

SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

Master of Technology Degree Program

HIT 8000

Thesis

An Organisational Framework For Continuous Integration, Deployment and

Testing in DevOps Environment

Academic Year 2022 – 2023

DEDICATION

Special dedication goes to my family, my wife Chipo and children Ryan, Reina and Ranielle. Also, special

mention to my colleagues Nyasha Mutonhodza, Tafadzwa Manyetu and the 2022 MTech Cloud Computing

Class. You can do it!

ACKNOWLEDGEMENTS

I am grateful to all those who I have ha the pleasure to work with during this another relate projects. Each

and of the members of the dissertation committee has provide me extensive personnel and professional

guidance. Special mention goes to my project supervisor Mr Mutandavari who taught me a great deal about

scientific research. I wish also to acknowledge ECOCASH Holdings to explore the Cloud Infrastructure

Devops

725

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

ABSTRACT

In the recent past, software release has been going through some major transformation. With software devel-

opment becoming everything, most software developers are now trying to adapt to this high demand, and

automation has become inevitable. Most organisations have adopted the use of pipelines of continuous Inte-

gration (CI) and continuous development (CD). This has been developed because of the over demanding for

deployment and delivery of new software releases. This faster and continuous software delivery is made pos-

sible through DevOps. It uses the Agile methodology in which developers work together closely with infra-

structure engineers to achieve the faster delivery, and deployment of applications more quickly and reliably.

This Organisational Framework for Continuous Integration, Deployment and Testing in DevOps Environment

overcomes the delivery challenges by improving the time to market, testing of release, availability. Based on

experimental results, we demonstrate the advantages of for Continuous Integration, Deployment and Testing.

This solution provides an effective and efficient way to generate, manage, customize, and automate Agile-

based CI and CD framework through automated pipelines. This is demonstrate using a Kubernetes cluster

using docker containers. The cluster works as a container orchestration tool. Rancher cluster manager is used

to manage the cluster. Changing the principles of this solution and expanding it into multiple platforms (win-

dows) will be addressed in a future discussion.

Key word: CI/CD (continuous Integration/ continuous development), Kubernetes, Docker, Cluster, DevOps,

Containers, rancher.

726

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Contents
RELEASE FORM .. Error! Bookmark not defined.

APPROVAL FORM ... Error! Bookmark not defined.

DEDICATION .. i

ACKNOWLEDGEMENTS .. i

ABSTRACT ... ii

LIST OF FIGURES ... v

LIST OF ACRONYMS .. v

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.0 Introduction .. 1

1.1 Background to the Study .. 1

1.2 Project Rationale .. 2

1.3 DevOps Overview .. 3

1.4 Aims ... 3

1.5 Objectives .. 4

1.6 Scope of the project ... 4

1.7 Chapter Summary .. 4

CHAPTER 2 .. 5

LITERATURE REVIEW ... 5

2.0. Introduction ... 5

2.1 Theoretical framework ... 5

2.1.1 DevOps Maturity Model (DMM) ... 5

2.2 Conceptual framework ... 5

2.3 DevOps in the Real World ... 7

2.4 Automation in DevOps .. 10

2.5 Benefits of adopting DevOps in Organisations ... 11

2.6 Current DevOps practices and tools .. 12

2.7 Challenges of Adopting DevOps in Organisations .. 13

2.8 Chapter summary ... 14

CHAPTER 3 .. 15

RESEARCH METHODOLOGY... 15

3.1 Introduction .. 15

3.2 The research methodology ... 15

3.3 The design science Research process .. 16

3.4 Research Population... 17

3.4.1 Sampling and Selection of research participants .. 18

727

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

3.5 Data Collection Instruments .. 18

3.5.1 Document analysis .. 18

3.5.2 Structured Interviews .. 18

3.5.3 Experiments .. 20

3.6 Ethical consideration .. 23

3.7 Chapter Summary .. 23

CHAPTER 4 .. 24

METHODS/FINDINGS .. 24

4.0 Introduction .. 24

4.1 Methods/findings: .. 24

4.2 Spring boot code .. 25

4.3 Economic analysis ... 27

4.4 Environmental assessment ... 27

CHAPTER 5 .. 28

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS ... 28

5.0 Introduction .. 28

5.1 Summary .. 28

5.2 Conclusions .. 28

5.3 Recommendations .. 29

5.4 Contributions.. 29

5.5 Limitations ... 29

5.6 Limitations of proposed solution ... 29

5.7 Limitations of the whole research .. 29

5.8 Further research ... 30

REFERENCES .. 31

APPENDICES ... 33

Appendix I – Permission Letter ... 33

Appendix II – Structured Interview Guide .. 33

Appendix III – Proposed Deployment Flow Architecture Diagram .. 34

728

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

LIST OF FIGURES

The DevOps Reference Architecture 19

Proposed Deployment Flow Diagram 32

CI/CD pipeline workflow (Truong and Klein, 2020) 21

The mixed methods approach design (Amaradri and Nutalapati, 2016) 26

Design Science Research Model (adopted from Blomberg (2015)) 32

Application deployment process 34

Software release flow 35

Docker container dashboard 36

Kubernetes dashboard 37

LIST OF ACRONYMS

CD Continuous Development

CI Continuous Integration

729

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

CHAPTER 1

INTRODUCTION

1.0 Introduction

The Continuous Integration, Deployment, and Testing framework's main objective has been characterised as

the use of automated and computerised methods to transfer software between testing and production

environments. Throughout the software delivery lifecycle, this process is both reliable and repeatable (SDLC).

Among other things, the framework is anticipated to address software development issues such as average

deployments per sprint, increasing the average number of successful deployments, reducing the average time

per deployment, and mean time to execute repairs.

1.1 Background to the Study

The operation and operating environment of software companies have been greatly influenced by factors such

as increased business competitiveness, rapid changes in technology, and market needs, resulting in the

common challenge to enterprises of faster and more frequent software delivery (Amaradri and Nutalapati,

2016). Consumers' ever-changing needs impose an expectation for quick responses to their needs and

requirements. Yang et al. (2020) discovered that software enterprises are responding with frequent releases,

updates, and upgrades, as well as facilities for customers to provide continuous feedback, whereas previously

they waited months for a product to release or act on customer feedback. Companies such as Ecocash, Amazon,

Facebook, and others deploy software to customers on a regular basis, and by doing so, they increase their

competitive advantage over their competitors. Due to both technical and non-technical issues, it is difficult to

maintain a perfect business model while balancing technological change, and firms must be lean and agile

across the whole software development lifecycle in order to overcome these difficulties. The need for

automation procedures to be implemented grows tremendously as technology advances.

According to Wiedemann et al. (2020), agile software development practices have replaced waterfall software

development practices over the past few decades, and this transition is unavoidably and unquestionably

bringing businesses, operations, and software developers closer together in the direction of the goals they

would have jointly established. In order to support this merger between operations and software developers,

the software market introduced a sizable number of proprietary and open-source solutions. The cited

proprietary and open-source solutions have since been developed and enhanced, which has resulted in the

introduction of new processes including continuous integration (CI), continuous delivery (CDE), and

continuous deployment (CD). In this research, a framework for continuous integration, deployment, and

730

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

testing in a DevOps environment is being built and developed in order to assess and describe the existing

status of CI/CDE/CD and establish a better framework.

