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Abstract-lrregularity identification is essential to guarantee
the security of cyber-physical systems (CPS). Be that as it may,
because of the expanding intricacy of CPSs and more modern
assaults, traditional inconsistency recognition strategies can't
be straightforwardly applied to defeat such issues, which
additionally need area explicit information and handle the
developing volume of information. Profound learning-based
peculiarity discovery techniques have been proposed to
accomplish solo recognition in the period of CPS huge
information. In this paper, we audit best aspects of these deep
learning strategies in CPSs. We propose a scientific
categorization as far as the sort of peculiarities, techniques, and
usage and assessment measurements to comprehend the
fundamental properties of current strategies. Further, we use
this scientific categorization to recognize and feature new
qualities and plans in every CPS area. We sum up top notch of
openly accessible datasets for preparing and assessment. We
additionally talk about our discoveries, the restrictions of
existing investigations, and potential headings to improve
security in CPS using deep learning techniques.
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I. INTRODUCTION

Cyber-physical systems (CPS) are increasingly being
deployed in basic infrastructures. The CPS market is
expected to expand by 9.7% each year, which will reach
$9563 million by 2025. Prominent uses of CPS include
mechanical control systems (ICS), shrewd grid, intelligent
transportation systems (ITS), and aerial systems. CPSs have
evolved to be complex, heterogeneous, and integrated to
provide rich functionalities. However, such characteristics
additionally expose CPSs to broader threats. According to
FireEye's report, insiders, ransomware, market control, etc.
are among the top assault types in ICS. Recent incidents (e.g.,
Stuxnet, Ukraine power grid outage, auto-driving crashes,
robot malfunction) have indicated that sophisticated and
stealthy assaults (and blames) can result in calamitous
consequences to the economy, environment, and even living
souls. Subsequently, it is central critical to ensure the
security of CPSs. To detect assaults and unexpected errors in
CPSs, anomaly detection methods are proposed to mitigate
these threats. For example, rule, state estimation (e.g.,
Kalman filter), statistical model (e.g., Gaussian model,
histogram-based model) based methods are utilized to learn
normal status of CPSs [64]. However, these methods usually

require expert knowledge (e.g., operators manually extract
certain rules), or need to know the underlying dispersion of
normal information. Machine learning approaches don't rely
on space specific knowledge. Yet, they usually require a
large amount of labelled information (e.g., order based
methods). Likewise, they can't capture the unique attributes
of CPSs (e.g., spatial-temporal correlation) . Interruption
detection methods are dedicated to ensuring network
correspondence security. Physical properties (e.g., the noise
of engines) are captured to depict the immutable nature of
CPSs. Program execution semantics are characterized to
protect control systems. However, as CPSs become more
complicated what's more, assaults are more stealthy (e.g.,
APT assaults), these methods are difficult to ensure the
overall status of CPSs (e.g., protect multivariate physical
measurement) and need more space knowledge (e.g., more
components and correlation). Anomaly detection systems
need to adjust to capture new characteristics of CPSs.
Specifically, we need to answer three research questions:

()What are the characteristics of existing approaches?
Specifically, the threat model, detection strategies (i.e., input
information, neural network design, and anomaly scores),
implementation and evaluation metrics of Deep Learning
methods are definitely not categorized.

(2) What are the takeaways and impediments of existing
work? Are there freely available datasets?

(3) How would we be able to improve Deep Learning
methods?

Answering these questions helps to understand the
fundamentals of Deep Learning methods, evaluate proposed
DLAD models, and explore new arrangements.

