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To address these limitations, the concept of Intelligent 

Transportation Systems (ITS) has emerged, enabled by 

advancements in the Internet of Things (IoT), Artificial 

Intelligence (AI), and communication technologies [5]. ITS 

aims to make transportation safer, more efficient, and more 

sustainable. Recent research has explored various AI-driven 

approaches, including machine learning and deep learning, to 

create adaptive traffic control systems [6], [7]. These systems 

utilise data from various sensors, including inductive loops, 

radar, and cameras, to make informed decisions. 

Despite progress, many existing systems face challenges 

related to scalability, high implementation costs, and the 

complexity of processing vast amounts of data in real time 

[8]. There is still a need for a robust, scalable, and cost-

effective architecture that can integrate state-of-the-art 

computer vision with a distributed computing framework for 

citywide traffic optimisation. Such a system would improve 

traffic flow and contribute to the broader goals of urban 

sustainability and enhanced citizen well-being. 

This paper addresses this gap by proposing a hierarchical 

intelligent traffic control system based on an edge-cloud 

computing architecture. Our primary contributions are: 

• We propose a multi-layer system architecture that

distributes computational tasks between edge devices and a

central cloud platform, ensuring real-time performance and

scalability. This approach mitigates the latency and

bandwidth limitations often encountered with centralised raw

video processing, offering a more resilient and efficient

solution.

• The application of the YOLOv5 deep learning model at

the edge for highly accurate and real-time vehicle detection

and classification, optimised explicitly for diverse urban

traffic scenarios.

• A cloud-based traffic analysis and AI decision module

that generates real-time traffic density heatmaps and employs

an adaptive AI model to make optimal, dynamic decisions

for traffic signal control, aiming to minimise waiting times

and maximise throughput. The detailed mechanism of this AI

model is elaborated in Section III.

• This paper presents a comprehensive discussion of the

system's potential effectiveness, illustrated through a case

study based on Bucharest's traffic patterns and supported by

detailed simulated performance metrics that compare our

system with traditional methods, thereby validating its

practical applicability.
The rest of this paper is organised as follows: Section II
reviews related work in the field. Section III details the
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I. INTRODUCTION

This Urbanisation is a defining global trend, with 

an increasing percentage of the world's population 

migrating to metropolitan areas [1]. This influx places 

immense strain on urban infrastructure, particularly 

transportation networks. Vehicular congestion has become 

a chronic issue in major cities, resulting in 

significant economic losses, environmental pollution, 

and a decline in the quality of life for citizens [2]. The 

management of road traffic flow is therefore a 

paramount challenge in the Development of modern 

smart cities [3]. 

Traditional traffic management systems typically 

employ pre-programmed, fixed-time signal controllers. 

While simple to implement, these systems are inherently 

inefficient as they cannot respond to the real-time, 

dynamic fluctuations in traffic volume [4]. This rigidity 

often results in scenarios where lanes with heavy traffic 

endure long red lights while empty lanes are given 

unnecessary green light time, exacerbating congestion 
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A. IoT and Sensor Technologies in Traffic Management

The IoT has been a catalyst for the evolution of ITS. The

ability to deploy interconnected sensors across a city has

enabled the collection of rich, real-time traffic data [2]. Early

systems relied heavily on physical sensors, like inductive

loops buried in the pavement and ultrasonic sensors mounted

on poles [1]. While effective for vehicle counting, these

sensors often provide limited information, such as precise

vehicle type or accurate queue length, and they can be costly

and disruptive to install and maintain.

More recently, computer vision-based sensing using CCTV

cameras has become a popular alternative due to the rich data

it provides [4]. Cameras offer not only vehicle detection but

also classification (e.g., cars, buses, trucks), speed

estimation, and tracking across multiple frames traffic data

into control decisions [5]. However, the primary challenge

with vision-based systems lies in the significant

computational power required for real-time video analysis

with a multitude of cameras, which, if centralised, can lead

to substantial latency and bandwidth strain. Our edge-cloud

architecture directly addresses this by localising the

compute-intensive video processing at the edge.