1.1.1 Challenges with current deployment processes

The fundamental issue with manual deployments is that they are more error-prone and buggy than automated

ones. The primary cause is because manual operations are vulnerable to human error:

Quick deployment. Copying and pasting deployment artifacts, as well as manually restarting services, are all

manual processes (which sometimes failed). This has made the deployment procedure take longer.

• Additional undocumented server modifications made to accommodate particular code cause the

configuration to deviate farther from the predefined state and the test environment. As a result, tests became

unreliable and allowed defects to pass because of variations between the environments used for testing and

production.

• Rewind procedure: As with deployment, the process on its own takes time, which results in more downtime,

affecting the mean time to recover.

• Human Influence. Similar to how automated systems can duplicate things precisely, manual operations

cannot. Human errors occur despite the finest efforts and greatest caution.

1.2 Project Rationale

1.2.1 Challenges for Development Team:

Developers are motivated and eager to adopt new strategies and technology to address the problems facing

organisations. They do, however, confront a number of difficulties, such as the following:

• There is a lot of pressure for deliveries to be made on time due to the competitive market.

• They also need to support the implementation of new capabilities and production-ready code management.

• Because the release cycle is lengthy, the development team must make a number of assumptions before

deploying the programme. It takes longer in this situation to fix any problems that came up during

deployment in the production or staging environment.

1.2.2 Challenges for Operations Team:

731

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

As they search for stability, the operations staff is constantly cautious when changing any resources or

utilising any new technologies or approaches. They do, however, confront a number of difficulties, such as

the following:

• Resource contention: managing rising resource demands is highly challenging

• Modification or redesign: This is necessary for the programme to run in a production setting.

• Diagnosing and Resolving: Following the separation of application deployment, they must identify and fix

production-related problems.

1.3 DevOps Overview

Instead of delivering a large number of application features, businesses are attempting to test whether a small

number of features can be rolled-out to their customers through a series of release iterations. Due of its many

advantages, such as greater software quality and quick user feedback, this encourages high customer

satisfaction. The following requirements must be met by businesses in order to achieve these objectives:

• Increased deployment frequency,

• a shorter lead time between fixes,

• and a faster mean time to recovery in the event that a new release crashes the application

All of these goals are expected to be accomplished by the DevOps CI/C system, which also aids with seamless

delivery. DevOps has been used by local companies including Old Mutual, PMI, and Econet Wireless to attain

performance levels that were unimaginable just a few years ago. They perform dozens of deployments each

day while providing the highest levels of security, stability, and dependability.

DevOps is a framework for processes that ensures collaboration between the development and operations

teams so that code may be sent to production environments more quickly in an automated and repeatable

manner. The phrases "development" and "operations" are combined to form the term "DevOps." The pace at

which apps and services are delivered can be increased with the aid of DevOps. It enables businesses to

provide effective customer service and boost their marketability. DevOps can be summed up as an

improvement in communication and collaboration between development and IT operations.

1.4 Aims

732

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

This study's primary goal was to clarify how organizational framework for continuous integration,

deployment, and testing in a DevOps environment improves software delivery. It sought to address the

financial (cost-serving), internal, and innovative perspectives of the consumer.

1.5 Objectives

1. To come-up with continuous integration of DevOps tools that will enhance system performance.

2. To automate deployment in order to eliminate system bugs, and human interference.

3. To test the deployment system using the container orchestration tools and Kubernetes clusters

1.6 Scope of the project

The scope of this process is delimited to the following:

• Integrating DevOps tools (GIT, Maven, Docker, Kubernetes) to come up with a deployment

automation process.

• Management of all deployment through a central management portal (ranger)

• Create a central repository to keep track of all deployments in case of rollbacks

1.7 Chapter Summary

This chapter introduced the problem and how it is manifesting in the current systems and the proposed design

to innovate and circumvent some of the current challenges in continuous development, deployment and testing

in a DevOps environment. The challenges with the current deployment methods and strategies were exhumed

and exposed which this project aims to improve and make the process smoother, effective and efficient to

encourage innovation. The next chapter reviews literature related to DevOps, development, deployment and

system testing.

733

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

CHAPTER 2

LITERATURE REVIEW

2.0. Introduction

This chapter is a summary of earlier research that is pertinent to this topic. A brief summary of the general

research on strategic business-IT alignment is provided in this section, along with discussion of research gaps

on operational alignment and misalignment that point to the need for new theories, models, and frameworks.

The section also provides the foundation for a comparison of other continuous integration, deployment, and

testing methods for software development and the DevOps environment.

2.1 Theoretical framework

According to Creswell and Creswell (2018) theoretical framework consists of concepts, together with their

definitions, and existing theory/theories that are used for a particular study. The theoretical framework must

demonstrate an understanding of theories and concepts that are relevant to the phenomena under study. This

study will be guided by the DevOps Maturity Model (DMM) propounded at Capgemini by Menzel and

Macaulay (2015)

2.1.1 DevOps Maturity Model (DMM)

It is impossible to implement DevOps with a single project. Organizations must deploy tools and procedures

in a coordinated programme and gradually change their culture. By determining the stage that the organisations

have reached and then developing a road map to get there, the progress must be monitored. The DevOps

maturity model (DMM), developed by Menzel and Macaulay in 2015, is a framework that enables enterprises

to determine their present maturity level and the steps needed to advance. DMM uses the fundamental

characteristics of people, process, and tools to evaluate maturity. This model can also be utilised as a road map

for development inside a project, department, or organisation as a whole. The DMM can be used as a reference

to describe the existing DevOps maturity in an organisation and aids stakeholders in understanding and

developing an implementation plan. The DMM has five stages of maturity, from Level 1 with a siloed team,

manual processes, and ad hoc decisions to Level 5 with a highly matured "One Team" and fully automated,

dynamic procedures.

2.2 Conceptual framework

According to Gokarna and Singh (2021) DevOps is a set of procedures made from the combination of

Development and Operations meaning DevOps needs a set of tools to ensure the performance of the function

734

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

of combination and integration. DevOps, then, is a single and dedicated software development team that is

responsible for the management of software development, testing, and operations while giving an assurance

that the entire product cycle runs without interruption. According to Ebert et al. (2016), DevOps has four

Dimensions which are collaboration, automation, measurement and monitoring.

According to Donca et al. (2022) DevOps is the extension of the agile method of software development that

focuses on the continuous delivery of the software along with continuous integration. There is consensus that

DevOps improves collaboration and communication and also offers fast and continuous delivery, regular

updates, increases reliability (Riti, 2018). Hochbergs and Sjödahl (2020) explained that DevOps is not

necessarily the same process, or set of processes, in every development context, and misunderstandings occur

when discussing the subject, due to different personal experiences, understanding, and views or opinions. The

main aspects of DevOps have been noted in literature included the organisational culture, automation,

measurement and sharing. Culture implying the “people over processes and tools” belief taking the people an

integral and critical component of the whole system. Wiedemann et al. (2020) recommended that organisations

should analyse the current workflows and target those areas which have a scope for optimization.