Il. BACKGROUND

A. Complexity Management

Anomaly detection has developed for various
applications, e.g., intrusion detection, fraud detection. In this
work, we centre on new research efforts that detect
anomalies in CPS with the help of emerging deep learning
methods. We can concisely characterize the generic work
process of Deep Learning methods. Normally, Deep
Learning methods comprise of training and testing phases.
At the training phase, a large amount of info information is
first collected. Sensor and actuator information, level 0 and
level 1 correspondence traffic, and control system logs are
regularly used information sources. Different customized
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information processing approaches are applied to the
information, which is then fed to neural network models.
Then, the principle commitment of new methods lies in
different DLAD models (e.g., RNN, auto encoders, CNN,
and customized models) in different application scenarios.
Further, DLAD models utilize misfortune capacities to
compute differences between yield information from the
yield layer and ground truth information. We denote these
differences as anomaly scores. There are three types of
anomaly scores: (1) Prediction error (2) Reconstruction error,
and (3) Predicted labels (details in Section 3.2). Anomaly
scores are used to optimize and update DLAD models. At
the testing phase, collected or real-time input information is
fed to trained models and determine whether the information
is an anomaly. As an early effort to review anomaly
detection methods, they didn't consider deep learning based
methods and didn't include CPS. Item loT systems have
transformed the way people live. For example, emerging
keen home applications permit users to interact with home
appliances automatically. Program investigation methods are
proposed to protect the security and discover vulnerabilities
in these applications. Meanwhile, researchers have
reviewed anomaly detection methods that utilize the physical
properties of CPSs (e.g., the noise of physical devices) [1,2].
Studies in terms of network security of SCADA systems are
summarized with an attention on danger assessment
techniques [3]. Yet, the techniques didn't include deep
learning methods and are conventional, e.g., state estimation,
intrusion detection based methods. There is work that
studied deep learning-based anomaly detection methods
however didn't zero in on CPS [4]. While many of the
researchers have investigated utilizations of deep learning
methods in CPS, it didn't cover anomaly detection [5]. Some
of the researchers have also examined the scientific
classification of threats in shrewd home 10T, which did not
consider anomaly detection methods [6,7]. At last, few of the
researchers have studied information examination
approaches that use deep learning methods in 10T [8]. To the
best of our knowledge, our work is the principal work that
studies deep learning-based anomaly detection methods in
CPS, which differs from the above existing surveys.

I1l. APPLICATION OF DEEP LEARNING FOR
INCONSISTENCY EXPOSURE

Since CPSs usually manage basic infrastructure (e.g.,
ICS, medical devices, and power grid), they are consistently
under the threat of different assaults. An attacker who has
the motive (e.g., monetary interest, protection theft, and state
operations) can lead assaults. These assaults can target
different pieces of CPSs:

(1) Network correspondence layer. Field devices (e.g.,
sensors and actuators) rely on correspondence networks to
cooperate with each other. Additionally, sensor values,
device status are reported to server farms and control
commands are sent by control systems through the network.
In this case, level 0 correspondence (C0) and level 1
correspondence (C1) can both be targeted. Note that S2, A2,
D1 (contained in CO and C1 traffic) can likewise be
manipulated under these assaults.

We identify three types of assaults:

* Denial-of-service (DoS) assaults: DoS assaults bring a
significant threat to the functionalities of real-time
applications in CPSs. For example, it would cause a crash of
airplane or low traffic use if the ADS-B system is
unavailable. Meanwhile, the transmission feature in some
CPS correspondence protocols (e.g., the CAN protocol in
shrewd vehicle systems) makes the network prone to DoS
assaults.

* Man-in-the-middle (MITM) assaults: PSs receive
numerous newly designed protocols, which may do not have
a well-designed authentication mechanism. Additionally,
Ethernet used in CPS can be exploited to direct MITM
assaults. Packet content might be manipulated and sensitive
information can be leaked through MITM assaults.

* Packet injection. In the event that attackers gain access
to the network, they are able to inject a subjective packet to
send control command into the system. False control
commands can cause severe damage to running devices and
even place human lives under danger. For example, a false
engine and brake control command might induce an auto
accident.

(2) Control system. As the core of one CPS, control
systems take sensor values as info and give control signals to
actuators or field devices. Due to brutal working
environments or limited hardware resources, the protection
mechanism may not well-established in charge systems.Once
control systems are compromised, information sent to
SCADA systems (D1) and commands sent to actuators (A2)
can be altered. We discover two types of assaults that target
control systems:

e Malware: For the long-term monitoring and
information leakage, attackers would place malware in the
control system. Moreover, malware can be used to dispatch a
stealthy assault (e.g., APT assault) at a certain crucial point
in time. Sensor readings can be manipulated by malware.
Under certain circumstances, malware may likewise cause
physical damage to devices .

