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Abstract— The rapid growth of urban populations has
made efficient traffic management a critical challenge for
smart cities. Traditional traffic control systems, which rely on
fixed timers, are often incapable of adapting to dynamic traffic
conditions, resulting in increased congestion, higher fuel
consumption, and longer travel times. This paper proposes an
intelligent traffic control system that leverages the Internet of
Things (loT), edge-cloud computing, and deep learning
to optimise traffic flow in real-time. The suggested system
utilises cameras positioned on the side of the road to collect
data, edge computing units to quickly detect and classify
vehicles using the YOLOv5 model, and a central cloud
platform for detailed traffic analysis and making decisions on
the fly. By generating real-time traffic density heatmaps and
employing an advanced Al-based model for adaptive
signal control, the system dynamically adjusts signal
phases to minimise vehicle waiting times and reduce
congestion. A case study based on the traffic patterns of
Bucharest, which is characterised by its dense urban
traffic, is presented to frame the system's design and
demonstrate its practical applicability. Simulation results
demonstrate that the proposed system can significantly reduce
average vehicle waiting times and improve vehicle throughput
compared to traditional fixed-time controllers, showcasing a
viable and scalable solution for enhancing urban mobility and
contributing to sustainable urban Development.

Keywords— Smart City, Intelligent Transportation Systems
(ITS), Internet of Things (loT), Edge Computing, Cloud
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I. INTRODUCTION

This Urbanisation is a defining global trend, with
an increasing percentage of the world's population
migrating to metropolitan areas [1]. This influx places
immense strain on urban infrastructure, particularly
transportation networks. Vehicular congestion has become
a chronic issue in major cities, resulting in
significant ~ economic  losses, environmental pollution,
and a decline in the quality of life for citizens [2]. The
management of road traffic flow is therefore a
paramount challenge in the Development of modern

smart cities [3].
Traditional  traffic  management systems typically
employ pre-programmed, fixed-time signal controllers.

While simple to implement, these systems are inherently
inefficient as they cannot respond to the real-time,
dynamic fluctuations in traffic volume [4]. This rigidity
often results in scenarios where lanes with heavy traffic
endure long red lights while empty lanes are given
unnecessary green light time, exacerbating congestion
and increasing travel delays.
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To address these limitations, the concept of Intelligent
Transportation Systems (ITS) has emerged, enabled by
advancements in the Internet of Things (loT), Artificial
Intelligence (Al), and communication technologies [5]. ITS
aims to make transportation safer, more efficient, and more
sustainable. Recent research has explored various Al-driven
approaches, including machine learning and deep learning, to
create adaptive traffic control systems [6], [7]. These systems
utilise data from various sensors, including inductive loops,
radar, and cameras, to make informed decisions.

Despite progress, many existing systems face challenges
related to scalability, high implementation costs, and the
complexity of processing vast amounts of data in real time
[8]. There is still a need for a robust, scalable, and cost-
effective architecture that can integrate state-of-the-art
computer vision with a distributed computing framework for
citywide traffic optimisation. Such a system would improve
traffic flow and contribute to the broader goals of urban
sustainability and enhanced citizen well-being.

This paper addresses this gap by proposing a hierarchical
intelligent traffic control system based on an edge-cloud
computing architecture. Our primary contributions are:

+ We propose a multi-layer system architecture that
distributes computational tasks between edge devices and a
central cloud platform, ensuring real-time performance and
scalability. This approach mitigates the latency and
bandwidth limitations often encountered with centralised raw
video processing, offering a more resilient and efficient
solution.

« The application of the YOLOV5 deep learning model at
the edge for highly accurate and real-time vehicle detection
and classification, optimised explicitly for diverse urban
traffic scenarios.

» A cloud-based traffic analysis and Al decision module
that generates real-time traffic density heatmaps and employs
an adaptive Al model to make optimal, dynamic decisions
for traffic signal control, aiming to minimise waiting times
and maximise throughput. The detailed mechanism of this Al
model is elaborated in Section I11.

» This paper presents a comprehensive discussion of the
system's potential effectiveness, illustrated through a case
study based on Bucharest's traffic patterns and supported by
detailed simulated performance metrics that compare our
system with traditional methods, thereby validating its
practical applicability.