Continuous Integration (CI) is a well-known software development technique that is being utilised extensively

throughout the world. CI is a process where members of the development team often integrate and merge their

development work, possibly several times daily or once per week. According to Wiedemann et al. (2020)

continuous integration is a software development practice in which developers routinely combine software

code changes in a central repository, after which build, testing, and launch are automatically performed and

seamless that users may not even notice. CI enables software companies to have quick response to changes,

challenges and issues, shorter and frequent release cycle, improve software quality, and guarantees an increase

their teams productivity (Helsinki and Wikström, 2019). Continuous integration entails the development and

testing of automated software.

2.2.1 Continuous Deployment

This process is according to Bobrovskis and Jurenoks (2018) closely related to continuous integration and

makes reference to the keeping of applications deployable at any point. Continuous deployment includes the

involvement of frequent, automatically done deployment of the master branch to a production environment

after automated testing would have been completed.

2.2.2 Continuous Delivery

The discipline of being able to consistently release application/code changes at any time is referred to as

continuous delivery (CD) in DevOps. Along with passing automated tests, the application must also have all

the configurations required to launch it into production. Continuous delivery in DevOps refers to the entire

development lifecycle, from inspiration to build to readiness to delivery to production.

2.2.3 Continuous testing

735

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

In DevOps, continuous testing involves testing at every stage of the development life cycle. One of the major

objectives of the continuous testing stage of DevOps is to evaluate the quality of the software being designed

as part of a continuous delivery process, by testing early and proceed with the same process more often to fish

out bugs and other errors (Shahin, Ali Babar and Zhu, 2017). Traditional manual testing involved software

being handed off by one team to another at various stages of the development lifecycle instead of it being

embedded in the automated pipeline. In a continuous DevOps process, a software change, also known as a

release, continually moves from development to testing to deployment.

2.2.4 Quality Assurance

Quality assurance (QA) in the software development lifecycle refers to the process of achieving or maintaining

a desired level of quality in a service or product (Yang et al., 2020). The major aim of quality assurance is to

deliver consistent results by using agreed standard processes and procedures, processes and includes all

activities centred around ensuring software meets certain requirements before being released.

Software development firms or companies use continuous integration at the building or integration stage or

level of releasing the software. The stage includes not only the automation but also the development culture

component. According to Gokarna and Singh (2021), the main objective of the continuous integration (CI)

process is to quickly identify and fix or correct software errors, to improve the quality of the software and to

reduce the overall time spent on checking and releasing new software updates

2.3 DevOps in the Real World

Wiedemann et al. (2020) observed that in real life, the DevOps hybrid method integrates the various software

development tasks and blurs the distinctions at every stage. Using an experimental, multiple case study

technique based on some interviews with DevOps experts, it is shown that the planning, development, testing,

and operation of software product activities inside a collaborative cross-functional team within the IT function

is viable. These DevOps teams jointly plan, develop and operate IT software and architecture solutions using

an integrated software delivery lifecycle and thereby bridging development and operations (Wiedemann et al.,

2020; Gokarna and Singh, 2021). There is consensus in literature that DevOps integrates the advantages of

agile software development to react quickly to customer demands and also broadens agility to operations such

as software architecture, responsibilities and knowledge (Shahin, Ali Babar and Zhu, 2017; Gokarna and

Singh, 2021).

The DevOps method extends agile software development by focusing not only on the development subunit,

but also on the operations subunit adding speed of delivery and bridging the gap between the two silo IT

subunits to form a cross-functional team (Shahin, Ali Babar and Zhu, 2017; Donca et al., 2022). By integrating

or combining the viewpoints of software engineers and software operators into one cross-functional team,

736

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

businesses hope to achieve internal IT alignment, foster consensus and fluency within the heterogeneous cross-

functional teams, and increase levels of agility. Ebert et al. (2016) believed that by combining the activities of

development and operations into single cross-functional teams, the DevOps methodology enhances alignment

between the two distinct subunits.

Observations by Wiedemann et al. (2020) report that DevOps projects face four major related challenges:

• Deliberate implementation of a purpose-built development and production environment derived from

legacy application life-cycle management or product life-cycle management environments;

• Breaking down and simplifying complex software architectures and feature sets into manageable sets

that can be produced and deployed independently;

• The maintenance of a configuration and build environment that provides constant visibility of what's

deployed, with which versions and dependencies;

• and bridging the traditional cult of deployment.

2.3.1 The DevOps Reference Architecture

According to Sharma and Coyne (2015), a reference architecture refers to a framework that provides a

template of solution that has already been proven to work by utilising preferred methods and capabilities. The

DevOps reference architectures help practitioners access and use the frameworks with guidelines and other

material that they may possibly need to design or architect a platform that accommodates all stakeholders

including people, processes, and technologies (Sharma and Coyne, 2015).

Figure 1: The DevOps Reference Architecture

737

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Professionals in the operations and development departments frequently differ, which makes the DevOps

environment difficult (Chandramouli, 2022). While operations experts want to maintain the infrastructure's

stability, software developers want to release upgrades more regularly. The ultimate aim of DevOps, according

to Chandramouli (2022), is to create a setting where developers and operators collaborate to continually

improve operations by bridging traditional operational and developmental lanes. In order to ensure that

customers continue to receive services with greater standards of quality and more features in a way that fits

their needs, the overall DevOps strategic purpose is to increase return on investment. Transitioning toward

DevOps is practically more challenging with legacy software, and some case studies involving application

development and Web environments reported easy migration to DevOps because of a single source and thus

orchestrated rollback was feasible (Wiedemann et al., 2020; Gokarna and Singh, 2021). Henning and

Hasselbring (2021) recommended that when embracing a DevOps culture, developers must take a full stack

developer approach, in which they take responsibility for the testing and release environment. Adding to that,

development teams are anticipated to have extended skills that go beyond just code knowledge but inclusive

of database administration as well as testing. Furthermore, as the functional silos’ boundaries are fading away,

more intense collaboration with other team members is required, for example, testers can be paired with

developers to ensure that the development team performs test-driven development and CI (Luz, Pinto and

Bonifácio, 2019). When testers and developers are paired, both groups can gain technical knowledge about

the activities and expectations of the other and contributing to the quality assurance team that gives an

assurance that the automation of all cases to be tested are assured to meet quality expectations as far as full

code coverage is concerned. From the perspective of the operations team, DevOps greatly affects culture and

discipline because operations teams are expected to continuously connect to other functions without losing

control meaning the IT operations and development teams must closely collaborate to achieve the continuous

process promoted by the DevOps team (Wiedemann et al., 2020). Additional, infrastructure monitoring and

application performance management are more important, and communication among team members must be

fluid (Wiedemann et al., 2020; Gokarna and Singh, 2021).

