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Abstract-Irregularity identification is essential to guarantee 

the security of cyber-physical systems (CPS). Be that as it may, 

because of the expanding intricacy of CPSs and more modern 

assaults, traditional inconsistency recognition strategies can't 

be straightforwardly applied to defeat such issues, which 

additionally need area explicit information and handle the 

developing volume of information. Profound learning-based 

peculiarity discovery techniques have been proposed to 

accomplish solo recognition in the period of CPS huge 

information. In this paper, we audit best aspects of these deep 

learning strategies in CPSs. We propose a scientific 

categorization as far as the sort of peculiarities, techniques, and 

usage and assessment measurements to comprehend the 

fundamental properties of current strategies. Further, we use 

this scientific categorization to recognize and feature new 

qualities and plans in every CPS area. We sum up top notch of 

openly   accessible datasets for preparing and assessment. We 

additionally talk about our discoveries, the restrictions of 

existing investigations, and potential headings to improve 

security in CPS using deep learning   techniques. 
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I. INTRODUCTION 

Cyber-physical systems (CPS) are increasingly being 

deployed in basic infrastructures. The CPS market is 

expected to expand by 9.7% each year, which will reach 

$9563 million by 2025. Prominent uses of CPS include 

mechanical control systems (ICS), shrewd grid, intelligent 

transportation systems (ITS), and aerial systems. CPSs have 

evolved to be complex, heterogeneous, and integrated to 

provide rich functionalities. However, such characteristics 

additionally expose CPSs to broader threats. According to 

FireEye's report, insiders, ransomware, market control, etc. 

are among the top assault types in ICS. Recent incidents (e.g., 

Stuxnet, Ukraine power grid outage, auto-driving crashes, 

robot malfunction) have indicated that sophisticated and 

stealthy assaults (and blames) can result in calamitous 

consequences to the economy, environment, and even living 

souls. Subsequently, it is central critical to ensure the 

security of CPSs. To detect assaults and unexpected errors in 

CPSs, anomaly detection methods are proposed to mitigate 

these threats. For example, rule, state estimation (e.g., 

Kalman filter), statistical model (e.g., Gaussian model, 

histogram-based model) based methods are utilized to learn 

normal status of CPSs [64]. However, these methods usually 

require expert knowledge (e.g., operators manually extract 

certain rules), or need to know the underlying dispersion of 

normal information. Machine learning approaches don't rely 

on space specific knowledge. Yet, they usually require a 

large amount of labelled information (e.g., order based 

methods). Likewise, they can't capture the unique attributes 

of CPSs (e.g., spatial-temporal correlation) . Interruption 

detection methods are dedicated to ensuring network 

correspondence security. Physical properties (e.g., the noise 

of engines) are captured to depict the immutable nature of 

CPSs. Program execution semantics are characterized to 

protect control systems. However, as CPSs become more 

complicated what's more, assaults are more stealthy (e.g., 

APT assaults), these methods are difficult to ensure the 

overall status of CPSs (e.g., protect multivariate physical 

measurement) and need more space knowledge (e.g., more 

components and correlation). Anomaly detection systems 

need to adjust to capture new characteristics of CPSs. 

Specifically, we need to answer three research questions: 

 (1)What are the characteristics of existing approaches? 

Specifically, the threat model, detection strategies (i.e., input 

information, neural network design, and anomaly scores), 

implementation and evaluation metrics of Deep Learning 

methods are definitely not categorized. 

 (2) What are the takeaways and impediments of existing 

work? Are there freely available datasets? 

 (3) How would we be able to improve Deep Learning 

methods?  

Answering these questions helps to understand the 

fundamentals of Deep Learning methods, evaluate proposed 

DLAD models, and explore new arrangements. 

 

II. BACKGROUND 

A. Complexity Management  

Anomaly detection has developed for various 

applications, e.g., intrusion detection, fraud detection. In this 

work, we centre on new research efforts that detect 

anomalies in CPS with the help of emerging deep learning 

methods. We can concisely characterize the generic work 

process of Deep Learning methods. Normally, Deep 

Learning methods comprise of training and testing phases. 

At the training phase, a large amount of info information is 

first collected. Sensor and actuator information, level 0 and 

level 1 correspondence traffic, and control system logs are 

regularly used information sources. Different customized 
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information processing approaches are applied to the 

information, which is then fed to neural network models. 

