whether a
request is anomalous or not. It is very hard to construct these
models because they require much specific domain knowledge.
Compared to them, CloudDiag considers the intrinsic
characteristics of request latencies to determine the anomalous
method invocations, which requires no specific domain
knowledge[1][2].

Existing system traces request call relationship in multi-
layers of Web service components and adopts a clustering
algorithm to group failure and success logs. It can only find
out the anomalous components. In comparison, CloudDiag can
identify the latency anomalous methods together with
corresponding physical replicas. Methods in past can be
utilized to identify the performance anomalies that manifest
themselves as the change in the ratios of the chosen call trees,
while CloudDiag can localize the latency-anomalous methods
within call trees[3][2].

There are also many performance diagnosing techniques
that rely on specific types of data, combine console logs with
source codes to construct performance features and conducts
the principal component analysis (PCA) to detect problems.
However, these techniques generally focus on locating
anomalous logical components instead of replicas.

I1. FRAMEWORK OF CLOUD-DIAG

Performance anomalies in cloud systems will manifest
themselves as anomalous response time of user requests. Since
a service is composed of a lot of components, a service with
anomalous performance must have involved some components
with performance anomalies. A component typically has a lot

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

of replicas in a production cloud system; however, the
performance anomaly of a component may be manifested only
in a small part of its replicas. This will cause the performance
degradation of the involving service. Such performance
problems are the most difficult to locate, because the
anomalous methods hide themselves in numerous well-
functioning replicas. Therefore, to reduce human efforts in
pinpointing performance anomaly, a performance diagnosis
tool must first identify which component methods contribute to
the performance anomaly, and then locate the component
replicas that execute the methods. An efficient, unsupervised
diagnosing tool that can pinpoint the fine-grained causes of
performance anomalies is of critical importance to production
cloud computing systems. To this end, we propose CloudDiag,
a tool for performance diagnosis in production cloud
computing systems. Fig 1 provides a system-level overview of
CloudDiag. CloudDiag is composed of three major parts, i.e.,
1) collecting the performance data, 2) assembling the
performance data, and 3) identifying the primary causes of the
anomalies. These steps are summarized as follows.

-———-—-I Diagnosing
. J

) etz

[\ dhoormal categaries

ss I
V.'e'n Interfaces ‘)_/‘ L :
T

1) Rantfng
anumnal methods /

]hnkec anomalon:
methods and instances

Fig 1: Overview of CloudDiag

First, CloudDiag traces user requests at a given sampling
rate to expose performance data. For the sampled requests,
each component replica records the performance data and
saves them in its local storage. An important consideration is
what kind of performance data CloudDiag should collect and
how. CloudDiag adopts an instrumentation-based approach
that collects the execution time of each component
method. Second, Assemble performance data. CloudDiag
should first assemble the performance data distributed in
numerous component replicas in a requestoriented way. In
other words, the performance data belonging to the same
requests are correlated together. CloudDiag will then analyze
such request-oriented performance data and infer the call tree
of each sampled request. A customized map-reduce process is
utilized to group requests into different categories based on
their call trees. Requests within one category share the same
call tree. Third, Identify the primary causes of anomalies.
CloudDiag then identifies the anomalous categories according
to their latency distribution. Then for each anomalous
category, a fast customized matrix recovery algorithm is
employed to identify the anomalous method invocations
together with the replicas they are located. [6][7]

IV. PERFORMANCE DATA COLLECTION

We introduce what kind of performance data that
CloudDiag should collect and how to collect them. Our
instrumentation-based tracing approach will produce
performance data when a sampled request is being processed
in each component replica. Specifically, each component
method, when being invoked or returning, will generate a log
entry. The data structure of a tracing log entry is shown in Fig
3, which contains five items. Host indicates the machine where
the component replica locates. Timestamp records the time of
the event occurrence (i.e., a method invocation or a method
return). RequestID is the global identifier of a request. MID is
a unique identifier for request tracing purpose, which will be
discussed later. The Method field saves the name of the
method invoked. Lastly, Flag indicates whether this is a
method invocation or a method return. Fig 1 also shows two
example log entries that record the invocation of the
AliStorage.readFile method and its return. RequestiD should
be unique for every request. It is assigned when a request
arrives the system. Typically a cloud service may have
multiple entry nodes for the same type of requests. To
guarantee the uniqueness of RequestlD, an entry node will
assign the RequestlD (a unique 64-bit integer) as the
concatenation of two integers: one is the unique number to
identify the entry node per se, and the other is incremental
with- each new request. CloudDiag uses the invocation
relationship between methods to model a request. To obtain
such relationship, CloudDiag resorts to the chronological order
of the method invocations. One challenge of request tracing is
to cope with the clock drifts of nodes, which are inevitable in
production cloud systems. Previous approaches generally
assume that the clock drifts are negligible. However, this is not
true in production cloud computing systems[6][7].