B. AI and Machine Learning for Traffic Prediction and

Control

AI algorithms form the core of the intelligence in modern 

ITS. Machine learning models have been widely used for 

traffic prediction, which involves forecasting future traffic 

flow based on historical and real-time data [9]. Techniques 

range from traditional statistical models to more complex 

deep learning architectures, such as Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks, which are adept at learning from time-series data. 

While effective in prediction, these models often require 

extensive datasets and computational resources for training. 

For dynamic traffic signal control, Reinforcement Learning 

(RL) has shown significant promise due to its ability to learn 

optimal policies through trial and error in complex 

environments. However, RL models can be notoriously 

difficult to train, demand extensive simulation before reliable 

deployment, and may struggle with generalisation to unseen 

traffic scenarios or network-wide optimisation without 

sophisticated multi-agent approaches. Other methods, such 

as fuzzy logic or expert systems, have also been explored, 

but they often lack the adaptability and learning capabilities 

required for truly dynamic and complex urban environments 

[5]. Our work builds on these foundations by integrating a 

high-performance supervised deep learning model 

(YOLOv5) for accurate real-time vehicle perception at the 

edge, coupled with an advanced AI decision model in the 

cloud that leverages real-time data for adaptive, citywide 

traffic control, thereby mitigating the limitations inherent in 

purely static or overly complex centralised learning systems. 
In recent years, cities like London and New York have 
deployed AI-based systems to optimise traffic signals using 
data collected from diverse sensors. Studies such as [12] 
demonstrate how these systems have improved traffic flow 
by reducing congestion and minimising delays. Comparing 
these implementations to our proposed system helps 
highlight the potential advantages of edge-cloud computing 
for real-time decision-making. 

C. Edge-Cloud Computing Architectures

Processing high-definition video streams from numerous 

cameras across the city in a centralised cloud is often 

impractical due to prohibitive latency and bandwidth 

constraints. The edge-cloud computing paradigm offers a 

robust solution by performing time-sensitive computations 

at the "edge" of the network, closer to the data source [8]. In 

the context of traffic management, an edge device (e.g., a 

small computer attached to a traffic pole) can perform 

immediate tasks, such as real-time vehicle detection from a 

camera feed. This localised processing significantly reduces 

the volume of data transmitted; only structured, lightweight 

metadata (e.g., vehicle counts, locations, types) is sent to the 

cloud. The cloud platform, thus unburdened from raw video 

processing, can then focus on higher-level tasks such as 

citywide data aggregation, complex pattern analysis, 

strategic decision-making, and long-term optimization [6]. 

This hierarchical approach inherently enhances scalability, 

reduces network congestion, minimises latency, and ensures 

the real-time responsiveness critical for effective traffic 

management in a large-scale urban environment. Moreover, 

by processing raw video locally, this architecture inherently 

contributes to enhanced data privacy by transmitting only 

anonymised and aggregated information to the central 

cloud. 

D. Comparison with State-of-the-Art Systems

Table I provides a comparative overview of recent state-of-

the-art intelligent traffic control systems, highlighting their 

environments, learning strategies, and results. Our system 

demonstrates competitive performance while uniquely 

combining an edge-cloud architecture with YOLOv5 and 

DRL-based optimisation. 

Table I: Comparison with State-of-the-Art AI-Based 

Traffic Control Systems. 

Reference Scenario Approach Key Result 

Genders 

& Razavi 

(2016) 

Single 

Intersection 

DQN + CNN 

in SUMO 

66% reduction 

in queue length 

Zhou et 

al. (2020) 

Multi-agent 

System 

Decentralized 

DRL 

Improved 

coordination, 

scalability 

Liang & Real-Time YOLOv3 26.6 FPS, mAP 

proposed system architecture and methodology. Section IV 
presents the results of our simulated evaluation and discusses 
their implications. Finally, Section V concludes the paper 
and suggests directions for future research. 