Then, the principle commitment of new methods lies in 

different DLAD models (e.g., RNN, auto encoders, CNN, 

and customized models) in different application scenarios. 

Further, DLAD models utilize misfortune capacities to 

compute differences between yield information from the 

yield layer and ground truth information. We denote these 

differences as anomaly scores. There are three types of 

anomaly scores: (1) Prediction error (2) Reconstruction error, 

and (3) Predicted labels (details in Section 3.2). Anomaly 

scores are used to optimize and update DLAD models. At 

the testing phase, collected or real-time input information is 

fed to trained models and determine whether the information 

is an anomaly. As an early effort to review anomaly 

detection methods, they didn't consider deep learning based 

methods and didn't include CPS. Item IoT systems have 

transformed the way people live. For example, emerging 

keen home applications permit users to interact with home 

appliances automatically. Program investigation methods are 

proposed to protect the security and discover vulnerabilities 

in these applications. Meanwhile, researchers have   

reviewed anomaly detection methods that utilize the physical 

properties of CPSs (e.g., the noise of physical devices) [1,2]. 

Studies in terms of network security of SCADA systems are 

summarized with an attention on danger assessment 

techniques [3]. Yet, the techniques didn't include deep 

learning methods and are conventional, e.g., state estimation, 

intrusion detection based methods. There is work that 

studied deep learning-based anomaly detection methods 

however didn't zero in on CPS [4]. While many of the 

researchers have   investigated utilizations of deep learning 

methods in CPS, it didn't cover anomaly detection [5]. Some 

of the researchers have also examined the scientific 

classification of threats in shrewd home IoT, which did not 

consider anomaly detection methods [6,7]. At last, few of the 

researchers have   studied information examination 

approaches that use deep learning methods in IoT [8]. To the 

best of our knowledge, our work is the principal work that 

studies deep learning-based anomaly detection methods in 

CPS, which differs from the above existing surveys. 

 

III. APPLICATION OF DEEP LEARNING FOR 

INCONSISTENCY EXPOSURE  

Since CPSs usually manage basic infrastructure (e.g., 

ICS, medical devices, and power grid), they are consistently 

under the threat of different assaults. An attacker who has 

the motive (e.g., monetary interest, protection theft, and state 

operations) can lead assaults. These assaults can target 

different pieces of CPSs:  

(1) Network correspondence layer. Field devices (e.g., 

sensors and actuators) rely on correspondence networks to 

cooperate with each other. Additionally, sensor values, 

device status are reported to server farms and control 

commands are sent by control systems through the network. 

In this case, level 0 correspondence (C0) and level 1 

correspondence (C1) can both be targeted. Note that S2, A2, 

D1 (contained in C0 and C1 traffic) can likewise be 

manipulated under these assaults.  

We identify three types of assaults:  

• Denial-of-service (DoS) assaults: DoS assaults bring a 

significant threat to the functionalities of real-time 

applications in CPSs. For example, it would cause a crash of 

airplane or low traffic use if the ADS-B system is 

unavailable. Meanwhile, the transmission feature in some 

CPS correspondence protocols (e.g., the CAN protocol in 

shrewd vehicle systems) makes the network prone to DoS 

assaults.  

• Man-in-the-middle (MITM) assaults: PSs receive 

numerous newly designed protocols, which may do not have 

a well-designed authentication mechanism. Additionally, 

Ethernet used in CPS can be exploited to direct MITM 

assaults. Packet content might be manipulated and sensitive 

information can be leaked through MITM assaults.  

• Packet injection. In the event that attackers gain access 

to the network, they are able to inject a subjective packet to 

send control command into the system. False control 

commands can cause severe damage to running devices and 

even place human lives under danger. For example, a false 

engine and brake control command might induce an auto 

accident.  

(2) Control system. As the core of one CPS, control 

systems take sensor values as info and give control signals to 

actuators or field devices. Due to brutal working 

environments or limited hardware resources, the protection 

mechanism may not well-established in charge systems.Once 

control systems are compromised, information sent to 

SCADA systems (D1) and commands sent to actuators (A2) 

can be altered. We discover two types of assaults that target 

control systems:  

• Malware: For the long-term monitoring and 

information leakage, attackers would place malware in the 

control system. Moreover, malware can be used to dispatch a 

stealthy assault (e.g., APT assault) at a certain crucial point 

in time. Sensor readings can be manipulated by malware. 

Under certain circumstances, malware may likewise cause 

physical damage to devices . 

