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   Abstract  

           The paper presents an inventory model for 

deteriorating items with price dependent demand. 

Deterioration rate follows a three parameter 

Weibull distribution. Shortages are allowed and 

are completely backlogged. The results are 

illustrated with the help of numerical example. 

Sensitivity analyses are carried out to analyze the 

effect of changes in the optimal solution with 

respect to change in one parameter at a time. 
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1. Introduction  

Inventory models are classified in to 

three categories (1) Deterioration (2) Obsolescence 

(3) no deterioration/no obsolescence. Deterioration 

makes the product value dull. 

Ajanta Roy [1] presented an inventory 

model for time proportional deterioration rate and 

demand is function of selling price. The Author 

discussed the model without shortage and also with 

shortages in which the shortages are completely 

backlogged. Mukesh Kumar, Anand Chauhan, 

Rajat Kumar [8] extended Ajanta Roy models with 

trade credit. Tripathy C.K and L.M. Pradhan [13] 

gave a model in which the demand of the product 

decreases with the increase of time and sale price 

and deterioration rate follows a three parameter 

Weibull distribution. Now Tripathy C.K and L.M. 

Pradhan [14] included salvage value and developed 

an EOQ model for three parameter Weilbull 

distribution deterioration rate under permissible 

delay in payments. Padmanabhan.G, Prem Vrat [9] 

formulated an EOQ model for perishable items 

under stock dependent selling rate. Sahoo.N.K., 

Sahoo .C.K. & Sahoo.S.K described an inventory 

model for price dependent demand and time 

varying holding cost. Vikas Sharma and Rekha 

Rani Chaudhary [16] explained and inventory 

model for two parameter Weibull deterioration rate. 

They found profit for their model. Sanjay JAIN and 

Mukesh KUMAR [12] explained an inventory 

model with ramp type demand and three parameter 

Weibull deterioration rate. The Authors also 

analyzed and summarized economic order quantity 

models done by few researchers. There are some 

products which start deteriorate only after some 

interval of time. This was explained by taking three 

parameter Weibull distribution deterioration rate. 

Anil Kumar Sharma, Manoj Kumar Sharma and 

Nisha Ramani [2] described an inventory model for 

two – parameter Weibull distribution deterioration 

rate and demand rate is power pattern. Manoj 

Kumar Meher, Gobinda Chandra Panda, Sudhir  

Kumar Sahu [7] adopted a two – parameter Weibull 

distribution deterioration to develop an inventory 

model under permissible delay in payments. Kun –

Shan Wu [6] made an attempt in his paper to obtain 

the optimal ordering quantity of deteriorating items 

for two – parameter Weibull distribution 

deterioration under shortages and permissible delay 

in payments. P.K.Tripathy and S.Pradham [15] also 

define an inventory model with two – parameter 

Weibull distribution as demand rate and 

deterioration rate increases with time. 

 In this present paper, we have developed 

an inventory model for three-parameter Weibull 

deterioration rate and price dependent demand. 

Shortages are allowed and are completely 

backlogged. Holding cost is assumed to be 

constant. Our aim is to increase the profit. 

2. Assumptions and notations 

(i) The demand rate is a function of selling price. 

(ii) Shortages are allowed and are completely 

backlogged  

(iii) Lead time is zero. 

(iv) Replenishment is instantaneous 

(v) A is the set up cost 

(vi) C is the unit cost of an item 

(vii) p is the selling price 

(viii) Demand D (t) = f (p) = a-p, where a > p. 
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(ix) C2 is the shortage cost per unit time 

(x) θ (t) = α β (t-γ)
β-1

,  0 ≤ α < 1 ,  β > 0 and                   

- < γ <   is the deterioration rate. At time T1 

the Inventory becomes Zero and shortages start 

occurring. 

(xi) h is the constant holding cost. 

(xii) T is the length of the cycle. 