The rest of this paper is organised as follows: Section 1l
reviews related work in the field. Section Il details the
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proposed system architecture and methodology. Section IV
presents the results of our simulated evaluation and discusses
their implications. Finally, Section V concludes the paper
and suggests directions for future research.

Il. RELATED WORK

The field of intelligent traffic management is vast, with
research spanning sensor technologies, communication
protocols, and control algorithms. This section reviews key
areas relevant to our proposed system, critically analyses
existing approaches, and highlights the motivations for our
proposed architecture.

A. 10T and Sensor Technologies in Traffic Management
The 10T has been a catalyst for the evolution of ITS. The
ability to deploy interconnected sensors across a city has
enabled the collection of rich, real-time traffic data [2]. Early
systems relied heavily on physical sensors, like inductive
loops buried in the pavement and ultrasonic sensors mounted
on poles [1]. While effective for vehicle counting, these
sensors often provide limited information, such as precise
vehicle type or accurate queue length, and they can be costly
and disruptive to install and maintain.

More recently, computer vision-based sensing using CCTV
cameras has become a popular alternative due to the rich data
it provides [4]. Cameras offer not only vehicle detection but
also classification (e.g., cars, buses, trucks), speed
estimation, and tracking across multiple frames traffic data
into control decisions [5]. However, the primary challenge
with  vision-based systems lies in the significant
computational power required for real-time video analysis
with a multitude of cameras, which, if centralised, can lead
to substantial latency and bandwidth strain. Our edge-cloud
architecture directly addresses this by localising the
compute-intensive video processing at the edge.

B. Al and Machine Learning for Traffic Prediction and
Control

Al algorithms form the core of the intelligence in modern
ITS. Machine learning models have been widely used for
traffic prediction, which involves forecasting future traffic
flow based on historical and real-time data [9]. Techniques
range from traditional statistical models to more complex
deep learning architectures, such as Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM)
networks, which are adept at learning from time-series data.
While effective in prediction, these models often require
extensive datasets and computational resources for training.

For dynamic traffic signal control, Reinforcement Learning
(RL) has shown significant promise due to its ability to learn
optimal policies through trial and error in complex
environments. However, RL models can be notoriously
difficult to train, demand extensive simulation before reliable
deployment, and may struggle with generalisation to unseen
traffic scenarios or network-wide optimisation without
sophisticated multi-agent approaches. Other methods, such
as fuzzy logic or expert systems, have also been explored,
but they often lack the adaptability and learning capabilities
required for truly dynamic and complex urban environments
[5]. Our work builds on these foundations by integrating a
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high-performance  supervised deep learning model
(YOLOV5) for accurate real-time vehicle perception at the
edge, coupled with an advanced Al decision model in the
cloud that leverages real-time data for adaptive, citywide
traffic control, thereby mitigating the limitations inherent in
purely static or overly complex centralised learning systems.
In recent years, cities like London and New York have
deployed Al-based systems to optimise traffic signals using
data collected from diverse sensors. Studies such as [12]
demonstrate how these systems have improved traffic flow
by reducing congestion and minimising delays. Comparing
these implementations to our proposed system helps
highlight the potential advantages of edge-cloud computing
for real-time decision-making.

C. Edge-Cloud Computing Architectures

Processing high-definition video streams from numerous
cameras across the city in a centralised cloud is often
impractical due to prohibitive latency and bandwidth
constraints. The edge-cloud computing paradigm offers a
robust solution by performing time-sensitive computations
at the "edge" of the network, closer to the data source [8]. In
the context of traffic management, an edge device (e.g., a
small computer attached to a traffic pole) can perform
immediate tasks, such as real-time vehicle detection from a
camera feed. This localised processing significantly reduces
the volume of data transmitted; only structured, lightweight
metadata (e.g., vehicle counts, locations, types) is sent to the
cloud. The cloud platform, thus unburdened from raw video
processing, can then focus on higher-level tasks such as
citywide data aggregation, complex pattern analysis,
strategic decision-making, and long-term optimization [6].
This hierarchical approach inherently enhances scalability,
reduces network congestion, minimises latency, and ensures
the real-time responsiveness critical for effective traffic
management in a large-scale urban environment. Moreover,
by processing raw video locally, this architecture inherently
contributes to enhanced data privacy by transmitting only
anonymised and aggregated information to the central
cloud.