• False control signals: Devices operate deviating from 

regular working status when receiving false control signals. 

Wrong operations shorten the working life of devices and 

can even damage devices directly. Attackers usually conceal 

their unauthorized access to the system and send false 

control commands at a crucial time point.  

Shortcomings: The complexity of systems and 

heterogeneity of devices lead CPSs to generate unexpected 

flaws. For example, modern control systems regularly 

comprise of multiple stages and a ton of components in each 

stage. Numerous devices operate in a cruel environment (e.g., 

high dampness or temperature). Additionally, mechanical 

parts are vulnerable to scraped spot and vibration. S2, A2, 

and D1 would all be able to be abnormal due to flaws. 

 We find that shortcomings commonly happen in two 

layers:  

(1) Sensor layer. False sensor value is a typical issue in 

the sensor layer. To begin with, physical damage or defect 

leads sensors to report inaccurate and even wrong sensor 

values. Likewise, previously unseen circumstances may 

cause sensors to work beyond their abilities. For example, 

sensors on spacecraft may come across unexpected 

conditions.  
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(2) Control system. CPSs ordinarily hold the dynamic 

running characteristic, which means there are consistently 

circumstances that may not be covered during the system 

design stage. For example, different orders and timings of 

events in the PLC code can cause object crashes of an 

assembly line in modern plants. 

A. Detection strategies: 

Deep Learning methods choose their detection strategies 

from three aspects: 

Input data. Deep Learning methods first need to decide 

what type of data to take as input, which depends on specific 

anomalies they tend to detect. Based on the layer and source 

where data is collected, we conclude four types of input data: 

(1) Sensor and actuator data. (2) Network traffic data. (3) 

Systemcalls and logs. (4) Time-series data, which is pre-

processed sensor, network, and log data in numeric time-

series form. Deep Learning methods adopt semi-supervised 

and unsupervised learning to resolve the lack of labeled data 

(especially anomalous data).Neural network design. Deep 

Learning methods adopt different neural network designs 

based on input data and tasks. The deep network can be 

stacked models (e.g., LSTMs) or hybrid combinations of 

models (e.g., the combination of LSTM and CNN). 

Although neural network designs can be in various forms, 

we found several basic models used to build the neural 

network. (1) RNN: LSTM models (one type of RNN) are 

often used to capture characteristics of time-series data. 

(2)Autoencoder: Autoencoders are applied to handle 

imbalanced data and achieve unsupervised learning.  

(3)CNN:CNN models can capture correlations and 

context information of multivariate measurement data. 

Anomaly scores: There exist three metrics to calculate 

the detection error: (1) Prediction error:Deep Learning 

methods take past data as input to predict future sensor or 

actuator values. Then, the error between predicted and real 

values is measured. Anomalous data usually deviate from 

predicted values.  

(2) Reconstruction error: Input data is fed to the model 

and compressed to hidden layers, which represents low 

dimensional space. The data is then reconstructed to the size 

of the original dimension. Similarly, the error between 

reconstructed and origin values is calculated. A threshold of 

error is usually selected to identify anomalous data.  

(3) Predicted label or class: If labeled data is relatively 

sufficient in some domain (e.g., SWaT testbed in ICS), 

DLAD models can be trained to predict labels of input data. 

The assumption is that latent features learned from neural 

networks can be used to identify anomalies. We observe 

very few methods to adopt this design since a large quantity 

of labeled data needs profound manual effort. 

 

C.Implementation and evaluation metrics 

We summarize the implementation of existing work with 

an emphasis on platforms where information is collected. 

Then, metrics that are used to evaluate the effectiveness and 

performance of Deep Learning methods are identified.  

 

Implementation: As information driven techniques, Deep 

Learning methods consume a large amount of information to 

prepare and test models. We summarize three types of 

environments where information is collected: (1) Data from 

real-world systems.  

(2) Test bed. Researchers construct scaled-down yet 

entirely utilitarian test beds, where experiments should be 

possible without the danger of damaging real CPSs. 

 (3) Simulation. The advantage of information from real-

world systems is that it reflects the inherent principle of real 

systems, although the information is difficult to harvest and 

the number of systems is limited. Recreation is easy to 

operate yet cannot capture problems that lone exist in real 

systems. 