* False control signals: Devices operate deviating from
regular working status when receiving false control signals.
Wrong operations shorten the working life of devices and
can even damage devices directly. Attackers usually conceal
their unauthorized access to the system and send false
control commands at a crucial time point.

Shortcomings: The complexity of systems and
heterogeneity of devices lead CPSs to generate unexpected
flaws. For example, modern control systems regularly
comprise of multiple stages and a ton of components in each
stage. Numerous devices operate in a cruel environment (e.g.,
high dampness or temperature). Additionally, mechanical
parts are vulnerable to scraped spot and vibration. S2, A2,
and D1 would all be able to be abnormal due to flaws.

We find that shortcomings commonly happen in two
layers:

(1) Sensor layer. False sensor value is a typical issue in
the sensor layer. To begin with, physical damage or defect
leads sensors to report inaccurate and even wrong sensor
values. Likewise, previously unseen circumstances may
cause sensors to work beyond their abilities. For example,
sensors on spacecraft may come across unexpected
conditions.
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(2) Control system. CPSs ordinarily hold the dynamic
running characteristic, which means there are consistently
circumstances that may not be covered during the system
design stage. For example, different orders and timings of
events in the PLC code can cause object crashes of an
assembly line in modern plants.

A. Detection strategies:

Deep Learning methods choose their detection strategies
from three aspects:

Input data. Deep Learning methods first need to decide
what type of data to take as input, which depends on specific
anomalies they tend to detect. Based on the layer and source
where data is collected, we conclude four types of input data:
(1) Sensor and actuator data. (2) Network traffic data. (3)
Systemcalls and logs. (4) Time-series data, which is pre-
processed sensor, network, and log data in numeric time-
series form. Deep Learning methods adopt semi-supervised
and unsupervised learning to resolve the lack of labeled data
(especially anomalous data).Neural network design. Deep
Learning methods adopt different neural network designs
based on input data and tasks. The deep network can be
stacked models (e.g., LSTMs) or hybrid combinations of
models (e.g., the combination of LSTM and CNN).
Although neural network designs can be in various forms,
we found several basic models used to build the neural
network. (1) RNN: LSTM models (one type of RNN) are
often used to capture characteristics of time-series data.
(2)Autoencoder:  Autoencoders are applied to handle
imbalanced data and achieve unsupervised learning.

(3)CNN:CNN models can capture correlations and
context information of multivariate measurement data.

Anomaly scores: There exist three metrics to calculate
the detection error: (1) Prediction error:Deep Learning
methods take past data as input to predict future sensor or
actuator values. Then, the error between predicted and real
values is measured. Anomalous data usually deviate from
predicted values.

(2) Reconstruction error: Input data is fed to the model
and compressed to hidden layers, which represents low
dimensional space. The data is then reconstructed to the size
of the original dimension. Similarly, the error between
reconstructed and origin values is calculated. A threshold of
error is usually selected to identify anomalous data.

(3) Predicted label or class: If labeled data is relatively
sufficient in some domain (e.g., SWaT testbed in ICS),
DLAD models can be trained to predict labels of input data.
The assumption is that latent features learned from neural
networks can be used to identify anomalies. We observe
very few methods to adopt this design since a large quantity
of labeled data needs profound manual effort.

C.Implementation and evaluation metrics

We summarize the implementation of existing work with
an emphasis on platforms where information is collected.
Then, metrics that are used to evaluate the effectiveness and
performance of Deep Learning methods are identified.

Implementation: As information driven techniques, Deep
Learning methods consume a large amount of information to
prepare and test models. We summarize three types of

environments where information is collected: (1) Data from
real-world systems.

(2) Test bed. Researchers construct scaled-down yet
entirely utilitarian test beds, where experiments should be
possible without the danger of damaging real CPSs.

(3) Simulation. The advantage of information from real-
world systems is that it reflects the inherent principle of real
systems, although the information is difficult to harvest and
the number of systems is limited. Recreation is easy to
operate yet cannot capture problems that lone exist in real
systems.