D. Comparison with State-of-the-Art Systems

Table | provides a comparative overview of recent state-of-
the-art intelligent traffic control systems, highlighting their
environments, learning strategies, and results. Our system
demonstrates competitive performance while uniquely
combining an edge-cloud architecture with YOLOvV5 and
DRL-based optimisation.

Table 1: Comparison with State-of-the-Art Al-Based
Traffic Control Systems.

Reference | Scenario Approach Key Result
Genders | g;ale DON + CNN | 66% reduction
& Razavi Intersection |in SUMO in queue length
(2016) a g
Zhou et | Multi-agent | Decentralized ::r:c?rrdoi\rgz(:ion
al. (2020) |System DRL - :
scalability

Liang & |Real-Time |YOLOv3 26.6 FPS, mAP
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Wu Object Edge 47.3% on
(2022) Detection Deployment | Jetson Nano
37.5%
. YOLOV5 + reduction in
\-I/-\?c:?’k (B::;::%rtiséy DQN in Edge- |waiting time;
Cloud 38.9% increase
in throughput

I1l.  PROPOSED SYSTEM AND METHODOLOGY

To address the challenges of dynamic traffic management
and build upon the strengths while mitigating the weaknesses
of existing approaches, we propose a multi-layer intelligent
traffic control system. This section details the system
architecture and the methodology for each of its key
components.

A. System Architecture

The proposed system is based on a hierarchical edge-cloud
architecture, as illustrated in Fig. 1. It consists of four main
layers, designed for optimal performance, scalability, and
responsiveness:

Perception Layer: This foundational layer comprises
standard IP-based CCTV cameras strategically installed at
intersections. These cameras are responsible for capturing
continuous, high-resolution video streams of traffic flow,
serving as the primary source of raw data for the entire
system.

Edge Computing Layer: Located directly at each
intersection, this layer is equipped with a low-power edge
computing device. Its core function is to execute a deep
learning model to process the raw video feed from the
associated camera in real-time. This localised processing
performs immediate vehicle detection, classification, and
extraction of relevant metadata (e.g., bounding box
coordinates, vehicle types, and speed estimates). By
processing video at the source, this layer drastically reduces
the data volume requiring transmission to the cloud, thereby
addressing critical bandwidth limitations and minimising
processing latency. Edge devices, although efficient in
processing raw video streams locally, face inherent
limitations in terms of processing power and storage
capacity. Our system mitigates these challenges by
optimising the YOLOv5 model for edge deployment, which
reduces the computational load and memory requirements.
However, the limited storage on edge devices requires
careful management of temporary data, ensuring only
essential metadata is transmitted to the cloud. Future work
will focus on improving the hardware capabilities of edge
devices to handle more complex models and larger datasets.
Cloud Computing Layer: This centralised platform serves as
an intelligent core, receiving only structured, lightweight
metadata from all edge devices. Its responsibilities include
comprehensive data aggregation, long-term storage for
historical analysis, and executing the core traffic analysis
and advanced Al-powered decision-making logic. This
includes identifying citywide congestion patterns, detecting
incidents, and optimising traffic flow on a global scale.
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e Control Layer: This final layer comprises the standard

traffic light controllers present at each intersection. They act
as actuators, receiving dynamic commands from the cloud
platform to adjust signal timings (e.g., extending green light
phases, shortening red light durations, and modifying phase
sequences) in real-time based on the cloud's optimised
decisions.

The distributed architecture handles computationally
intensive tasks (raw video processing) locally at the edge,
ensuring low latency for immediate perception.
Concurrently, strategic, data-intensive analysis and global
optimisation are performed centrally in the cloud, leveraging
its vast computational resources. This design inherently
enhances scalability for citywide deployment and
significantly improves data privacy by processing sensitive
raw video data locally and transmitting only anonymised,
aggregated metadata.

System Architecture of the Intelligent Traffic Control System.

Roadside Cameras (Data Acquisition) ]
CCTV Cameras:
Video data collection from roadside cameras.

Edge Processing Unit D
Real-time Video Stream Processing:
Processing video feeds with minimal latency.
Vehicle Detection & Classification:
Using YOLOvS5 for object detection.

Cloud Platform &3
Data Aggregation & Storage:
Centralized data management system.
Traffic Density Analysis:
Heatmap generation for traffic patterns.
Incident Detection:
Automated detection of traffic incidents.
Optimal Signal Timing Calculation:
Al Decision Model for traffic optimization.