 A scaled-down test bed could balance the information 

distortion and operability. Likewise, atypical information 

can be collected from real-world systems and manually 

created. There can be insufficient real-world bizarre 

information since anomalies are difficult to harvest. For 

example, in brilliant vehicles and medical space, anomalies 

in real devices may place human lives in danger. So existing 

studies tackle this problem by manually creating three sorts 

of anomalies:  

(1) Point anomaly. Through investigating anomalies that 

can happen, several independent abnormal cases can be 

injected into the normal information series. For instance, 

Taylor et al. and Russo et al. injected several assault cases 

into the sequence of CAN transport packets.  

(2) Statistical anomaly. Anomalies that follow certain 

statistical patterns are injected into normal information as an 

abnormal period. 

(3) Simulated assaults. Different assaults are simulated in 

the testbed, where sensor values and system logs can be 

easily collected. Zhang et al. created cyber assaults in 

transactive energy systems. 

C.Evaluation metrics: 

Metrics are proposed to measure the effectiveness of 

Deep Learning methods. We conclude that the most 

commonly used metrics are precision, recall, and F1 score. 

Given imbalanced datasets, these metrics consider false 

positives and false negatives, which are better than metrics 

such as accuracy. The precision is defined as  

TP/(TP + FP)                                                         (1) 

Where TP stands for True Positives and FP means False 

Positives. The recall is defined as  

TP/(TP + FN)                                                       (2) 

WhereFN denotes False Negatives. F1 is defined as  

2*Precision*Recall/(Precision+Recall)                (3)       

Also, the Receiver Operating Characteristic (ROC) curve 

is used to manage trade-offs between FP and TP. Meanwhile, 

methods are often compared with baseline methods to 

examine the improvement. Some error-based metrics are 

also applied to measure the prediction and reconstruction 

performance such as Mean AbsoluteError (MAE) and 

Relative Errors (ReErr) . 

 

III. UPCOMING TECHNIQUES  

1. Applying filters before Deep Learning methods to 

improve efficiency: 

Applying Deep Learning methods in ICS, where running 

environments are usually resource constrained, should 

consider the efficiency factor. A lightweight and efficient 

conventional detecting method could be utilized before Deep 
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Learning methods to decrease information to be checked 

significantly. Researchers have proposed a combined 

anomaly detection framework. The primary idea is to 

initially apply a Bloom filter to traffic information and then 

pick dubious packets to the subsequent LSTM-based 

detector[9,10]. The quick and lightweight filter reduces the 

burden of the LSTM detector, which enhances the detection 

efficiency. This method means to identify cyber assaults in 

the correspondence layer of a SCADA system. The assault 

types include injecting noxious commands (e.g., state, 

parameter, and capacity code) and DoS assaults. 

Additionally, the LSTM detector stacks two LSTM layers 

using signatures of previous packets to predict the signature 

of the next packet. Then, the predicted signature is checked 

to examine whether it is in the normal signature database. 

The method is evaluated on a gas pipeline system in a 

laboratory environment, which outperforms baseline 

methods (e.g., Bayesian Network, Detachment Forest) in the 

recall, exactness, and F1 score[11].  

2.Deep learning-based feature representation: We 

identify three types of feature representation in Deep 

Learning methods: 

 (1)crude information (directly fed to models) 

 (2)information processing (e.g., inner items of two 

sensor time series)  

(3)deep learning-based embedding. Information 

processing helps to identify discriminative characteristics of 

information, which is likewise used in conventional 

detection methods.  

We find that deep learning methods are utilized to 

integrate features and reduce dimensions of feature space. 

For example, researchers have proposed deep autoencoders 

to automatically compress crude contribution to lower-

dimension hidden layer representation, which further is 

utilized as the contribution of the subsequent neural network 

[12,13]. Despite the two works [14, 15] utilizing the hidden 

layer to represent features, the real neural network detecting 

anomalies can be different. One [16] takes sensor value and 

uses LSTM to generate prediction errors, while the other [16] 

takes traffic information and uses autoencoder to generate 

reconstruction errors. The two methods are evaluated on 

information from testbeds. When expert knowledge is 

limited (e.g., face a new network protocol), this can be very 

useful.  

3.One sensor or actuator is one-dimension information 

(e.g., time-series), numerous LSTM-based Deep Learning 

methods  are proposed to learn temporal behaviours of the 

information. However, there exist correlations among 

several different sensors and actuators, which reflect logical 

relations in the control system. In other words, there are 

interdependent relationships among sensors and actuators. 