 

3. Mathematical formulation and solution 
 

Let I (t) be the inventory at time T ( 0 ≤ t ≤ T ) the 

differential equation for the instantaneous state over 

(0,T) are given by 

dt

tdI )(
+ 

1)(   t  I (t) = - (a-p), 0 ≤ t ≤ T1                   

(1) 

dt

tdI )(
= - (a-p),    T1 ≤ t ≤ T                                   

(2) 

With boundary condition I (T1) = 0  

Solving equation (1) 
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1
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Stock loss due Deterioration 
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Order Quality  
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Purchase cost = 
T

CQ
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Total Profit Per unit time is 

= p (a-p) - 
T

1
 [Ordering cost + purchase cost + 

shortages cost + holding cost] 
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T
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1932

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



( 

2

)( 2

1



 



 T
-T1 (T1 - 

1)  ) + 

)12(2

2




  

( 

)1(2

)( 22

1



 



 T
 - T1 (T1-

12)  )] + h (a-p) [ 

2

2

1T
+ 

)1)(2(

)( 2



 



 

+ 

)1)(12(4

)( 222



 



 

]} 
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For the maximization of profit we set, 
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4. Numerical Example 

Let us consider C = 5, v = 0.2, C2 = 5,  = 0.4, 

 = 2,  = 1, h = 1, a = 50, A = 1000 in proper 

units we get p = 32.3909, T = 5.9564, TP = 

142.1949, Q = 107.5330 

 

5. Sensitivity Analysis 

  p T TP Q 

0.5 32.4215 5.9714 141.5371 108.3591 

0.6 32.4534 5.9869 140.8515 109.2179 

0.7 32.4866 6.0031 140.1385 110.1126 

0.8 32.5210 6.0198 139.3986 111.0397 

1933

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T



 

H p T TP Q 

2 32.43.03 5.9277 139.9951 106.7867 

3 32.4698 5.8998 137.8099 106.0562 

4 32.5093 5.8125 135.6390 105.3385 

5 32.5488 5.8458 133.4822 104.6336 

 

C2 p T TP Q 

4 31.8084 6.5334 177.8724 121.6404 

3 31.1694 7.3674 218.8579 141.8183 

2 30.4342 8.6899 267.7428 174.0637 

1 29.4950 11.0218 329.7243 234.6714 

 

C p T TP Q 

6 32.9898 6.0645 124.4512 105.7209 

7 33.5930 6.1782 107.3297 103.8447 

8 34.2008 6.2979 90.8342 101.8983 

9 34.8138 6.4246 74.9689 99.8804 

 

v p T TP Q 

0.3 31.6714 6.3800 179.1983 121.7266 

0.4 30.8940 6.1710 202.9896 130.9089 

0.5 30.2681 5.4801 206.8682 129.9765 

0.6 29.9177 4.7713 193.7094 123.3320 

 

 

 

a p T TP Q 

60 36.7900 5.2035 346.5236 124.2395 

70 41.3870 4.6959 605.7523 138.6358 

80 46.0894 4.3198 918.4367 151.5396 

 

From this table, it can be observed that 

1. p(t, p) is slightly sensitive to changes in α, 

h and it is highly sensitive to changes in a, 

C2, C2 and v. 

2. p is slightly sensitive to changes in α, h 

and moderately sensitivity to changes in a, 

C2, C2 and v. 

3. Q is slightly sensitive to changes in the 

values of α, h and C and it is highly 

sensitive to changes in a, C2 and v. 

4. T is slightly sensitive to changes in the 

values of α, a, h and C and moderately 

sensitive to changes in C2 and v 

6. Conclusion 

A deterministic inventory model for 

deteriorating inventory model with three 

parameter Weibull distribution deterioration rate 

has been developed. Demand rate is function of 

selling price and holding cost is constant occurring 

shortages and completely backlogged. A 

numerical example is also given in support of the 

theory. A future research it may be consider to 

extend the model under permissible delay in 

payments. 
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