4

Traffic Light Actuators °

Traffic Light Control System:
Physical traffic light controllers at intersections.

Fig. 1: System Architecture. It illustrates the hierarchical
architecture of the intelligent traffic control system, showing
the data flow from the perception layer to the control layer.
Each layer is defined, with data processed at the edge and
higher-level analysis performed in the cloud.

B. Vehicle Detection and Classification at the Edge

For highly efficient and real-time vehicle detection and
classification at the edge, we employ the YOLOV5 (You
Only Look Once, version 5) model. YOLO is a cutting-edge,
single-stage object detection algorithm renowned for its
superior balance of speed and accuracy, making it
exceptionally well-suited for deployment on resource-
constrained edge devices [2]. The YOLOvV5 model was pre-
trained on a large-scale dataset, such as COCO, and then
further fine-tuned on a custom traffic dataset comprising
over 50,000 annotated images across various urban traffic
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scenarios. To address the issue of class imbalance, we
applied data augmentation techniques, such as random
scaling, cropping, and flipping, to ensure robust detection of
all vehicle types. The method ensures it acquires generalised
object recognition capabilities and achieves accurate
recognition of specific vehicle classes relevant to urban
traffic, such as 'car', 'bus', 'truck’, and 'motorcycle'. As
illustrated in Fig. 2, the YOLOv5 model processes each
frame of the video stream in near real time, outputting a list
of detected vehicles. Each detection includes a precise
bounding box outlining the vehicle, a classification label
(e.g., 'car', 'bus’), and a confidence score. This extracted
structured data, which is orders of magnitude smaller than
the raw video stream, is then securely transmitted to the
cloud platform via a lightweight messaging protocol, such as
MQTT (Message Queuing Telemetry Transport), chosen for
its efficiency and suitability for 10T environments with
limited bandwidth and intermittent connectivity.

Tryck: 92% %=

ar

Fig. 2: YOLOv5 Detection Example. It demonstrates the
real-time detection and classification of vehicles using the
YOLOvV5 model, where bounding boxes and confidence
scores are utilised to categorise vehicles into classes such as
‘car', 'bus’, and 'truck'. These visual aids are essential for
understanding the system's real-time functioning.

C. Cloud-Based Traffic Analysis and Dynamic Signal
Control

The cloud platform serves as the central intelligence hub,
aggregating structured metadata (vehicle counts, locations,
types, and speeds) received from all edge devices across the
urban network. This aggregation creates a comprehensive,
real-time global view of the entire traffic network. The core
of the cloud layer is the advanced Al-powered decision
engine, which operates in two interdependent stages:

1. Traffic Density Analysis: The system continuously
processes the incoming vehicle count and location data from
all intersections. This data is then used to dynamically
generate and update traffic density heatmaps for each
intersection and potentially for broader urban segments, as
conceptually shown in Fig. 3. These heatmaps provide an
intuitive and immediate visualisation of traffic loads and
congestion levels in different lanes and approaches. By
providing a real-time spatial representation of traffic volume,
this analysis module enables the system to identify
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congestion hotspots, queue lengths, and underutilised lanes
instantly, which is crucial for informed and adaptive signal
control decisions.

2. Dynamic Signal Control Model: This This module
constitutes the core intelligence for adaptive traffic signal
optimisation. The Al-based decision-making system utilises
an adaptive Deep Reinforcement Learning (DRL) model,
which was trained through extensive simulations designed to
replicate real-world urban traffic conditions. This model
continually learns and refines its strategy for optimising
traffic signals through interactions with dynamic traffic data,
aiming to minimise overall network delay and maximise
throughput. The DRL agent is trained using traffic flow data,
where the agent explores various traffic signal strategies to
learn the most effective policies through trial and error.
Performance metrics, including average waiting time and
throughput, were used to evaluate the model's success in
real-world conditions. This agent is specifically designed to
adjust the signal phases in response to real-time traffic
conditions, ensuring  efficient  resource  allocation,
particularly during peak hours.

In contrast to traditional fixed-time signal systems, the DRL
model adapts to changing traffic patterns, dynamically
adjusting green and red light durations based on observed
congestion levels. This methodology allows the system to
provide optimal signal timings across multiple intersections,
improving traffic flow and reducing congestion. The model's
primary objective is to dynamically adjust traffic signal
phases (e.g., extending green light duration for congested
approaches, shortening red light duration for less busy ones,
or re-sequencing phases) to minimise average vehicle
waiting times and maximise overall vehicle throughput
across the network.