Hence one challenge is to capture context (temporal, spatial, 

and logical) features in multi-dimensional (time-series of 

multiple sensors and actuators) information. To this end, 

CNN can extract features of multi-dimensional information 

together through convolution operations. Several approaches 

receive a convolutional layer as the principal layer of the 

neural network to get correlations of multiple sensors in a 

sliding time window. Further, the extracted features are fed 

to subsequent layers to generate yield scores.  

These methods can be employed to detect the two 

assaults and blames. All methods take sensor and actuator 

value as info and generate prediction error or predicted 

labels. Meanwhile, other researchers have utilized RNN to 

take the yield of the CNN layer and form the prediction layer 

[17,18]. Moreover, the two methods use datasets from real 

modern plants. Precision, recall, F1, and ROC are evaluation 

metrics.  

4.Exploration of GAN-based methods: The researchers 

have also proposed a GAN-based framework to capture the 

spatial-temporal correlation in the multi-dimension 

information[19]. Both the generator and discriminator are 

utilized to detect anomalies by reconstruction and 

segregation errors. Likewise, LSTM models are used to 

assemble the generator and discriminator. The framework 

takes sensor and actuator values as information and means to 

detect false control signals. Compared to a GAN-based 

anomaly detection method that isn't focused on ICS, this 

method finds that capturing temporal correlation is the key to 

improve performance. The method outperforms baseline 

methods (e.g., Principal component examination, One-Class 

SVM, K-Nearest Neighbour, Feature Bagging) in precision, 

recall, and F1. This is an interesting attempt to utilize GAN-

based models. Additionally, a well-tuned generator can be 

used to produce training information.  

5.Applying conventional and Deep Learning methods in 

parallel through ensemble learning. We have introduced that 

conventional methods can be used as filters before applying 

Deep Learning methods. However, to increase the precision, 

these two sorts of methods can be placed parallelly to learn 

the characteristics of information.  

More recently a framework has been proposed called MBPF 

that ensembles two components:  

(1) A statistical method named TBATS (Trigonometric 

Box-Cox transform, ARMAerrors, Trend, and Seasonal 

components), and 

(2) Multi-branch Deep Network Component. To begin 

with, seasonality evaluation and outlier elimination are 

applied to remove noise.  

Then, pre-processed information is fed to TBATS and 

deep learning models simultaneously to capture linear and 

sequential relations. At last, a Multi-Layer Perceptron (MLP) 

takes the yield of TBATS and deep learning models, which 

will vote between the two methods and predict the next 

value. The MBPF framework can analyse any time-series 

information. The Mean Absolute Error (MAE) and Root 

Mean Square (RMSE) are utilized to measure prediction 

errors. Evaluated on a real-world SCADA water supply 

system, the method outperforms baseline methods (e.g., 

Multilayer Perceptron, Stacked LSTM, Regularized LSTM) 

when measured by MAE, RMSE, Absolute deviation 

(AbsDev) and Relative Errors (ReErr). 

 

IV. FUTURE DIRECTIONS 

Determine the anomaly threshold automatically and 

adaptively. We argue that the threshold ought to be decided: 

(1) Automatically:The conventional threshold tuning process 

isn't efficient and error-prone. To this end, Su et al.utilize the 

Extreme Value Theory (EVT)  to learn the threshold 

automatically. The key idea is to use a generalized Pareto 
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circulation (GPD) to fit extreme values. Prediction errors of 

training datasets are used to optimize the threshold. No 

information conveyance supposition that is needed. Another 

method is to test a series of threshold values at a fixed 

interval and check the performance. Intuitively, the value 

that produces the best result can be selected. (2) Adaptively. 

A threshold is decided and fixed when a model is trained on 

a known dataset. However, with the development of CPSs, 

the limit of anomalies is changing. The threshold ought to 

evolve as new information comes. A naive strategy is to 

update the model regularly based on newly collected 

information. Then, a threshold is generated according to the 

information. Moreover, online learning could be adopted to 

let models learn from recent incremental information. 

Meanwhile, when each  time the model is updated, a new 

threshold is calculated to replace the bygone one. 

Benchmarks with sufficient labeled and real-world atypical 

information. To date, we have not discovered numerous 

benchmarks in CPSs that can be used to compare different 

Deep Learning methods. Although there exist some 

frequently used datasets[20] (e.g., SWaT), different Deep 

Learning methods tend to tailor the dataset and receive the 

processed information all alone. We suppose that 

benchmarks in each CPS area (e.g., aerial systems) can help 

to improve the evaluation process[22]. Different methods 

may compare performances on the same benchmark. 