As it was noted that DevOps lacked the discipline that engineers are accustomed to, Farroha and Farroha

(2014) developed a framework for guaranteeing that overall enterprise performance and security are not

compromised while embracing DevOps. For the integration of software components in a European research

project, Bobrovskis and Jurenoks (2018) describe a DevOps approach. They discovered that the DevOps

workflow had made the development teams more adaptable to changes and capable of operating

independently, resulting in updates being done more frequently. They assert that the strategy decreased

communication burden as well as speeding up delivery, but they also acknowledged that it was difficult to

fully quantify the results because they had only recently begun gathering measurements. Rejström (2016)

738

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

identified the Knowledge, Skills and Abilities (KSA) needed for both developers and operations personnel to

support the main aspects of DevOps: Culture, Automation, Measurement and Sharing.

DevOps improves the performance of the development, operations, as well as the quality assurance teams.

Rejström (2016) and Riti (2018) and have identified the main aspects of DevOps as Collaboration,

Automation, Measurement and Monitoring, and also developed a framework to provide an understanding of

how DevOps works.

Automated DevOps models have been established to help organisations understand their duties and the

DevOps infrastructure, and the majority of them can increase communication and knowledge transfer

(Bobrovskis and Jurenoks, 2018). Additionally, according to Bobrovskis and Jurenoks (2018), there is no one

way that DevOps should be carried out by different businesses because this is where they would focus their

competitive advantages while adhering to a variety of standardised principles, practises, and procedures. In

order to understand the problems related to operations, Donca et al. (2022) advised that in addition to good

communication with the operations teams, developers should look into several other aspects such as standards,

organisational process descriptions, and studies about different types of operations failures.

2.4 Automation in DevOps

According to Bheri, Vummenthala, and Molleri (2019), automation enables developers, operators, testers, and

other DevOps stakeholders to automate the processes involved in the development and deployment of

software. Automation lowers risks and delays since human completion of tasks like integration, testing,

deployment builds, and software delivery takes time and is prone to error (Bobrovskis and Jurenoks, 2018;

Hornbeek, 2018). Delivering a new release, especially in a DevOps context, may be challenging work for

many applications. For web applications, this may entail setting up and configuring web servers as well as

correcting any foreseeable or unforeseen faults so that the new version can function as intended. According to

Chandramouli (2022), these tasks are challenging to complete manually because they may be prone to

mistakes, cause delays, and incur additional costs. Most of these issues affect the operations teams increasing

the probability of their conflict with the development team. The deployment pipeline, has been clearly defined

by Shahin, Ali Babar, and Zhu (2017) as the comprehensive and clearly defined procedure that changes in the

source code are procedurally anticipated to pass through so that it become visible to the final users, is one of

the basic concepts in DevOps automation. The process of moving software that is being development from

the stage of version control to that of the production environment is normally referred to as the development

pipeline. An illustration of a development pipeline workflow may be found below.

739

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Figure 2: CI/CD pipeline workflow (Truong and Klein, 2020)

The processes are automated using a deployment pipeline, and any changes to the system must be verified by

running them through a set of automated tests in the pipeline. The deployment of the changes to the software

being developed to the testing, staging, and finally to the production environments will be possible if the

changes are successful. The success of DevOps is founded on four outlined collaboration principles: mutual

respect, dedication to shared objectives, collective ownership, and shared values (Hornbeek, 2018; Bheri,

Vummenthala and Molleri, 2019). All team members must appreciate each other's values, work well together,

be dedicated to the project's success, and be on the same page in order for DevOps to be successful. Teams

need to share ownership in order to guarantee the high quality of the software they build and that their

customers will be satisfied. Any project type, including major projects, small projects, and mobile application

projects, can use the DevOps principles. The following have been highlighted as DevOps practises or enabling

techniques: continuous planning, Continuous integration, Continuous deployment, Continuous testing,

Continuous delivery, Continuous monitoring and Continuous feedback from the teams and the customers

(Wahaballa et al., 2015; Donca et al., 2022).

2.5 Benefits of adopting DevOps in Organisations

There is a wealth of material on the advantages of implementing DevOps in organisations. In a DevOps

context, teams were able to reach project milestones with more speed and efficiency, according to Donca et

al. (2022) who noted a qualitative difference in how teams operate in a manual system. Rejström (2016) noted

a notable reduction in the typical release cycle time as well as beneficial effects on the operations and

development teams' performance, which were corroborated by the quality assurance team. DevOps has a

favourable effect on web service development by fostering greater trust and teamwork, which enhances work

flow, according to Donca et al. (2022).

The primary studies have identified the following advantages: enhanced cooperation, trust, and

communication between development and operations teams; enhanced software deployment quality; increased

responsiveness to customer needs; increased reliability; enhanced code quality; streamlined implementation

740

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

because teams work independently; and decreased costs (Ebert et al., 2016). DevOps aa a well-structured

system is supported by observable structures and agreed standards, which makes it easier to realise the

beneficial structures and standards for development and operations. It also bridges the gap between

development and operations teams, lessens fear of change and risky deployments, accelerates time to market,

allows for continuous feedback, balances costs and quality, improves predictability, and boosts the efficiency

of the entire organisation (Gebril, 2020).

2.6 Current DevOps practices and tools

The term "source code management" (SCM) was first used by Bheri, Vummenthala and Molleri (2019), who

described it as a collection of procedures for monitoring changes to software's source code. Versioning and

remote teamwork are made possible by SCM since it allows the software developers as well as the other team

members to share code and work from different locations. Version control fundamentally regulates

communication between developers during the coding phase of the lifecycle as well as changes to the source

code. SCM can be used to monitor changes in any emerging artefact in the software development process, and

GitHub is the most widely used and well-liked version control solution since it supports distributed systems,

is freemium, open source, and other popular sources code tools include Subversion, Mercurial, and Bitbucket

(Chandramouli, 2022).

According to Bheri, Vummenthala and Molleri (2019), build is the process of preparing an executable program

or set of programs out of a set of source code files for a particular software product which can involve the

compilation of the source code into machine instructions for a specific computer architecture, but it can

involve other steps such as handling dependencies. Examples of Build Tools include Ant, Maven, Gradle, MS

Build, NANT, with Gradle being the popular due to its combination of the favourable features from other

tools.

Using CI tools, developers can automatically integrate and also merge code that is provided to the shared

source-code of the system or software that is being developed for building and testing. Major examples of CI

tools are Travis CI, Jenkins, TeamCity, and Codeship, which provide pertinent feedback right away to notify

developers if something went wrong. By monitoring changes to any artefacts used and managing the various

versions of each artefact, configuration management is the DevOps process involving the establishment and

maintenance of consistency of software products and artefacts throughout the software development life cycle.

Examples of configuration management tools include Chef, Puppet, and Ansible (Bheri, Vummenthala and

Molleri, 2019).

Microsoft Azure and IBM services are two prominent examples of cloud platforms that incorporate

collaboration and deployment in support of DevOps processes.

741

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Automated testing is a crucial procedure because it enhances teamwork and the calibre of the software output.

The major tools for automated testing are Cucumber, Selenium, and JMeter, and DevOps constantly does

testing in simultaneously with automation.

Containers are frequently used for platform development and application deployment in infrastructure,

shortening the delay between creating code and production. Containers are simple to deploy and maintain for

DevOps personnel, which reduces overhead. Micro-services are operated in separate settings; therefore,

containers help them to deploy independently.