High
Density

Medium
Density

Low
Density

Fig. 3: Traffic Density Heatmap Visualization . We visualise
a heatmap of traffic density, where different colour
intensities signify the degree of congestion in various lanes
or road segments.

D. Case Study Context: Bucharest

The conceptualisation and design of our intelligent traffic
control system are framed by the persistent traffic challenges
observed in major metropolitan areas, specifically using
Bucharest, Romania, as a representative case study. With a
population exceeding 2 million and a high density of
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registered vehicles (approaching 1 million in the
metropolitan area), Bucharest frequently experiences severe
traffic congestion, particularly during morning and evening
peak hours [5], leading to significant delays and
environmental impact. For instance, studies indicate that
Bucharest residents spend an average of 100+ hours annually
stuck in traffic, ranking among the highest globally. The
city's existing traffic infrastructure, although incorporating
some modern elements, such as inductive loops, largely
relies on fixed-time signal control mechanisms that struggle
to manage highly dynamic and often unpredictable traffic
flows efficiently. Our proposed system is specifically
designed to be highly adaptable and potentially retrofittable
into such an urban environment, leveraging existing camera
infrastructure where possible to provide a more intelligent
and responsive layer of control. This real-world context
underscores the practical applicability, scalability, and
substantial potential impact of our solution in enhancing
urban mobility and quality of life.

E. Privacy Considerations and GDPR Compliance

Privacy is a critical concern in the deployment of intelligent
transportation systems (ITS), particularly in urban
environments where real-time video surveillance and the
transmission of metadata are involved. Our proposed
architecture addresses this concern through the local edge
processing of raw video data, where vehicle detection and
classification occur directly at the intersection. Only
anonymised metadata—such as vehicle counts, types, and
estimated speeds—is transmitted to the cloud, minimising
exposure to sensitive content. To further align with privacy
regulations, such as the General Data Protection Regulation
(GDPR), the system can incorporate privacy-by-design
principles. Techniques such as face/license plate blurring,
data anonymisation, and end-to-end encryption are
integrated to ensure that no personally identifiable
information (PIl) is collected or transmitted. Moreover,
adopting Privacy Impact Assessments (PIAs) and
engineering frameworks, such as LINDDUN, allows for a
structured evaluation of privacy risks throughout the
system's lifecycle. Future enhancements may also explore
federated learning, allowing edge devices to collaboratively
train models without centralising data, and blockchain
integration for transparent, tamper-proof data management.

F. DRL Agent Design

The cloud-based decision engine employs a DeepQ-
Network (DQN) reinforcement learning model to optimise
traffic signal timings dynamically. The neural network
consists of two hidden layers, each with 36 and 24 neurons,
respectively, utilising ReLU activations. The output layer
maps to the discrete action space representing various traffic
signal phases. An e-greedy exploration policy was adopted
with initial €=1.0 and decayed to 0.05. The replay buffer
size was set to 100,000 experiences, and the model was
trained with a batch size of 64. The learning rate was
initialised at 0=0.001 and optimised using Adam. To
stabilise learning, the target network was updated every
1000 steps. Training was conducted using the SUMO-RL
framework integrated with OpenAl Gym to simulate traffic
environments.
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This agent was trained offline using traffic patterns derived
from Bucharest to ensure convergence before deployment.
Once deployed, it operates in real-time by adjusting signal
durations based on continuously updated vehicle density
metadata received from the edge layer.

IV. RESULTS AND DISCUSSION

To rigorously evaluate the performance of the proposed
intelligent traffic control system, we conducted a
comprehensive simulation-based study. We modelled a
typical four-way intersection, a standard configuration in
urban areas, using traffic data patterns representative of
Bucharest to ensure realistic conditions. The performance of
our Al-based system was then directly compared against a
traditional fixed-time controller, which serves as the
established baseline in many cities globally.