II. RELATED WORK

The field of intelligent traffic management is vast, with 

research spanning sensor technologies, communication 

protocols, and control algorithms. This section reviews key 

areas relevant to our proposed system, critically analyses 

existing approaches, and highlights the motivations for our 

proposed architecture. 
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Wu 

(2022) 

Object 

Detection 

Edge 

Deployment 

47.3% on 

Jetson Nano 

This 

Work 

Bucharest 

Case Study 

YOLOv5 + 

DQN in Edge-

Cloud 

37.5% 

reduction in 

waiting time; 

38.9% increase 

in throughput 

III. PROPOSED SYSTEM AND METHODOLOGY

To address the challenges of dynamic traffic management 
and build upon the strengths while mitigating the weaknesses 
of existing approaches, we propose a multi-layer intelligent 
traffic control system. This section details the system 
architecture and the methodology for each of its key 
components. 

A. System Architecture

 The proposed system is based on a hierarchical edge-cloud 
architecture, as illustrated in Fig. 1. It consists of four main 
layers, designed for optimal performance, scalability, and 
responsiveness: 

• Perception Layer: This foundational layer comprises

standard IP-based CCTV cameras strategically installed at

intersections. These cameras are responsible for capturing

continuous, high-resolution video streams of traffic flow,

serving as the primary source of raw data for the entire

system.

• Edge Computing Layer: Located directly at each

intersection, this layer is equipped with a low-power edge

computing device. Its core function is to execute a deep

learning model to process the raw video feed from the

associated camera in real-time. This localised processing

performs immediate vehicle detection, classification, and

extraction of relevant metadata (e.g., bounding box

coordinates, vehicle types, and speed estimates). By

processing video at the source, this layer drastically reduces

the data volume requiring transmission to the cloud, thereby

addressing critical bandwidth limitations and minimising

processing latency. Edge devices, although efficient in

processing raw video streams locally, face inherent

limitations in terms of processing power and storage

capacity. Our system mitigates these challenges by

optimising the YOLOv5 model for edge deployment, which

reduces the computational load and memory requirements.

However, the limited storage on edge devices requires

careful management of temporary data, ensuring only

essential metadata is transmitted to the cloud. Future work

will focus on improving the hardware capabilities of edge

devices to handle more complex models and larger datasets.

• Cloud Computing Layer: This centralised platform serves as

an intelligent core, receiving only structured, lightweight

metadata from all edge devices. Its responsibilities include

comprehensive data aggregation, long-term storage for

historical analysis, and executing the core traffic analysis

and advanced AI-powered decision-making logic. This

includes identifying citywide congestion patterns, detecting

incidents, and optimising traffic flow on a global scale.

• Control Layer: This final layer comprises the standard

traffic light controllers present at each intersection. They act

as actuators, receiving dynamic commands from the cloud

platform to adjust signal timings (e.g., extending green light

phases, shortening red light durations, and modifying phase

sequences) in real-time based on the cloud's optimised

decisions.
The distributed architecture handles computationally
intensive tasks (raw video processing) locally at the edge,
ensuring low latency for immediate perception.
Concurrently, strategic, data-intensive analysis and global
optimisation are performed centrally in the cloud, leveraging
its vast computational resources. This design inherently
enhances scalability for citywide deployment and
significantly improves data privacy by processing sensitive
raw video data locally and transmitting only anonymised,
aggregated metadata.

Fig. 1: System Architecture. It illustrates the hierarchical 
architecture of the intelligent traffic control system, showing 
the data flow from the perception layer to the control layer. 
Each layer is defined, with data processed at the edge and 
higher-level analysis performed in the cloud. 