Specifically, we conclude several requirements for 

benchmarks.  

(1) Cover enough information types. Ideally, sensor, 

actuator, network, and control system logs information can 

be provided. Deep Learning methods can choose any type of 

information based on their design goals. Likewise, some 

models tend to work better on specific information types 

(e.g., sensor time-series information), which could be 

produced separately.  

(2) Include labeled peculiar information. One challenge 

to evaluate Deep Learning methods is the absence of labeled 

anomalies. Researchers have to design and simulate assault 

or issue cases. Standard and rich assault information and 

cases can improve detection performance and reduce 

information processing efforts.  

(3) Collect from the real world. Although reproduction is 

widely adopted in certain spaces (e.g., shrewd grid) due to 

hardware limitations, real measurements and anomalies can 

represent the status of systems better. For example, the 

sequential order and interval of packets in CAN transport 

traffic in a shrewd vehicle can be utilized as factors to decide 

whether there is an anomaly. 

 Recreation may not completely contain and represent 

these significant factors. Enhance the running performance 

to a real-time level. We observe that numerous studies in the 

brilliant vehicle area discussed the running performance of 

Deep Learning methods. This is because the response time is 

basic to try not to devastate accidents in shrewd vehicles. To 

make Deep Learning methods more pragmatic, we argue that 

running performance is significant in other CPS systems too. 

Concretely, the design can be improved from two aspects. 

 (1) Accept real-time input measurements. Instead of 

using information from offline datasets, Deep Learning 

methods could acquire online real-time measurements and 

traffic from have systems. The information sum, sampling 

rate and format can be decided based on computing 

resources and network architectures. For example, Deep 

Learning methods that sudden spike in demand for edge 

devices can achieve a high detection speed, which is owing 

to powerful computing capacity.  

(2) Take real-time activities. While it is essential to 

detect anomalies, activities to prevent calamitous losses can 

likewise be adopted. In some sense, moves ought to be made 

into account when design and train DLAD models. For 

example, when designing the misfortune work, we could 

concentrate how to choose appropriate activities in terms of 

different anomalies. Locate the peculiar device or root cause. 

 The detection performance (e.g., true positives, precision) 

is high in current Deep Learning methods. However, the area 

and the root cause of the anomaly is usually not identified. 

Users actually don't have the foggiest idea where an anomaly 

is from and how to handle the anomaly even Deep Learning 

methods detect strange status. Moreover, anomalies in 

different pieces of CPSs present different effects. We argue 

that Deep Learning methods could improve the detection 

granularity to component level.Once an anomaly is 

identified, the compromised device is likewise recognized. 

Then certain moves could be made to prevent the misfortune. 

Further, this process can be automatically conducted without 

the intervention of users. For different CPSs and problems, 

different compatible neural network architectures can be 

adopted. We observe that there exist ordinary information 

types and anomalies in different CPSs. In ICS, sensor time-

series measurement information is normally collected. 

Gradual sensor and sudden actuator change anomalies will 

break time relations in the information. LSTM-based models 

and variations are utilized to capture such time relation. 

Meanwhile, FDI assaults are prevalent in the savvy grid. We 

find that Deep Learning methods are used to help 

conventional state estimator methods. LSTM and 

autoencoder can both be adopted. Moreover, assaults on the 

CAN transport system in ITS are generally seen. In this way 

LSTM and CNN are used to capture both time relation and 

context information (e.g., packet order and content). In aerial 

systems, most anomalies are injected. LSTM-based methods 

are utilized to capture time relations. We suggest that 

researchers’ custom their models based on these findings. 

 

V. CONCLUSION 

In this work, we systematically reviewed the current 

research efforts on deep learning-based anomaly detection 

methods in cyber-physical systems. To this end, we initially 

propose a scientific classification to recognize the key 

properties of Deep Learning methods. Further, we highlight 

prevailing new Deep Learning methods and research 

findings under the light of our scientific classification. We 

additionally collect openly available datasets that can be 

used in Deep Learning methods. To motivate future research 

in this area, we present our findings, impediments of existing 

work, and possible future directions to improve Deep 

Learning methods. Our examination contributes guidance to 

design down to earth Deep Learning methods and 

understanding of the current research trend. 
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