Deployment tools: These tools are designed to handle the automatic deployment of new releases. Without the

need for human effort, tests are run on the software after each change that would have been made in the source

code, and fresh updated versions are issued. Some examples of deployment tools are Capistrano, Jenkins, and

Ansible.

Monitoring tools: utilising monitoring techniques, infrastructure issues that can have an impact on business

solutions are identified and attempted to be fixed. The cloud applications benefit more from monitoring tools,

of which prominent examples include Nagios NewRelic, Graphite, and Cacti.

As DevOps is primarily founded and reliant on trust among stakeholders, open and comprehensible

communications, as well as effective cooperation, it encourages the various teams involved at all stages to

share responsibility, ideas, and goals of the whole process. The main application of collaboration tools like

Jira and Slack is in DevOps (Bheri, Vummenthala and Molleri, 2019).

2.7 Challenges of Adopting DevOps in Organisations

Continuous integration and deployment in organisations is currently facing multiple challenges while adopting

DevOps. Some of the challenges that occur while adopting DevOps in organisations include: organisations

may lack proper management structures; employees may lack proper training for DevOps ; so the unclear

definition and goals of DevOps adoption; the geographic location spread of the development and operations

teams; developers may be afraid that DevOps will overburden them with other responsibilities such as

operations, and some team members may not be open to the change due to fear of not having in-depth expertise

in both areas; individuals may be interested in only their area of expertise; the differences between the

development, testing and production environments may become a complication in the collaboration and also

continuous delivery and deployment (Wahaballa et al., 2015; Gokarna and Singh, 2021; Scott, 2021).

The cautious adoption of DevOps was a bottom-up process, meaning it was recommended by practitioners to

management, in the organisation where their research was conducted; however, the operations teams'

resistance, the upkeep of legacy systems, a notable absence of a proper management structure, an absence of

support from the executive management team, legacy systems, hardware dependence, and compatibility issues

742

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

may cause delays in the release of new features to production. Shahin, Ali Babar and Zhu, (2017) also noted

the absence of automation tools needed to regularly deploy new features in the field of embedded systems.

Additionally, it was highlighted that certain businesses were able to get system performance data, which aids

in ongoing product improvement. As a result, the absence of data on the usage of features was noted as a

barrier to the adoption DevOps in organisations.

Infrastructure, organisational structure, development strategy, and ongoing operation team involvement all

need to alter. Addition to the adoption process, the organisation is anticipated to adhere to agreed principles

and practises and include certain practises into its development processes. The facilitation of communication

as well as coordination among the development and operations departments is one of the principles and

practises that must be followed in the organisation to achieve synergy between the two departments. To support

technical practises, the organisation must adhere to the concepts of automation, sharing, and communication.

The following DevOps practises have been discovered in the literature: Continuous testing, monitoring, and

feedback are also included in continuous planning, continuous integration, continuous deployment, and

continuous delivery (Wahaballa et al., 2015; Shahin, Ali Babar and Zhu, 2017; Chandramouli, 2022). These

processes must be automated and clearly documented and monitored.

2.8 Chapter summary

Related literature was reviewed from various information sources and formats to understand the DevOps

operating environment, current tools, processes, procedures and challenges. Current frameworks were also

analysed to guide the crafting of a new improved framework.

743

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

This chapter delves into the methodology used in the data collection, analysis, and interpretation for the study

on the framework for the development, deployment and testing systems under DevOps environment. Polit

and Hungler (2014), defined research methodologies as various methods of gathering data, processing it by

examining and analysing it with the goal of obtaining results for a research study. Leedy (2016) Methodology

is defined as an operational system in which facts are organized so that their significance can be understood

more clearly. The methodology employed attempts to provide an analysis of the research plan and research

tools to be used in this study. It provides information on the research population and sample. This chapter will

also include information on the sample sizes used and the responses.

3.2 The research methodology

The researcher employed a mixed methods approach to analyse the current systems and challenges at Ecocash

Holdings. Generally, there are three types of research methods: Qualitative, Quantitative and Mixed methods.

One major difference between the qualitative and quantitative methods is that qualitative methods collect

qualitative information that is hard to quantify, while quantitative methods use finite numbers and quantities

(Bowen, 2011; Creswell and Creswell, 2018). The qualitative methods are flexible in nature, and they involve

open-ended questions to extract in depth information. The mixed methods approach combines both qualitative

and quantitative data hence is particularly useful when a researcher wants to gain a detailed understanding

about a phenomenon as in this study. The motivation behind choosing this approach was to be able to get more

reliable and valid results than using either a qualitative or quantitative approach separately (Creswell and

Creswell, 2018). The research aimed at identifying all possible challenges that the organisation was facing in

their current adoption of DevOps, during both the initial and later stages of adoption, with the intention of

providing solutions to overcome these challenges with a new proposed framework.

744

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Figure 3.3: The mixed methods approach design (Amaradri and Nutalapati, 2016)

3.3 The design science Research process

The DSRM is made up of six distinct processes that may overlap: identify the problem and motivate, define

objectives of a solution, design and development, demonstration, evaluation, and the communication of the

developed performance system. Identify the problem and motivate: in this activity, the specific research

problem is defined.

Define a solution's objectives: the second action of the DSRM involves determining a solution's goals. These

goals are established in accordance with the problem definition. Understanding the condition of problems and

the literature's existing remedies is necessary for the definition of objectives. As stated, chapter 2 conducted a

thorough and in-depth literature research. Design, development, and validation: Produce the artifact, which

could be an algorithm, a conceptual framework, a technique, or a combination of these. Any created object in

which the research input is incorporated into the design might be considered a design research artefact (Al-

Ghamdi, 2019). The researcher incorporated experts who indirectly participated in the process to verify that

the design is appropriate and would function as intended. Demonstration: In this activity, the artifact is utilised

to show how it resolves the challenges and issues raised in the DSRM's first activity. There are various ways

to carry out this demonstration and in this project, a case study was used of a specific company as proof or

experimentation. The system used in this investigation at the aforementioned was Ecocash Holdings.

745

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

The links between the research, the research environment, and the knowledge base of the research in the design

science approach is informed by the evaluated literature and form the framework for design science research.

The operating environment was built on these three components. The goal was to develop an artifact that

would be expected to perform a certain purpose in the application domain (in this case, Ecocash), using the

knowledge and information from the knowledge base, which is typically informed by theories, standard

procedures and methodologies.

The framework for the research process that served as the basis for the system's design is shown in the

simplified diagrammatic format below.

Figure 3.4: Design Science Research Model (adopted from Blomberg (2015))

The diagram above shows the 3 main components of the process, the Environment which was the case being

studied to aid in the deployment, the designing process being the data gathering, experimentations, trials and

errors in finding a suitable solution and the knowledge base to guide both in terms of the research process and

the designing and guiding behaviour as the researcher interacted with the environment.

To understand the environment, data was gathered to understand (Company X), in this case Ecocash as the

case study.

3.4 Research Population

The targeted population were employees of Ecocash working in the system development, testing, deployment

and operations unit.

746

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

3.4.1 Sampling and Selection of research participants

To select the participants of the research, a non-probability sampling technique, the purposive or judgemental

sampling method was employed. The participants were supposed to be key informants in the various capacities

of development, testing and operations units at Ecocash (Kozludzhova, 2020).