B. Vehicle Detection and Classification at the Edge

For highly efficient and real-time vehicle detection and 
classification at the edge, we employ the YOLOv5 (You 
Only Look Once, version 5) model. YOLO is a cutting-edge, 
single-stage object detection algorithm renowned for its 
superior balance of speed and accuracy, making it 
exceptionally well-suited for deployment on resource-
constrained edge devices [2]. The YOLOv5 model was pre-
trained on a large-scale dataset, such as COCO, and then 
further fine-tuned on a custom traffic dataset comprising 
over 50,000 annotated images across various urban traffic 
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scenarios. To address the issue of class imbalance, we 
applied data augmentation techniques, such as random 
scaling, cropping, and flipping, to ensure robust detection of 
all vehicle types. The method ensures it acquires generalised 
object recognition capabilities and achieves accurate 
recognition of specific vehicle classes relevant to urban 
traffic, such as 'car', 'bus', 'truck', and 'motorcycle'. As 
illustrated in Fig. 2, the YOLOv5 model processes each 
frame of the video stream in near real time, outputting a list 
of detected vehicles. Each detection includes a precise 
bounding box outlining the vehicle, a classification label 
(e.g., 'car', 'bus'), and a confidence score. This extracted 
structured data, which is orders of magnitude smaller than 
the raw video stream, is then securely transmitted to the 
cloud platform via a lightweight messaging protocol, such as 
MQTT (Message Queuing Telemetry Transport), chosen for 
its efficiency and suitability for IoT environments with 
limited bandwidth and intermittent connectivity. 

congestion hotspots, queue lengths, and underutilised lanes 

instantly, which is crucial for informed and adaptive signal 

control decisions. 

2. Dynamic Signal Control Model: This This module

constitutes the core intelligence for adaptive traffic signal

optimisation. The AI-based decision-making system utilises

an adaptive Deep Reinforcement Learning (DRL) model,

which was trained through extensive simulations designed to

replicate real-world urban traffic conditions. This model

continually learns and refines its strategy for optimising

traffic signals through interactions with dynamic traffic data,

aiming to minimise overall network delay and maximise

throughput. The DRL agent is trained using traffic flow data,

where the agent explores various traffic signal strategies to

learn the most effective policies through trial and error.

Performance metrics, including average waiting time and

throughput, were used to evaluate the model's success in

real-world conditions. This agent is specifically designed to

adjust the signal phases in response to real-time traffic

conditions, ensuring efficient resource allocation,

particularly during peak hours.
In contrast to traditional fixed-time signal systems, the DRL
model adapts to changing traffic patterns, dynamically
adjusting green and red light durations based on observed
congestion levels. This methodology allows the system to
provide optimal signal timings across multiple intersections,
improving traffic flow and reducing congestion. The model's
primary objective is to dynamically adjust traffic signal
phases (e.g., extending green light duration for congested
approaches, shortening red light duration for less busy ones,
or re-sequencing phases) to minimise average vehicle
waiting times and maximise overall vehicle throughput
across the network.

Fig. 3: Traffic Density Heatmap Visualization . We visualise 
a heatmap of traffic density, where different colour 
intensities signify the degree of congestion in various lanes 
or road segments. 

D. Case Study Context: Bucharest

The conceptualisation and design of our intelligent traffic 
control system are framed by the persistent traffic challenges 
observed in major metropolitan areas, specifically using 
Bucharest, Romania, as a representative case study. With a 
population exceeding 2 million and a high density of 

Fig. 2: YOLOv5 Detection Example. It demonstrates the 
real-time detection and classification of vehicles using the 
YOLOv5 model, where bounding boxes and confidence 
scores are utilised to categorise vehicles into classes such as 
'car', 'bus', and 'truck'. These visual aids are essential for 
understanding the system's real-time functioning. 

C. Cloud-Based Traffic Analysis and Dynamic Signal

Control

The cloud platform serves as the central intelligence hub, 
aggregating structured metadata (vehicle counts, locations, 
types, and speeds) received from all edge devices across the 
urban network. This aggregation creates a comprehensive, 
real-time global view of the entire traffic network. The core 
of the cloud layer is the advanced AI-powered decision 
engine, which operates in two interdependent stages: 