Even with a Network Time Protocol (NTP) to synchronize
the clocks, the deviations between the clocks of different cloud
nodes are still in millisecond-level. Previous approaches
simply employ only a global identifier (i.e., RequestiD) to
mark the distributed tracing record and use their timestamps to
infer the invocation relationships with methods. As a result,
clock drifts may lead to the wrong order of method invocations
when merging the distributed logs generated in processing a
request. For example, the start time-stamp of the callee in one
host may be earlier than the start timestamp of the caller in
another host. To guarantee the order of the invoked methods,
we design hierarchical identifiers to trace a request.
Specifically, before a node calls a method in another node,
besides passing the RequestlD to the callee, the caller also
generates an MID, a unique integer, for the callee. When a
request enters the first component method in the system (i.e.,
the request entry method), the MID of the method is initially
set identical to the RequestlD. CloudDiag then records the
MIDs of the caller and the callee in the logs of the caller as
well. Fig 3 shows such a log format. Thus, CloudDiag can
recover the caller-callee relationships according to the MIDs.
The order of method invocations can then be correctly
recovered and an entire performance trace of a

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

request can thus be obtained.

V. DIAGNOSING ANOMALIES WITHOUT DOMAIN
KNOWLEDGE

In this section, CloudDiag first employs a statistical
technique to detect anomalous categories that contain latency-
anomalous requests. Then, from anomalous categories, a fast
matrix recovery algorithm, namely, robust principal
component analysis (RPCA), is adopted to identify the
anomalous methods and instances. Details are as follows.

A) Identifying Anomalous Categories

Normal and anomalous replicas exist simultaneously when
performance problems occur. For a component, the same
service requests may pass through normal instances as well as
anomalous instances. The response latency of a request will be
influenced by anomalous instances that it passes through.
Normal and anomalous requests may share the same call tree
and be grouped into one category. Hence, the latency
distribution of requests within the same category
could be utilized to detect whether it contains latency
anomalous requests or not. Requests within one category have
the same call tree; hence, the response latencies should be
close to each other. A category is considered to be normal if
the latencies of requests within the category are clustered in a
specific range; on the contrary, a category is considered to be
anomalous if the latencies are over dispersed. In this regards,
we choose the coefficient of variation (CV) to measure the
distribution of a set of data. Let o be the threshold. A category
is defined to be anomalous if its CV is larger than a.

B) Identifying Anomalous Methods

In an anomalous category of requests, our aim now is to
pinpoint the anomalous method invocations that are responsive
for the performance anomaly of the requests. For such a
category of requests, we can create an m x n matrix M, where
n is the number of the invoked methods in the corresponding
call tree and m is the number of the requests that bear the same
call tree. Mij denotes the execution time of the jth method
when depth-first traversing the call tree ofthe ith request.
Column M(j) denotes the invocation time vector of the jth
method. Intuitively, we can identify the anomalous method by
measuring the execution time deviation of each method one by
one. However, this cannot capture the correlations of the
invoked methods, and will hence cause imprecise diagnosis
results. Furthermore, such a statistical analysis can only
identify anomalous methods, but cannot find out on which
replicas the anomalous methods are executed. Hence, we
design an unsupervised machine learning algorithm to
automatically learn the characteristics of the invoked methods
and identify which methods are anomalous together with on
which replicas they are executed.

Although PCA is one of the most popular algorithms for
anomaly detection, it only works well to the data in which the
errors (in our problem domain, errors in the data are caused by
the performance anomaly) follows the Gaussian distribution.
However, the execution time of the anomalous methods is
actually corrupted by large errors, which does not follow the

Gaussian-distribution assumption of PCA. Such large errors
caused by anomalous methods will cause PCA to produce
imprecise diagnosing results .