3.5 Data Collection Instruments

According to Kozludzhova (2020), data collection instruments are the tools used in the extraction of data,

information from the knowledge, opinions and views of the research participants or respondents selected to

participate in the study. The researcher utilised various instruments in the collection of data to meet the

objectives of this study. The researcher administered structured interviews to the key informants and other

selected participants for the study, also practices document analysis as they analysed documents with standard

operating procedures, hierarchical structure and other workflows that would inform the new framework.

According to Creswell and Creswell (2018) no single instrument may be considered to be adequate in itself in

collecting valid and reliable data. Therefore, to obtain adequate and reliable information for this study multiple

data gathering instruments were utilised in a method called triangulation. Through triangulation the researcher

used a combination of different data collection techniques namely the structured interview and the focus group

interviews.

3.5.1 Document analysis

Bowen (2011) defined document analysis as a systematic procedure for reviewing or evaluating documents.

These document maybe in any format including both printed and electronic documents. Document analysis

requires that data contained in those documents be examined and interpreted in order to elicit meaning, gain

understanding, and develop empirical knowledge (Leedy and Ormrod, 2005; Bowen, 2011). Documents

contain text and images that have been recorded without a researcher’s intervention but helping in observing

such important data as the structure of the organisation, processes and procedures in performing tasks. In this

study, the researcher had an opportunity to analyse the SOP in continuous development, testing and

deployment of software. The organisational structure was also closely analysed to understand the various silos

and how they interacted with each other.

3.5.2 Structured Interviews

According to Kothari (2004), structured interviews as a set of questions deliberately crafted with a common

goal or objective to collect information through oral or verbal communication. An interview provides a two-

way verbal communication direct integration between the researcher and their research respondents or

participants, and can be face to face, over a phone call or online meeting. The researcher used structured

747

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

interviews in the extraction of primary data from their research respondents and this enabled them to stimulate

responses from the research participants who were the staff deployed to the development, testing, deployment

at Ecocash. The interviews were semi-structured and the researcher had interview schedules to help in

remembering and ordering the questions. According to Leedy and Ormrod (2005) semi-structured interview

are based on the use of an interview guide; a list of questions or topics to be covered by the interview. The

researcher made appointments with the selected key informants and made arrangements on the dates and times

and mode of the interview. The interview sessions were an average of 40 to 60 minutes each. The advantages

of semi-structured interviews is that they give the researcher an opportunity to clarify some questions for the

interviewee, make follow up questions to probe and expand the interviewees’ responses.

Interviews with four experts who work with the current system were undertaken to gather information on the

processes, procedures, experiences, and issues of the current Ecocash manufacturing line. Four significant

individuals who were specifically chosen for their knowledge, organisational roles, and professional interest

in this research participated in the interview process. The Secure Development Coordination unit conducted

the initial interview with a senior expert whose insight into the organization's current frameworks and criticism

of the newly proposed framework were used to enhance each iteration of the framework. The purpose of the

interview was to learn what stakeholders expected from a new framework and how they thought the current

environment would be enhanced.

A key member of the operations team who participated in the second interview was also considered to be a

key informant because of their expertise in operations and knowledge of how the business applied the

Continuous Integration and Continuous Deployment model in its actual day-to-day working environment. The

primary goals of the interview were to comprehend how and when CI/CD was used, become familiar with the

Ecocash CI/CD tools, comprehend the security measures currently in place for CI/CD environments, and

possibly identify as well as recommend changes that could be very significant in narrowing the scope for the

framework to be designed.

To gain an understanding of some security baselines regarding CI/CD, DevOps streets, and development at

some point in the past based on their experiences at Ecocash of overall experience in the past, the third

interview was held with a member of the management of Security and Privacy. This individual is responsible

for ensuring that the teams working on projects use the frameworks. The major goal of the interview was to

learn about their daily routines, roles, and the deployment and testing frameworks they currently employ.

A representative from the quality and compliance unit, which is in charge of ensuring that security

requirements and best practises are followed, participated in the fourth interview. The purpose of this interview

was to learn more about the existing state of the security of CI/CD pipelines, how the new framework would

748

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

benefit them, and to find CI/CD experts with whom the researcher could speak and potentially get some

insightful interactions. No additional interviews were conducted until after the first version of the framework

had been delivered since the researcher considered that the information gathered in the four interviews was

sufficient for the study's goals.

The researcher also had the chance to examine a real-world application of the company's CI/CD process,

which she used to construct a sample project and learn how each of the solution's components functions

separately and in concert. The example project involved adding some code to the version control system,

automating the building of new code, and evaluating the code's quality using a static code analyser.

3.5.3 Experiments

The researcher used the experiential methods to make decisions on how to make improvements on existing

systems utilising a process that relies on personal judgement of the professional practitioner utilising their

personal experience or utilising a trial and error method. In this instance, the methodology also included the

use of formally observed quantitative data as well as additional practical observations that were fused into the

overall perception based on the extracted attitudes and beliefs that was predominately composed of Ecocash's

qualitative experience outputs. Al-Ghamdi (2019) observed that many consultants and the majority of

managers use this mind-set while making decisions. Implementing this strategy may result in "satisficing”

solutions, meaning solutions that are adequate but not perfect, which combines the concepts of

satisfying and optimising.

The process of crafting this framework included a series of trials of proposed system designs leading to the

perfection of the final framework. To determine how much the artifact solves the issue, experiments were

conducted. In order to develop the framework and make it better than the current systems, the interviewers

and other experts provided advice and critiques to the trial designs. The process included repeating the "design,

development, and assessment" action when the experts would have offered more advice and input for

enhancements to the artifact, until the researcher feel the system is now perfect for the current environment as

it continuously change and more changes would be needed in the future. Additionally, a user evaluation was

carried out at Ecocash used as the case study. This evaluation's objective was to remodel the artifact in light

of its usage environment.

749

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

The following deployment automation was adopted from the Development side in the experimentation.

1. Git Branching System

There is need to have a branching system on git where there must be the Staging branch and the Production

branch

• For purposes of security the Development manager should be the only one allowed to approve merge

requests into the Staging branch

• Then in the Production branch the Service delivery manage has to approve merge requests after the

Staging has been completed and the pipeline goes to Production

2. Configurations

• The proposal is to have a git project with all the application configs (e.g. application. Properties).

• DevTeam to have their applications configured in such a way that they point to the configurations in the

git project.

3. Deployment

 The application will be deployed on a Kubernetes cluster which makes use of docker for building

Images and Kubernetes for orchestration.

• The DevTeam to agree with DevOps to come up with a docker file that will package the application into

an image

• The docker image is then pushed to a registry where it is stored for version controlling purposes

• Upon completion the docker image is then deployed to Kubernetes cluster and a service is configured

and exposed

• The CI/CD pipeline process will be handled by Jenkins server

750

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Below is the proposed architectural diagram for CD/CD framework, using ECOCASH as the case study.