1. Traffic Density Analysis: The system continuously

processes the incoming vehicle count and location data from

all intersections. This data is then used to dynamically

generate and update traffic density heatmaps for each

intersection and potentially for broader urban segments, as

conceptually shown in Fig. 3. These heatmaps provide an

intuitive and immediate visualisation of traffic loads and

congestion levels in different lanes and approaches. By

providing a real-time spatial representation of traffic volume,

this analysis module enables the system to identify
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registered vehicles (approaching 1 million in the 
metropolitan area), Bucharest frequently experiences severe 
traffic congestion, particularly during morning and evening 
peak hours [5], leading to significant delays and 
environmental impact. For instance, studies indicate that 
Bucharest residents spend an average of 100+ hours annually 
stuck in traffic, ranking among the highest globally. The 
city's existing traffic infrastructure, although incorporating 
some modern elements, such as inductive loops, largely 
relies on fixed-time signal control mechanisms that struggle 
to manage highly dynamic and often unpredictable traffic 
flows efficiently. Our proposed system is specifically 
designed to be highly adaptable and potentially retrofittable 
into such an urban environment, leveraging existing camera 
infrastructure where possible to provide a more intelligent 
and responsive layer of control. This real-world context 
underscores the practical applicability, scalability, and 
substantial potential impact of our solution in enhancing 
urban mobility and quality of life. 

E. Privacy Considerations and GDPR Compliance

Privacy is a critical concern in the deployment of intelligent 

transportation systems (ITS), particularly in urban 

environments where real-time video surveillance and the 

transmission of metadata are involved. Our proposed 

architecture addresses this concern through the local edge 

processing of raw video data, where vehicle detection and 

classification occur directly at the intersection. Only 

anonymised metadata—such as vehicle counts, types, and 

estimated speeds—is transmitted to the cloud, minimising 

exposure to sensitive content. To further align with privacy 

regulations, such as the General Data Protection Regulation 

(GDPR), the system can incorporate privacy-by-design 

principles. Techniques such as face/license plate blurring, 

data anonymisation, and end-to-end encryption are 

integrated to ensure that no personally identifiable 

information (PII) is collected or transmitted. Moreover, 

adopting Privacy Impact Assessments (PIAs) and 

engineering frameworks, such as LINDDUN, allows for a 

structured evaluation of privacy risks throughout the 

system's lifecycle. Future enhancements may also explore 

federated learning, allowing edge devices to collaboratively 

train models without centralising data, and blockchain 

integration for transparent, tamper-proof data management. 

F. DRL Agent Design

The cloud-based decision engine employs a DeepQ-

Network (DQN) reinforcement learning model to optimise 

traffic signal timings dynamically. The neural network 

consists of two hidden layers, each with 36 and 24 neurons, 

respectively, utilising ReLU activations. The output layer 

maps to the discrete action space representing various traffic 

signal phases. An ϵ-greedy exploration policy was adopted 

with initial ϵ=1.0 and decayed to 0.05. The replay buffer 

size was set to 100,000 experiences, and the model was 

trained with a batch size of 64. The learning rate was 

initialised at α=0.001 and optimised using Adam. To 

stabilise learning, the target network was updated every 

1000 steps. Training was conducted using the SUMO-RL 

framework integrated with OpenAI Gym to simulate traffic 

environments. 

This agent was trained offline using traffic patterns derived 

from Bucharest to ensure convergence before deployment. 

Once deployed, it operates in real-time by adjusting signal 

durations based on continuously updated vehicle density 

metadata received from the edge layer. 

IV. RESULTS AND DISCUSSION

To rigorously evaluate the performance of the proposed 
intelligent traffic control system, we conducted a 
comprehensive simulation-based study. We modelled a 
typical four-way intersection, a standard configuration in 
urban areas, using traffic data patterns representative of 
Bucharest to ensure realistic conditions. The performance of 
our AI-based system was then directly compared against a 
traditional fixed-time controller, which serves as the 
established baseline in many cities globally. 