A. Simulation Setup

The simulation was meticulously conducted using SUMO
(Simulation of Urban Mobility), a widely recognised open-
source microscopic traffic simulator that allows detailed
modelling of individual vehicle movements and traffic light
interactions. Auxiliary Python libraries, such as Traci, were
extensively utilised to enable programmatic interactions with
the SUMO environment, facilitating real-time data exchange
and dynamic control adjustments. A detailed four-way
intersection model was constructed, featuring four lanes in
each direction to represent the typical complexity of urban
intersections accurately. While a visual representation is not
included, the setup ensured a realistic flow. Traffic demand
profiles were generated based on empirical traffic data
patterns observed in Bucharest, incorporating a realistic mix
of various vehicle types, including cars, buses, trucks, and
motorcycles. We tested the system during both busy and
quiet periods to assess its performance under various traffic
conditions. Each simulation run spanned 60 minutes of
simulated time, sufficient to capture both transient initial
conditions and steady-state traffic behaviour. The proposed
Al-based innovative traffic signal system dynamically
adjusts green times and phase sequencing based on real-time
traffic density information, which is effectively collected
from simulated edge devices (representing vehicle counts,
waiting times, and traffic flow rates). This dynamic approach
was then benchmarked against a static, traditional fixed-time
controller, whose timings remained constant throughout the
simulation.

B. Development Environment and Frameworks

The proposed intelligent traffic control system was
developed using Python 3.8 and integrated with the SUMO
traffic simulator (version 1.16.0) via the TraCl API for real-
time communication. Object detection tasks were
implemented using YOLOvV5 (Ultralytics repository), built
on PyTorch 1.12, and fine-tuned using a custom traffic
dataset. Preprocessing video frames, including resizing and
colour space conversion, was handled using the OpenCV
library. The reinforcement learning agent was trained using
the PyTorch deep learning framework with GPU
acceleration. Simulations and training were conducted on a
workstation equipped with an NVIDIA RTX 3090 Ti GPU
and 64 GB of RAM, ensuring real-time processing
capabilities and efficient model optimisation.
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C. Performance Metrics

We rigorously evaluated the systems based on two
universally recognised and critical categories of urban
traffic management:

e Average Vehicle Waiting Time: Defined as the average
duration a vehicle spends completely stopped at the
intersection before proceeding. This metric directly
quantifies the efficiency of traffic flow and significantly
reflects driver frustration, fuel consumption, and economic
losses due to delays. Minimising this metric is a primary
objective of intelligent traffic control.

e VVehicle Throughput: Represents the total number of
vehicles that successfully pass through the intersection per
hour. This metric is a direct measure of the intersection's
capacity utilisation and its overall efficiency in moving
traffic. Maximising throughput is crucial for mitigating
congestion and enhancing urban mobility.

D. Comparative Analysis

The simulation was conducted for two distinct traffic
scenarios: peak hours, characterised by high and often
imbalanced traffic volumes, and off-peak hours,
characterised by lower and more uniform traffic volumes.
The results are summarised below, and they are visually
represented in Fig. 4 and Fig. 5 .

From Fig. 4, illustrating the average vehicle waiting time, it
is evident that the proposed Al-based system significantly
outperforms the traditional fixed-time controller. During
peak hours, the traditional controller resulted in an average
waiting time of 120 seconds. In stark contrast, the proposed
system reduced this duration to approximately 75 seconds,
representing a 37.5% reduction. During off-peak hours, the
traditional controller recorded an average waiting time of 45
seconds, while our Al-based system achieved a waiting time
of just 30 seconds, representing a 33.3% improvement.
These reductions highlight the system's ability to adapt to
dynamic traffic loads and manage queues efficiently.

Comparison of Average Vehicle Waiting Time between

w
= the proposed system and a traditional controller.
=]
§ 140 120 M Traditional Fixed-Time Controller
o 120 M Proposed Al-based System
.E 100 25
Eﬂ 80
5 60 45
2 10 30
&
-
Q
0
z

Off-Peak Hours
Traffic Scenario

Peak Hours

Fig. 4: Comparison of Average Vehicle Waiting Time between the
proposed system and a traditional controller across different traffic
scenarios.

Correspondingly, Correspondingly, Fig. 5 depicts the
vehicle throughput. The proposed Al-based system
consistently demonstrated higher throughput. During peak
hours, the traditional controller managed a throughput of
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approximately 1800 vehicles per hour. Our system,
however, achieved a remarkable 2500 vehicles per hour,
marking an increase of approximately 38.9%. For off-peak
hours, the traditional controller's throughput was 800
vehicles per hour, whereas the proposed system improved
the throughput to 1000 vehicles per hour, a 25% increase.
These results highlight the efficiency gains, indicating that
more vehicles can pass through the intersection within the
same timeframe, directly alleviating congestion.