A scaled-down test bed could balance the information
distortion and operability. Likewise, atypical information
can be collected from real-world systems and manually
created. There can be insufficient real-world bizarre
information since anomalies are difficult to harvest. For
example, in brilliant vehicles and medical space, anomalies
in real devices may place human lives in danger. So existing
studies tackle this problem by manually creating three sorts
of anomalies:

(1) Point anomaly. Through investigating anomalies that
can happen, several independent abnormal cases can be
injected into the normal information series. For instance,
Taylor et al. and Russo et al. injected several assault cases
into the sequence of CAN transport packets.

(2) Statistical anomaly. Anomalies that follow certain
statistical patterns are injected into normal information as an
abnormal period.

(3) Simulated assaults. Different assaults are simulated in
the testbed, where sensor values and system logs can be
easily collected. Zhang et al. created cyber assaults in
transactive energy systems.

C.Evaluation metrics:

Metrics are proposed to measure the effectiveness of
Deep Learning methods. We conclude that the most
commonly used metrics are precision, recall, and F1 score.
Given imbalanced datasets, these metrics consider false
positives and false negatives, which are better than metrics
such as accuracy. The precision is defined as

TP/(TP + FP) Q)

Where TP stands for True Positives and FP means False
Positives. The recall is defined as

TP/(TP + FN) )
WhereFN denotes False Negatives. F1 is defined as
2*Precision*Recall/(Precision+Recall) ?3)

Also, the Receiver Operating Characteristic (ROC) curve
is used to manage trade-offs between FP and TP. Meanwhile,
methods are often compared with baseline methods to
examine the improvement. Some error-based metrics are
also applied to measure the prediction and reconstruction
performance such as Mean AbsoluteError (MAE) and
Relative Errors (ReErr) .

I11. UPCOMING TECHNIQUES

1. Applying filters before Deep Learning methods to

improve efficiency:

Applying Deep Learning methods in ICS, where running
environments are usually resource constrained, should
consider the efficiency factor. A lightweight and efficient
conventional detecting method could be utilized before Deep
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Learning methods to decrease information to be checked
significantly. Researchers have proposed a combined
anomaly detection framework. The primary idea is to
initially apply a Bloom filter to traffic information and then
pick dubious packets to the subsequent LSTM-based
detector[9,10]. The quick and lightweight filter reduces the
burden of the LSTM detector, which enhances the detection
efficiency. This method means to identify cyber assaults in
the correspondence layer of a SCADA system. The assault
types include injecting noxious commands (e.g., state,
parameter, and capacity code) and DoS assaults.
Additionally, the LSTM detector stacks two LSTM layers
using signatures of previous packets to predict the signature
of the next packet. Then, the predicted signature is checked
to examine whether it is in the normal signature database.
The method is evaluated on a gas pipeline system in a
laboratory environment, which outperforms baseline
methods (e.g., Bayesian Network, Detachment Forest) in the
recall, exactness, and F1 score[11].

2.Deep learning-based feature representation: We
identify three types of feature representation in Deep
Learning methods:

(1)crude information (directly fed to models)

(2)information processing (e.g., inner items of two
sensor time series)

(3)deep  learning-based  embedding.  Information
processing helps to identify discriminative characteristics of
information, which is likewise used in conventional
detection methods.

We find that deep learning methods are utilized to
integrate features and reduce dimensions of feature space.
For example, researchers have proposed deep autoencoders
to automatically compress crude contribution to lower-
dimension hidden layer representation, which further is
utilized as the contribution of the subsequent neural network
[12,13]. Despite the two works [14, 15] utilizing the hidden
layer to represent features, the real neural network detecting
anomalies can be different. One [16] takes sensor value and
uses LSTM to generate prediction errors, while the other [16]
takes traffic information and uses autoencoder to generate
reconstruction errors. The two methods are evaluated on
information from testbeds. When expert knowledge is
limited (e.g., face a new network protocol), this can be very
useful.