A. Simulation Setup

The simulation was meticulously conducted using SUMO 
(Simulation of Urban Mobility), a widely recognised open-
source microscopic traffic simulator that allows detailed 
modelling of individual vehicle movements and traffic light 
interactions. Auxiliary Python libraries, such as Traci, were 
extensively utilised to enable programmatic interactions with 
the SUMO environment, facilitating real-time data exchange 
and dynamic control adjustments. A detailed four-way 
intersection model was constructed, featuring four lanes in 
each direction to represent the typical complexity of urban 
intersections accurately. While a visual representation is not 
included, the setup ensured a realistic flow. Traffic demand 
profiles were generated based on empirical traffic data 
patterns observed in Bucharest, incorporating a realistic mix 
of various vehicle types, including cars, buses, trucks, and 
motorcycles. We tested the system during both busy and 
quiet periods to assess its performance under various traffic 
conditions. Each simulation run spanned 60 minutes of 
simulated time, sufficient to capture both transient initial 
conditions and steady-state traffic behaviour. The proposed 
AI-based innovative traffic signal system dynamically 
adjusts green times and phase sequencing based on real-time 
traffic density information, which is effectively collected 
from simulated edge devices (representing vehicle counts, 
waiting times, and traffic flow rates). This dynamic approach 
was then benchmarked against a static, traditional fixed-time 
controller, whose timings remained constant throughout the 
simulation. 

B. Development Environment and Frameworks

The proposed intelligent traffic control system was 
developed using Python 3.8 and integrated with the SUMO 
traffic simulator (version 1.16.0) via the TraCI API for real-
time communication. Object detection tasks were 
implemented using YOLOv5 (Ultralytics repository), built 
on PyTorch 1.12, and fine-tuned using a custom traffic 
dataset. Preprocessing video frames, including resizing and 
colour space conversion, was handled using the OpenCV 
library. The reinforcement learning agent was trained using 
the PyTorch deep learning framework with GPU 
acceleration. Simulations and training were conducted on a 
workstation equipped with an NVIDIA RTX 3090 Ti GPU 
and 64 GB of RAM, ensuring real-time processing 
capabilities and efficient model optimisation. 
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Fig. 4: Comparison of Average Vehicle Waiting Time between the 

proposed system and a traditional controller across different traffic 

scenarios. 

Correspondingly, Correspondingly, Fig. 5 depicts the 

vehicle throughput. The proposed AI-based system 

consistently demonstrated higher throughput. During peak 

hours, the traditional controller managed a throughput of 

approximately 1800 vehicles per hour. Our system, 

however, achieved a remarkable 2500 vehicles per hour, 

marking an increase of approximately 38.9%. For off-peak 

hours, the traditional controller's throughput was 800 

vehicles per hour, whereas the proposed system improved 

the throughput to 1000 vehicles per hour, a 25% increase. 

These results highlight the efficiency gains, indicating that 

more vehicles can pass through the intersection within the 

same timeframe, directly alleviating congestion. 

Fig. 5: Comparison of Vehicle Throughput between the 

proposed system and a traditional controller across different 

traffic scenarios. 

E. Discussion

The simulation results strongly suggest that an adaptive, AI-

driven approach to traffic signal control, implemented 

through an edge-cloud architecture, is significantly superior 

to static, pre-programmed systems. The key advantage of 

our proposed system is its ability to perceive and respond 

dynamically to real-time traffic conditions. The YOLOv5 

model, used at the edge, gave very accurate and quick 

counts and types of vehicles, which were essential for 

analysing traffic density in real-time. The Deep 

Reinforcement Learning (DRL) agent in the cloud-based 

decision model can then effectively utilise this detailed, 

current data to develop innovative traffic signal control 

strategies based on what it has learned. This adaptive 

capability allows for efficient resource allocation (green 

light time) in the most congested lanes, thereby minimising 

delays and maximising overall traffic flow. 

While the current simulation results were conducted under 

standard traffic conditions, future work will focus on 

simulating real-world factors such as adverse weather 

conditions (e.g., heavy rain, snow) and traffic incidents 

(e.g., accidents). These factors can significantly impact 

traffic flow and the system's ability to optimise signal 

timings. For example, during heavy rainfall or fog, signal 

control may need to be more conservative to ensure safety. 

Future simulations will model these scenarios to evaluate 

the system's robustness under such conditions. 

To evaluate the performance improvements achieved by the 

new system, we employed a two-sample t-test to compare 

the average waiting times and throughput of the AI-based 

system with those of the traditional fixed-time controller. 