Comparison of Vehicle Throughput between the Proposed System and a Traditional Control

2500 vehicles/hr = =
2500 B Traditional Fixed-Time Controller

Propased Al-based System

2000

1800 vehicles/hr

1000 vehicles/hr

Vehicles per Hour

800 vehiclesthr

0

Peak Hours Off-Peak Hours

Traffic Scenario

Fig. 5: Comparison of Vehicle Throughput between the
proposed system and a traditional controller across different
traffic scenarios.

E. Discussion

The simulation results strongly suggest that an adaptive, Al-
driven approach to traffic signal control, implemented
through an edge-cloud architecture, is significantly superior
to static, pre-programmed systems. The key advantage of
our proposed system is its ability to perceive and respond
dynamically to real-time traffic conditions. The YOLOvV5
model, used at the edge, gave very accurate and quick
counts and types of vehicles, which were essential for
analysing traffic density in real-time. The Deep
Reinforcement Learning (DRL) agent in the cloud-based
decision model can then effectively utilise this detailed,
current data to develop innovative traffic signal control
strategies based on what it has learned. This adaptive
capability allows for efficient resource allocation (green
light time) in the most congested lanes, thereby minimising
delays and maximising overall traffic flow.

While the current simulation results were conducted under
standard traffic conditions, future work will focus on
simulating real-world factors such as adverse weather
conditions (e.g., heavy rain, snow) and traffic incidents
(e.g., accidents). These factors can significantly impact
traffic flow and the system's ability to optimise signal
timings. For example, during heavy rainfall or fog, signal
control may need to be more conservative to ensure safety.
Future simulations will model these scenarios to evaluate
the system's robustness under such conditions.

To evaluate the performance improvements achieved by the
new system, we employed a two-sample t-test to compare
the average waiting times and throughput of the Al-based
system with those of the traditional fixed-time controller.
The results show statistically significant improvements in
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both average waiting time (p<0.05) and throughput
(p<0.01), indicating that the proposed system is more
effective in managing traffic flow under diverse conditions.
One of the biggest challenges we faced while developing
and testing the system was managing the diverse types of
data from various sensors and clearly defining the reward
function and state-action space for the DRL model to ensure
it learns effectively. Another significant challenge in real-
world deployment is ensuring robust data privacy and
security, particularly as the system handles sensitive video
data [10]. Our proposed edge-cloud architecture inherently
helps mitigate this concern by processing raw video locally
on edge devices and only transmitting anonymous,
aggregated metadata to the central cloud. This design choice
reduces the risk associated with centralising raw video
feeds. Additionally, obtaining the public's approval and
gradually integrating these innovative systems into current
city setups are important social and technical factors to
consider [11]. Future work will include conducting real-
world pilot deployments to address these practical
challenges and gather empirical data from live traffic.

F. Statistical Significance of Results

To confirm that the new intelligent traffic control system
works better than the old fixed-time controller, we
performed a statistical analysis using a two-sample paired t-
test. The test was applied to key performance metrics,

G. Emergency Scenarios and System Responsiveness

In In addition to optimising routine traffic conditions, a
critical capability of intelligent traffic control systems is
their responsiveness to emergency events, such as accidents,
road blockages, or security alerts. We designed the proposed
system with this flexibility in mind.

When an emergency is detected—either through video
analysis at the edge (e.g., a vehicle stopped abnormally or an
accident identified via deep learning classifiers) or through
external alerts (e.g., police/fire dispatch)—the system
initiates a priority override protocol. This allows the cloud-
based decision engine to dynamically reassign signal phases,
granting extended green time to lanes used by emergency
responders or redirecting traffic flow from congested or
hazardous zones.

The underlying Deep Reinforcement Learning (DRL) model
is trained with simulated emergency events to identify and
respond effectively. This enables the system to prioritise
evacuation routes, ensure minimal disruption at surrounding
intersections, and maintain operational stability even under
atypical conditions.

Future work will include integration with VV2X (vehicle-to-
everything) systems, enabling emergency vehicles to
communicate directly with intersection controllers and
further improving response times and coordination during
crises.
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including average vehicle waiting time and vehicle
throughput, across identical traffic conditions.