3.0ne sensor or actuator is one-dimension information
(e.g., time-series), numerous LSTM-based Deep Learning
methods are proposed to learn temporal behaviours of the
information. However, there exist correlations among
several different sensors and actuators, which reflect logical
relations in the control system. In other words, there are
interdependent relationships among sensors and actuators.
Hence one challenge is to capture context (temporal, spatial,
and logical) features in multi-dimensional (time-series of
multiple sensors and actuators) information. To this end,
CNN can extract features of multi-dimensional information
together through convolution operations. Several approaches
receive a convolutional layer as the principal layer of the
neural network to get correlations of multiple sensors in a
sliding time window. Further, the extracted features are fed
to subsequent layers to generate yield scores.

These methods can be employed to detect the two
assaults and blames. All methods take sensor and actuator
value as info and generate prediction error or predicted
labels. Meanwhile, other researchers have utilized RNN to
take the yield of the CNN layer and form the prediction layer
[17,18]. Moreover, the two methods use datasets from real
modern plants. Precision, recall, F1, and ROC are evaluation
metrics.

4.Exploration of GAN-based methods: The researchers
have also proposed a GAN-based framework to capture the
spatial-temporal  correlation in the multi-dimension
information[19]. Both the generator and discriminator are
utilized to detect anomalies by reconstruction and
segregation errors. Likewise, LSTM models are used to
assemble the generator and discriminator. The framework
takes sensor and actuator values as information and means to
detect false control signals. Compared to a GAN-based
anomaly detection method that isn't focused on ICS, this
method finds that capturing temporal correlation is the key to
improve performance. The method outperforms baseline
methods (e.g., Principal component examination, One-Class
SVM, K-Nearest Neighbour, Feature Bagging) in precision,
recall, and F1. This is an interesting attempt to utilize GAN-
based models. Additionally, a well-tuned generator can be
used to produce training information.

5.Applying conventional and Deep Learning methods in
parallel through ensemble learning. We have introduced that
conventional methods can be used as filters before applying
Deep Learning methods. However, to increase the precision,
these two sorts of methods can be placed parallelly to learn
the characteristics of information.

More recently a framework has been proposed called MBPF
that ensembles two components:

(1) A statistical method named TBATS (Trigonometric
Box-Cox transform, ARMAerrors, Trend, and Seasonal
components), and

(2) Multi-branch Deep Network Component. To begin
with, seasonality evaluation and outlier elimination are
applied to remove noise.

Then, pre-processed information is fed to TBATS and
deep learning models simultaneously to capture linear and
sequential relations. At last, a Multi-Layer Perceptron (MLP)
takes the yield of TBATS and deep learning models, which
will vote between the two methods and predict the next
value. The MBPF framework can analyse any time-series
information. The Mean Absolute Error (MAE) and Root
Mean Square (RMSE) are utilized to measure prediction
errors. Evaluated on a real-world SCADA water supply
system, the method outperforms baseline methods (e.g.,
Multilayer Perceptron, Stacked LSTM, Regularized LSTM)
when measured by MAE, RMSE, Absolute deviation
(AbsDev) and Relative Errors (ReErr).

IV.FUTURE DIRECTIONS
Determine the anomaly threshold automatically and
adaptively. We argue that the threshold ought to be decided:
(1) Automatically:The conventional threshold tuning process
isn't efficient and error-prone. To this end, Su et al.utilize the
Extreme Value Theory (EVT) to learn the threshold
automatically. The key idea is to use a generalized Pareto
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circulation (GPD) to fit extreme values. Prediction errors of
training datasets are used to optimize the threshold. No
information conveyance supposition that is needed. Another
method is to test a series of threshold values at a fixed
interval and check the performance. Intuitively, the value
that produces the best result can be selected. (2) Adaptively.
A threshold is decided and fixed when a model is trained on
a known dataset. However, with the development of CPSs,
the limit of anomalies is changing. The threshold ought to
evolve as new information comes. A naive strategy is to
update the model regularly based on newly collected
information. Then, a threshold is generated according to the
information. Moreover, online learning could be adopted to
let models learn from recent incremental information.
Meanwhile, when each time the model is updated, a new
threshold is calculated to replace the bygone one.
Benchmarks with sufficient labeled and real-world atypical
information. To date, we have not discovered numerous
benchmarks in CPSs that can be used to compare different
Deep Learning methods. Although there exist some
frequently used datasets[20] (e.g., SWaT), different Deep
Learning methods tend to tailor the dataset and receive the
processed information all alone. We suppose that
benchmarks in each CPS area (e.g., aerial systems) can help
to improve the evaluation process[22]. Different methods
may compare performances on the same benchmark.
Specifically, we conclude several requirements for
benchmarks.