The results show statistically significant improvements in 

C. Performance Metrics

We rigorously evaluated the systems based on two 

universally recognised and critical categories of urban 

traffic management: 

• Average Vehicle Waiting Time: Defined as the average

duration a vehicle spends completely stopped at the

intersection before proceeding. This metric directly

quantifies the efficiency of traffic flow and significantly

reflects driver frustration, fuel consumption, and economic

losses due to delays. Minimising this metric is a primary

objective of intelligent traffic control.

• Vehicle Throughput: Represents the total number of

vehicles that successfully pass through the intersection per

hour. This metric is a direct measure of the intersection's

capacity utilisation and its overall efficiency in moving

traffic. Maximising throughput is crucial for mitigating

congestion and enhancing urban mobility.

D. Comparative Analysis

The simulation was conducted for two distinct traffic 

scenarios: peak hours, characterised by high and often 

imbalanced traffic volumes, and off-peak hours, 

characterised by lower and more uniform traffic volumes. 

The results are summarised below, and they are visually 

represented in Fig. 4 and Fig. 5 . 

From Fig. 4, illustrating the average vehicle waiting time, it 

is evident that the proposed AI-based system significantly 

outperforms the traditional fixed-time controller. During 

peak hours, the traditional controller resulted in an average 

waiting time of 120 seconds. In stark contrast, the proposed 

system reduced this duration to approximately 75 seconds, 

representing a 37.5% reduction. During off-peak hours, the 

traditional controller recorded an average waiting time of 45 

seconds, while our AI-based system achieved a waiting time 

of just 30 seconds, representing a 33.3% improvement. 

These reductions highlight the system's ability to adapt to 

dynamic traffic loads and manage queues efficiently. 
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both average waiting time (p<0.05) and throughput 

(p<0.01), indicating that the proposed system is more 

effective in managing traffic flow under diverse conditions. 

One of the biggest challenges we faced while developing 

and testing the system was managing the diverse types of 

data from various sensors and clearly defining the reward 

function and state-action space for the DRL model to ensure 

it learns effectively. Another significant challenge in real-

world deployment is ensuring robust data privacy and 

security, particularly as the system handles sensitive video 

data [10]. Our proposed edge-cloud architecture inherently 

helps mitigate this concern by processing raw video locally 

on edge devices and only transmitting anonymous, 

aggregated metadata to the central cloud. This design choice 

reduces the risk associated with centralising raw video 

feeds. Additionally, obtaining the public's approval and 

gradually integrating these innovative systems into current 

city setups are important social and technical factors to 

consider [11]. Future work will include conducting real-

world pilot deployments to address these practical 

challenges and gather empirical data from live traffic. 

F. Statistical Significance of Results

To confirm that the new intelligent traffic control system 

works better than the old fixed-time controller, we 

performed a statistical analysis using a two-sample paired t-

test. The test was applied to key performance metrics, 

including average vehicle waiting time and vehicle 

throughput, across identical traffic conditions. 

We used simulation data from multiple independent runs to 

model both peak and off-peak hours. For average waiting 

time, the traditional system recorded 120 seconds during 

peak hours, while our AI-based system achieved a reduced 

average of 75 seconds. Our system was able to handle 2500 

vehicles per hour, while the conventional controller was 

only able to handle 1800 vehicles per hour. 

The results of the t-tests are summarised in Table II, The p-

values obtained were <0.001 in both metrics, indicating 

statistically significant differences with 95% confidence. 

These results confirm that the improvements in traffic flow 

and efficiency observed are not due to random variations but 

reflect the effectiveness of the proposed system. 

Table II: Statistical Significance of Performance 

Improvements. 

G. Emergency Scenarios and System Responsiveness

In In addition to optimising routine traffic conditions, a 

critical capability of intelligent traffic control systems is 

their responsiveness to emergency events, such as accidents, 

road blockages, or security alerts. We designed the proposed 

system with this flexibility in mind. 

When an emergency is detected—either through video 

analysis at the edge (e.g., a vehicle stopped abnormally or an 

accident identified via deep learning classifiers) or through 

external alerts (e.g., police/fire dispatch)—the system 

initiates a priority override protocol. This allows the cloud-

based decision engine to dynamically reassign signal phases, 

granting extended green time to lanes used by emergency 

responders or redirecting traffic flow from congested or 

hazardous zones. 