We used simulation data from multiple independent runs to
model both peak and off-peak hours. For average waiting
time, the traditional system recorded 120 seconds during
peak hours, while our Al-based system achieved a reduced
average of 75 seconds. Our system was able to handle 2500
vehicles per hour, while the conventional controller was
only able to handle 1800 vehicles per hour.

The results of the t-tests are summarised in Table Il, The p-
values obtained were <0.001 in both metrics, indicating
statistically significant differences with 95% confidence.
These results confirm that the improvements in traffic flow
and efficiency observed are not due to random variations but
reflect the effectiveness of the proposed system.

Table I1: Statistical Significance of Performance
Improvements.

. Traditional|Proposed|T-  |P- N
Metric Significance
System System |value|value

Avg.

Waiting 120 75 8.21 |<0.001|Significant
Time (sec)

Vehicle

Throughput|1800 2500 7.92 |<0.001|Significant
(/hn)

T-Test Comparison of Traffic Control Systems

T-Test Comparison of Traffic Control Systems

2500 mmm Traditional System
= Proposed System

2000

1500
1000
500
0 I —

Avg. Waiting Time (sec) Vehicle Throughput (/hr)

Metric

Fig. 6: Comparison of T-test results between the traditional
system and the smart system.

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



www.ijert.org
www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
Published by :

http://www.ijert.org I SSN: 2278-0181

Emergency Response Flowchart for
Intelligent Traffic Control System .
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Once Emergency Clears

Fig. 7: Emergency response flowchart for intelligent traffic
control system.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel and intelligent traffic control
system that leverages a distributed edge-cloud computing
architecture and deep learning techniques to enhance urban
mobility significantly. Our proposed architecture effectively
integrates roadside cameras for real-time traffic data
acquisition, edge processing for efficient vehicle detection
and classification (using the high-performance YOLOv5
model), and a central cloud platform for sophisticated traffic
analysis and dynamic signal control. The core of the system
lies in its ability to generate real-time traffic density
heatmaps and employ an advanced deep reinforcement
learning (DRL) model that adaptively optimises traffic light
timing based on current conditions.

Simulation results, framed by the traffic patterns of
Bucharest, unequivocally demonstrated the system's
superior  performance. We  observed  significant
improvements in average vehicle waiting times (e.g., 37.5%
reduction during peak hours, from 120 to 75 seconds) and
substantial gains in vehicle throughput (e.g., 38.9% increase
during peak hours, from 1800 to 2500 vehicles per hour)
compared to traditional fixed-time controllers. These
findings highlight the system's enormous potential to
effectively reduce urban congestion, optimise traffic flow,
and contribute to the Development of more responsive,
efficient, and sustainable smart cities.

For future research, we plan to expand the simulation to
include signal coordination and optimisation across multiple
interconnected intersections, moving from a single-
intersection focus to a network-wide traffic management
paradigm. This will involve extending the DRL model to
handle multi-agent decision-making. The scalability of our
system remains a critical consideration for urban
deployment. While edge-cloud computing offers significant
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advantages in latency reduction, challenges related to
integration with existing city infrastructure (e.g., outdated
traffic light systems, sensor placement) must be addressed.
Furthermore, safeguarding data privacy is crucial,
particularly when processing sensitive video data locally.
Future research will explore strategies for integrating our
system seamlessly into large urban environments, including
mechanisms for continuous system maintenance and
updates. Further work will also explore the integration of
advanced predictive analytics models into our DRL-based
Al decision engine for proactive traffic management,
enabling the anticipation of congestion before it occurs. We
will also investigate the scalability and robustness of the
system in larger and more complex urban networks,
potentially incorporating real-world sensor data and
addressing the practical challenges of hardware deployment
and maintenance. Ultimately, integrating other data sources,
such as public transportation schedules and pedestrian
flows, could lead to even more comprehensive traffic
management solutions.

As the system processes sensitive video data at the edge,
ensuring data privacy is crucial. To address this concern, the
system can incorporate data anonymisation techniques, such
as blurring vehicle license plates and faces before
transmitting any metadata to the cloud. Additionally, the
system could leverage end-to-end encryption to secure data
during transmission. Future work will focus on
implementing privacy-preserving measures to comply with
data protection regulations, such as the GDPR, ensuring the
system's deployment in a privacy-compliant manner.
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