To solve the problem, we propose to use the robust principal
component analysis (RPCA) for the anomaly detection task.
RPCA is an algorithm for high dimensional matrix completion.
When a matrix M is corrupted by gross sparse errors, RPCA
can decompose the full matrix M as: M = L+E, where L is a
low-rank matrix with non-corrupted columns and E is a sparse
matrix with a few non-zero corrupted columns. The matrix M
is the input of RPCA. Therefore, the problem of identifying
anomalous methods in a category is transferred into the
process of recovering a matrix with unknown corrupted
latency columns. After obtaining the non-corrupted matrix L
and error matrix E, we can identify the corrupted columns (i.e.,
the anomalous methods) from E. The anomalous methods refer
to those columns that are farthest from the true column space.
For the i-th column in original matrix M and non-corrupted
matrix L, the extension of deviation can be measured as:

B=cos 6= IM(i) * L(i)ll, | IM(i)lI,IL(i)!l, 1)

where 0 represents the angle between column M(i) and column
L(i). The larger the angle is, the more deviation the column
L(i) is away from the true space. A method is defined to be
anomalous if B is smaller than a given threshold. For each
anomalous method (i.e., the corrupted column), anomalous
replicas are located by checking the entries of the corrupted
column in Matrix E. With the row and column indices of the
corrupted entries, we can get the physical addresses of
anomalous replicas from physical paths. Since the same
method (running on the same component replica) may be
identified to be anomalous in different categories, we calculate
the times that it is identified to be anomalous. The larger the
number of times is, the more suspicious the method is. Cloud-
Diag can then rank the methods in descending order of the
number of times that they are identified to be anomalous,
which can direct the operators to localize the primary cause of
performance anomaly

V. FUTURE WORK AND CONCLUSION

Request tracing technologies have been proven effective in
performance debugging. In this paper, Cloud-Diag resorts to a
white-box instrumentation mechanism to trace service
requests, since the source codes of services are generally
available in typical production cloud systems. Note that such a
white-box performance data acquisition component of
CloudDiag can also be substituted with another tracing
mechanism if it can obtain the latency data of method
invocations. Another way to trace requests is via black-box
mechanisms.

Black-box tracing mechanisms assume no knowledge of
the source codes. But, existing approaches generally cannot
directly obtain the latency data of method invocations. In this
regard, a black-box tracing mechanism can be deemed as a
tracing mechanism with the large granularity (e.g., in node

www.ijert.org

level). There is a tradeoff between tracing granularity and
debugging effort. As a result, more effort will be

increased in trouble-shooting the performance anomalies if a
black-box tracing mechanism is applied. To incorporate black-
box tracing mechanisms with CloudDiag, a future direction is
to explore blackbox tracing mechanisms so that a fine
granularity (i.e., in method invocation level) can be achieved.
To this end, the runtime instrumentation can be a promising
technique[7].

This paper proposes CloudDiag, an efficient, unsupervised
diagnosis tool for locating finegrained performance anomalies.

REFERENCES

[1] A. Chanda, A. Cox, and W. Zwaenepoel, “Whodunit:
Transactional profiling for multi-tier applications,” in ACM
SIGOPS Operating Systems Review, vol. 41, no. 3, 2007, pp. 17—
30.

[2] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, and Z.
Zhang, “Precise, scalable, and online request tracing for multi-
tier services of black boxes,” IEEE Transactions on Parallel and
Distributed Systems, no. 99, pp. 1-16, 2010.

[31 H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai, “P-tracer:
Path-base performance profiling in cloud computing systems,” in
Proceedings of IEEE COMPSAC, 2012, pp. 509-514.

[4] A. Chanda, A. Cox, and W. Zwaenepoel, “Whodunit:
Transactional profiling for multi-tier applications,” in ACM
SIGOPS Operating Systems Review, vol. 41, no. 3, 2007, pp. 17—
30. Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented
lagrange multiplier method for exact recovery of corrupted low
rank matrices,” Arxiv preprint arXiv:1009.5055, 2010.

[5] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale
distributed systems tracing infrastructure,” Technical report
dapper-2010-1. Google, Tech. Rep., 2010.

[6] V. Emeakaroha, M. Netto, R. Calheiros, I. Brandic, R. Buyya,
and C. De Rose, “Towards autonomic detection of sla violations
in cloud infrastructures,” Future Generation Computer Systems,
vol. 28, pp. 1017-1029, 2011.

[71 M. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox,
and E. Brewer, “Path-based faliure and evolution management,”
in Proceedings of USENIX NSDI, 2004, pp. 23— 36.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