Notes

F5 – load balancer

Git – repository for version control

Following serves as basis to adopt this framework:

• Anyone can deploy

• Faster, more efficient deployment

751

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

• Increased productivity

• Fewer errors

• More frequent releases

• Immediate feedback

3.6 Ethical consideration

By requesting authorization from the relevant authorities to collect data in order to examine the company, the

ethical criteria of research were properly observed. The approval letters are appended as Appendices I and II

at the end of this report. Before their agreement was requested, the participants were also made aware of the

nature and goal of the study and told that the information acquired would only be used for academic purposes.

They were also assured of the confidentiality and anonymity of their comments. In their paper, Leedy and

Ormrod (2005) divided ethical concerns in research into four categories: informed consent, right to privacy,

candour with peers in the field, and protection from damage in any form. By making respondents aware of the

goal of the research, the researcher adhered to all professional research practises strictly and consistently and

protected the privacy and confidentiality of the respondents as well as protecting the integrity of the data

collected. The privacy of the company was respected and the information gathered managed in a manner that

would not compromise the privacy or release such information to competitors.

3.7 Chapter Summary

The chapter presented and explained the methodology or process followed in crafting the framework. The

design science research framework was utilised to guide the process which analysed the case study of Ecocash

Holdings. The problem was analysed by document analysis as well as interviews with practitioners

752

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

CHAPTER 4

METHODS/FINDINGS

4.0 Introduction

This section makes a presentation of the resultant framework and solution to the problem the project sought

to solve.

4.1 Methods/findings:

Based on experimental results, we demonstrate the advantages of for Continuous Integration, Deployment and

Testing. We demonstrate how the organisation can make use of the DevOps framework to speed up software

deployments. To do some POCs and demonstrate the use of this framework, it is not practical to setup a full

Kubernetes cluster with setup of nodes and clusters, we will use MINIKUBE which has option to have

Kubernetes locally. Minikube is a single node cluster and the easiest way of deploying Kubernetes for learning,

demonstrating and POC purposes. In Minikube the master and worker processes are on the same machine

and supports most of the Kubernetes feature

This illustration is working on the assumption that, Minikube is installed, Jenkins, docker.

I will now deploy a spring boot application with 3 replicas to minikube. The spring boot application is a simple

Rest controller which returns a “Hello Everyone message”. The process / steps we will follow are depicted

below

Fig: 4.1 Application Process flow

Create

spring boot

application

Dockerise

the

application

Upload to

image

registry

Create and

apply K8

deploy &

service

Deploy to

MiniKube

Access the

service
end

753

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Fig 4.2 Application deployment process flow

4.2 Spring boot code

First step is create a spring boot application service

package com.raj.nola.hello;

import org.junit.jupiter.api.Test;

import org.springframework.boot.test.context.SpringBootTest;

@SpringBootTest

class HelloWorldSvcApplicationTests {

@Test

void contextLoads() {

}

}

Docker file

Dockerise the application using the below file and upload to the repository

754

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

FROM java:8-jdk-alpine

COPY ./target/hello-0.0.1-SNAPSHOT.jar app.jar

CMD ["sh", "-c", "java -jar /app.jar"]

Fig 4.3 docker container dashboard

Deployment File

apiVersion: apps/v1

kind: Deployment # Kubernetes resource kind we are creating

metadata:

 name: hello-world-svc

spec:

 replicas: 3 #Number of replicas that will be created for this deployment

 selector:

 matchLabels:

 app: hello-world-svc

 template:

 metadata:

 labels:

 app: hello-world-svc

 spec:

 containers:

 - name: hello-world

 image: raje/hello-world # Image that will be used to containers in the cluster

 imagePullPolicy: IfNotPresent

 ports:

 - containerPort: 8080 # The port that the container is running on in the cluster

Service to expose

apiVersion: v1 # Kubernetes API version

kind: Service # Kubernetes resource kind we are creating

metadata:

 name: hello-world-svc

 labels:

 name: hello-world-svc

spec:

 ports:

 - port: 8080 # The port that the service is running on in the cluster

 targetPort: 8080 # The port exposed by the service

 protocol: TCP

 nodePort: 31000

 selector:

 app: hello-world-svc

 type: NodePort # type of the service. LoadBalancer indicates that our service will be external.

755

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Start Minikube and deploy the application either from the dashboard or through the command line

Figure 4.4 Kubernetes dashboard

The test the deployed application go to browser as below

4.3 Economic analysis

The framework designed does not require an investment into new hardware such as servers and network

accessories as they are already available. May also make use of the current human capital resources in terms

of the developers, testers and operations teams. The system could also be deployed on existing cloud

infrastructure accessible by all other teams at minimal costs.

4.4 Environmental assessment

The framework for automation and automated designs has no direct negative environmental effects

756

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.0 Introduction

This section now concludes and summarises the whole process leading to the final design of the recommended

framework.

5.1 Summary

In the recent past, software release has been going through some major transformation. With software

development becoming everything, most software developers are now trying to adapt to this high demand,

and automation has become inevitable. Most organisations have adopted the use of pipelines of continuous

Integration (CI) and continuous development (CD). This has been developed because of the over demanding

for deployment and delivery of new software releases. This faster and continuous software delivery is made

possible through DevOps. It uses the Agile methodology in which developers work together closely with

infrastructure engineers to achieve the faster delivery, and deployment of applications more quickly and

reliably. This Organisational Framework for Continuous Integration, Deployment and Testing in DevOps

Environment overcomes the delivery challenges by improving the time to market, testing of release,

availability. Primary data was gathered from interviewing practitioners to get a closer look at the operational

challenges and their expectations from a new framework. Based on experimental results, we demonstrate the

advantages of for Continuous Integration, Deployment and Testing. This solution provides an effective and

efficient way to generate, manage, customize, and automate Agile-based CI and CD framework through

automated pipelines. This is demonstrate using a Kubernetes cluster using docker containers. The cluster

works as a container orchestration tool. Rancher cluster manager is used to manage the cluster. Changing the

principles of this solution and expanding it into multiple platforms (windows) will be addressed in a future

discussion.

5.2 Conclusions

Following serves as basis to adopt this framework:

• Anyone can deploy

• Faster, more efficient deployment

• Increased productivity

• Fewer errors

• More frequent releases

• Immediate feedback

757

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

5.3 Recommendations

It can be recommended that the DevOps team adopt the system and fuse it with the organisational structure

and ensure there is teamwork and effective flow of information and skills between the development, testing

and operations teams

5.4 Contributions

The framework was anticipated to contribute to the improvement of the DevOps process as well as the CD

and CI processes

5.5 Limitations

The development of this framework was limited to a single organisation with different needs and structure

and therefre, the resultant framework maybe difficult to deploy in other different settings.

5.6 Limitations of proposed solution

This method may not be easy to apply to complex systems that require the discipline and collaboration that

DevOps provides. Such systems typically have multiple software and hardware components, which may have

different delivery cycles and probably timelines. This framework may not fully facilitate the coordination of

some delivery cycles and system-level release planning.

It is difficult to implement full continuous deployment due to the software's crucial use case. Customers are

hesitant to upgrade their software when there is a chance that it will break following the update. It takes more

work to apply bug fixes and manage the CI pipeline for each version of the product because many versions

are being maintained at once. Additionally, when customer-specific modifications have been made to the

software, automating upgrades between versions is challenging. The difficulty of updates may be made easier

by introducing a more rapid release cycle, which would lessen the number of changes between software

versions.