The underlying Deep Reinforcement Learning (DRL) model 

is trained with simulated emergency events to identify and 

respond effectively. This enables the system to prioritise 

evacuation routes, ensure minimal disruption at surrounding 

intersections, and maintain operational stability even under 

atypical conditions. 

Future work will include integration with V2X (vehicle-to-

everything) systems, enabling emergency vehicles to 

communicate directly with intersection controllers and 

further improving response times and coordination during 

crises. 

Fig. 6: Comparison of T-test results between the traditional 

system and the smart system. 

Metric 
Traditional 

System 

Proposed 

System 

T-

value 

P-

value 
Significance 

Avg. 

Waiting 

Time (sec) 

120 75 8.21 <0.001 Significant 

Vehicle 

Throughput 

(/hr) 

1800 2500 7.92 <0.001 Significant 
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Fig. 7: Emergency response flowchart for intelligent traffic 

control system. 

V. CONCLUSION AND FUTURE WORK

This paper presents a novel and intelligent traffic control 

system that leverages a distributed edge-cloud computing 

architecture and deep learning techniques to enhance urban 

mobility significantly. Our proposed architecture effectively 

integrates roadside cameras for real-time traffic data 

acquisition, edge processing for efficient vehicle detection 

and classification (using the high-performance YOLOv5 

model), and a central cloud platform for sophisticated traffic 

analysis and dynamic signal control. The core of the system 

lies in its ability to generate real-time traffic density 

heatmaps and employ an advanced deep reinforcement 

learning (DRL) model that adaptively optimises traffic light 

timing based on current conditions. 

Simulation results, framed by the traffic patterns of 

Bucharest, unequivocally demonstrated the system's 

superior performance. We observed significant 

improvements in average vehicle waiting times (e.g., 37.5% 

reduction during peak hours, from 120 to 75 seconds) and 

substantial gains in vehicle throughput (e.g., 38.9% increase 

during peak hours, from 1800 to 2500 vehicles per hour) 

compared to traditional fixed-time controllers. These 

findings highlight the system's enormous potential to 

effectively reduce urban congestion, optimise traffic flow, 

and contribute to the Development of more responsive, 

efficient, and sustainable smart cities. 

For future research, we plan to expand the simulation to 

include signal coordination and optimisation across multiple 

interconnected intersections, moving from a single-

intersection focus to a network-wide traffic management 

paradigm. This will involve extending the DRL model to 

handle multi-agent decision-making. The scalability of our 

system remains a critical consideration for urban 

deployment. While edge-cloud computing offers significant 

advantages in latency reduction, challenges related to 

integration with existing city infrastructure (e.g., outdated 

traffic light systems, sensor placement) must be addressed. 

Furthermore, safeguarding data privacy is crucial, 

particularly when processing sensitive video data locally. 

Future research will explore strategies for integrating our 

system seamlessly into large urban environments, including 

mechanisms for continuous system maintenance and 

updates. Further work will also explore the integration of 

advanced predictive analytics models into our DRL-based 

AI decision engine for proactive traffic management, 

enabling the anticipation of congestion before it occurs. We 

will also investigate the scalability and robustness of the 

system in larger and more complex urban networks, 

potentially incorporating real-world sensor data and 

addressing the practical challenges of hardware deployment 

and maintenance. Ultimately, integrating other data sources, 

such as public transportation schedules and pedestrian 

flows, could lead to even more comprehensive traffic 

management solutions. 

As the system processes sensitive video data at the edge, 

ensuring data privacy is crucial. To address this concern, the 

system can incorporate data anonymisation techniques, such 

as blurring vehicle license plates and faces before 

transmitting any metadata to the cloud. Additionally, the 

system could leverage end-to-end encryption to secure data 

during transmission. Future work will focus on 

implementing privacy-preserving measures to comply with 

data protection regulations, such as the GDPR, ensuring the 

system's deployment in a privacy-compliant manner. 
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