(1) Cover enough information types. ldeally, sensor,
actuator, network, and control system logs information can
be provided. Deep Learning methods can choose any type of
information based on their design goals. Likewise, some
models tend to work better on specific information types
(e.g., sensor time-series information), which could be
produced separately.

(2) Include labeled peculiar information. One challenge
to evaluate Deep Learning methods is the absence of labeled
anomalies. Researchers have to design and simulate assault
or issue cases. Standard and rich assault information and
cases can improve detection performance and reduce
information processing efforts.

(3) Collect from the real world. Although reproduction is
widely adopted in certain spaces (e.g., shrewd grid) due to
hardware limitations, real measurements and anomalies can
represent the status of systems better. For example, the
sequential order and interval of packets in CAN transport
traffic in a shrewd vehicle can be utilized as factors to decide
whether there is an anomaly.

Recreation may not completely contain and represent
these significant factors. Enhance the running performance
to a real-time level. We observe that numerous studies in the
brilliant vehicle area discussed the running performance of
Deep Learning methods. This is because the response time is
basic to try not to devastate accidents in shrewd vehicles. To
make Deep Learning methods more pragmatic, we argue that
running performance is significant in other CPS systems too.
Concretely, the design can be improved from two aspects.

(1) Accept real-time input measurements. Instead of
using information from offline datasets, Deep Learning
methods could acquire online real-time measurements and

traffic from have systems. The information sum, sampling
rate and format can be decided based on computing
resources and network architectures. For example, Deep
Learning methods that sudden spike in demand for edge
devices can achieve a high detection speed, which is owing
to powerful computing capacity.

(2) Take real-time activities. While it is essential to
detect anomalies, activities to prevent calamitous losses can
likewise be adopted. In some sense, moves ought to be made
into account when design and train DLAD models. For
example, when designing the misfortune work, we could
concentrate how to choose appropriate activities in terms of
different anomalies. Locate the peculiar device or root cause.

The detection performance (e.g., true positives, precision)
is high in current Deep Learning methods. However, the area
and the root cause of the anomaly is usually not identified.
Users actually don't have the foggiest idea where an anomaly
is from and how to handle the anomaly even Deep Learning
methods detect strange status. Moreover, anomalies in
different pieces of CPSs present different effects. We argue
that Deep Learning methods could improve the detection
granularity to component level.Once an anomaly is
identified, the compromised device is likewise recognized.
Then certain moves could be made to prevent the misfortune.
Further, this process can be automatically conducted without
the intervention of users. For different CPSs and problems,
different compatible neural network architectures can be
adopted. We observe that there exist ordinary information
types and anomalies in different CPSs. In ICS, sensor time-
series measurement information is normally collected.
Gradual sensor and sudden actuator change anomalies will
break time relations in the information. LSTM-based models
and variations are utilized to capture such time relation.
Meanwhile, FDI assaults are prevalent in the savvy grid. We
find that Deep Learning methods are used to help
conventional state estimator methods. LSTM and
autoencoder can both be adopted. Moreover, assaults on the
CAN transport system in ITS are generally seen. In this way
LSTM and CNN are used to capture both time relation and
context information (e.g., packet order and content). In aerial
systems, most anomalies are injected. LSTM-based methods
are utilized to capture time relations. We suggest that
researchers’ custom their models based on these findings.

V. CONCLUSION

In this work, we systematically reviewed the current
research efforts on deep learning-based anomaly detection
methods in cyber-physical systems. To this end, we initially
propose a scientific classification to recognize the key
properties of Deep Learning methods. Further, we highlight
prevailing new Deep Learning methods and research
findings under the light of our scientific classification. We
additionally collect openly available datasets that can be
used in Deep Learning methods. To motivate future research
in this area, we present our findings, impediments of existing
work, and possible future directions to improve Deep
Learning methods. Our examination contributes guidance to
design down to earth Deep Learning methods and
understanding of the current research trend.
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