5.7 Limitations of the whole research

When changes happen quicker than lessons can be learned, the capacity to use trial and error learning to fine-

tune the performance of information systems essentially becomes meaningless. A rigorous prediction

methodology based on cause and effect understanding is now more important than ever. One is entitled to

conclude that the decision-making process can be enhanced by substituting a more formal, experimental,

quantitative, scientific, and "optimising" approach for the experiential, qualitative, judgmental, and satisficing

approach.

758

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

5.8 Further research

The framework was designed based on data gathered from a single entity, and therefore may have structural

issues in deployment in other institutions. Therefore, a framework may also be crafted based on data gathered

from multiple institutions to ensure some structural and operational differences are also incorporated in the

design.

759

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

REFERENCES

[1] Al-Ghamdi, K. A. (2019) ‘Improving the Practice of Experimental Design in Manufacturing

Engineering’, (May).

[2] Amaradri, A. S. and Nutalapati, S. B. (2016) ‘Continuous Integration, Deployment and Testing in

DevOps Environment’, Thesis, p. 115.

[3] Bheri, S., Vummenthala, S. and Molleri, J. S. (2019) ‘An Introduction to the DevOps Lifecycle’,

(June).

[4] Blomberg, V. (2015) ‘Turun kauppakorkeakoulu Turku School of Economics’.

[5] Bobrovskis, S. and Jurenoks, A. (2018) ‘A survey of continuous integration, continuous delivery and

continuous deployment’, CEUR Workshop Proceedings, 2218, pp. 314–322.

[6] Bowen, G. A. (2011) ‘Document Analysis as a Qualitative Research Method’, Qualitative Research

Journal, 9(2).

[7] Chandramouli, R. (2022) Implementation of DevSecOps for a Microservices-based Application with

Service Mesh, NIST Special Publication.

[8] Creswell, J. W. and Creswell, J. D. (2018) Research design : qualitative, quantitative, and mixed

methods approaches. SAGE.

[9] Donca, I. C. et al. (2022) ‘Method for Continuous Integration and Deployment Using a Pipeline

Generator for Agile Software Projects’, Sensors, 22(12). doi: 10.3390/s22124637.

[10] Ebert, C. et al. (2016) ‘DevOps’, IEEE Software, 33(3), pp. 94–100. doi: 10.1109/MS.2016.68.

[11] Gebril, A. (2020) ‘Ahmed Gebril CONTINUOUS INTEGRATION , A LI- TRERATURE REVIEW’,

(April).

[12] Gokarna, M. and Singh, R. (2021) ‘DevOps: A Historical Review and Future Works’, Proceedings -

IEEE 2021 International Conference on Computing, Communication, and Intelligent Systems,

ICCCIS 2021, 2001, pp. 366–371. doi: 10.1109/ICCCIS51004.2021.9397235.

[13] Helsinki, A. W. and Wikström, A. (2019) ‘Benefits and challenges of Continuous Integration and

Delivery-A Case Study’.

[14] Henning, S. and Hasselbring, W. (2021) ‘The Titan Control Center for Industrial DevOps analytics

research’, Software Impacts. Elsevier B.V., 7(December 2020), p. 100050. doi:

10.1016/j.simpa.2020.100050.

[15] Hochbergs, E. and Sjödahl, L. N. (2020) ‘Software Configuration Management in a DevOps context’,

Lu-Cs-Ex.

[16] Hornbeek, M. (2018) ‘DevOps Testing - The Primary Key to DevOps and Continuous Delivery’, p.

18.

760

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

[17] Kothari, C. R. (2004) Research Methodology: Methods and Techniques. New Age.

[18] Kozludzhova, K. (2020) ‘Research Methodology for Studying Innovations in the Software Industry’,

9(06).

[19] Leedy, P. D. and Ormrod, J. E. (2005) Practical research : planning and design. Pearson.

[20] Luz, W. P., Pinto, G. and Bonifácio, R. (2019) ‘Adopting DevOps in the real world: A theory, a model,

and a case study’, Journal of Systems and Software. Elsevier Inc., 157, pp. 1–16. doi:

10.1016/j.jss.2019.07.083.

[21] Menzel, G. and Macaulay, A. (2015) ‘DevOps - The Future of Application Lifecycle Automation’,

Capgemini.Com, p. 24.

[22] Rejström, K. (2016) ‘Implementing Continuous Integration in a Small Company: A Case Study’, p.

107.

[23] Riti, P. (2018) ‘Introduction to DevOps’, Pro DevOps with Google Cloud Platform, pp. 1–18. doi:

10.1007/978-1-4842-3897-4_1.

[24] Scott, E. (2021) ‘Adopting DevOps Practices : A Case Study’.

[25] Shahin, M., Ali Babar, M. and Zhu, L. (2017) ‘Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges and Practices’, IEEE Access, 5, pp. 3909–3943.

doi: 10.1109/ACCESS.2017.2685629.

[26] Sharma, S. and Coyne, B. (2015) DevOps for dummies. 2nd IBM Li. New Jersey: Wiley.

[27] Truong, H. L. and Klein, P. (2020) ‘DevOps Contract for Assuring Execution of IoT Microservices in

the Edge’, Internet of Things (Netherlands). Elsevier B.V., 9, p. 100150. doi:

10.1016/j.iot.2019.100150.

[28] Wahaballa, A. et al. (2015) ‘Toward unified DevOps model’, Proceedings of the IEEE International

Conference on Software Engineering and Service Sciences, ICSESS, 2015-Novem, pp. 211–214. doi:

10.1109/ICSESS.2015.7339039.

[29] Wiedemann, A. et al. (2020) ‘Understanding how DevOps aligns development and operations: a

tripartite model of intra-IT alignment’, European Journal of Information Systems. Taylor & Francis,

29(5), pp. 458–473. doi: 10.1080/0960085X.2020.1782277.

[30] Yang, Dawei et al. (2020) ‘DevOps in practice for education management information system at

ECNU’, Procedia Computer Science. Elsevier B.V., 176, pp. 1382–1391. doi:

10.1016/j.procs.2020.09.148.

[31] Sharma, S.: DevOps for Dummies. John Wiley & Sons, Inc, New Jersey (2015)

[32] Erich, F., Amrit, C., Daneva, M.: Report: DevOps Literature Review. Twente:

University of Twente (2014)

Hüttermann, M.: DevOps for Developers. Apress, New York (2012)

761

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

APPENDICES

Appendix I – Permission LetterAppendix II – Structured Interview Guide

(Introduction and consent information)

What are your key responsibilities – Regarding the delivery of software?

What do you see as the benefits of CD?

What are challenging aspects of CD? – Implementation – Organisational

How has the CD process evolved over time?

What challenges have you observed with the current implementation of CD in the company?

How do you think those challenges maybe solved?

Any other comments about manual or automated CD?

762

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

Appendix III – Proposed Deployment Flow Architecture Diagram

763

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS050351
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 12 Issue 05, May-2023

www.ijert.org
www.ijert.org
www.ijert.org

