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Abstract - The minimum cost flow problem is a combinatorial 

optimization model which can be modelled as a linear 

programming problem. This paper proposed a sensitivity 

analysis method for minimum cost flow problem, by exploring 

the bound constraint structure, such that maintains the 

structure of the optimal solution. We improved a sensitivity 

analysis method which is formerly applicable to a tree solution. 

the proposed method preserves solution of upper bounds at 

upper bounds and those of lower bounds at lower bounds. 

Keywords:Sensitivity analysis, Network, Shortest path, Integer 

programming, Bound constraints. 

 

1. INTRODUCTION 

Given a connected and directed graph G = (V,A), where 

1 2( , ,..., )nV v v v is a set of nodes, and A is a set of 

directed arcs, the cost flow problem can be defined as 

follows. Let ijc  be the cost per unit flow for each arc 

( , )i j A . We assume that the flow cost varies linearly 

with the amount of flow. We also associate with each arc 

 ,i j A  a capacity ija  that denotes the maximum amount 

that can flow on the arc and lower bound ijl  that denotes the 

minimum amount that must flow m the arc. We associate 

with each node i A  an integer value ib  representing its 

supply/demand. If 0ib  , node i  is a supply node; if 

0ib   node i  is a demand node with a demand of ib ; 

and if 0ib   node i is a transhipment node. The decision 

variables m the minimum cost flow problem are arc flow 

which is represented by ijx  on  ,i j A . The model of the 

minimum cost flow problem (MCFP) can be expressed as 

follow. 

          

 

 
,

min                                 ij ij

i j A

c x P
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         
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subject to 

             (2) 

         (3) 

where 

           (4)

                          

 

 

All  network problems are special cases of the minimum 

cost flow problem. Like the maximum flow problem, it 

considers flows in networks with capacities. Like the 

shortest path problem, it considers a cost for flow through 

an arc. Like the transportation problem, it allows multiple 

sources and destinations. Therefore, all of these problems 

can be seen as special cases of the minimum cost flow 

problem.  

As we can see that the model (P) is in the form of linear 

programming. The parameter values and assumption in the 

model are subject to change and error Therefore  we would 

like to consider sensitivity analysis with respect to changes 

in the cost coefficients in problem ( ).  Sensitivity analysis 

(SA), broadly defined, is the investigation of the potential 

changes and errors and their impacts on conclusions to be 

drawn from the model [1] The main idea of sensitivity 

analysis is to determine changes in the optimal solution of 

the problem resulting from changes in the data 

(supply/demand , capacity or cost of any arc) [10, 5, 2, 7, 9, 

6, 4]. Traditionally, researchers have induced this sensitivity 

analysis using primal and dual simplex method [2]. There is, 

however a conceptual draw back to this approach. The 

simplex based approach maintains a basis free at every 

iteration and conduct sensitivity analysis by determining 

changes in the basis free precipitated by changes in the data. 

The basis in the simplex method is often degenerate and 

consequently changes in the basis tree are not necessarily 

translated into the changes in the optmal solution. The other 

thing is the relative inefficiency and complexity of the 

simplex methods (primal, dual, and other variations) for 

network models. Therefore, the simplex based approach 

does not give information about the changes in the solution 

as the data changes; instead it tells us about the changes in 

the basis free [8, 3, 11, 2]. 

The main idea for  avoiding the short comings is to 

explore the bound structure given to the decision varibles 

ijx . Let 
*
ijx  be an optimal solution of the minimum cost 

flow problem. Regarding to the bound constraint 
*

ij ij ijl x a    the arc set A is partitioned in to three 

subsets as follows. Subset P contains ( , )i j A , such that, 
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*

ij ij ijl x a  , subset Q contains ( , ) ,i j A  such that, 

*

ij ijx l , and subset R contains ( , ) ,i j A such that, 

*

ij ijx a

 

 

We call the triple  , ,P Q R  as the optional solution 

structure. 

 

DEFINITION 1.1. Given an optimum solution 
*
ijx  of the 

minimum cost flow problem. SA is to determined changes in 

the data that the optional solution structure remains 

unchanged. 

 

2. CHANGING THE COST COEFFICIENTS 

Here we consider SA with respect to changes in the cost 

coefficients. Suppose first that an optimal solution 
*
ijx  of 

the MCFP is given. If the cost ijc  of an arc  ,i j  changes 

to îjc , then its corresponding optional solution *
ijx  or the 

optional solution structure  , ,P Q R  may also change. 

Hence, cost sensitivity analysis should determine changes in 

the cost of any arc such that the given optional solution  

structure  , ,P Q R   is unchanged. First, given a feasible 

solution ijx  of the MCFP, ijx  is an optimum solution of the 

MCFP if and only if for some set of node potentials w, the 

reduced costs and flow values satisfy the following 

complementary slackness optimality condition for every arc 

 ,i j A  [8, 5, 2]   

             (5) 

            (6) 

.   (7) 

Thus, given an optimum solution 
*
ijx  of the MCFP, SA 

with respect to changes in the cost coefficient in equivalent 

to determining cost range ijc  satisfying the following 

conditions: 

                     (8)

     (9)              

              (10) 

Now, we consider a concept for the method of 

calculating SA for cost coefficient. Given an optimal 

solution 
*
ijx  of the MCFP, suppose that the cost ijc  of an 

arc  ,i j  is changed to ijc . If there is a path  ,P i j  that 

can reroute the flow 
*

ijx  from node i to node j with less cost 

than ijc  without violating any of the optimality conditions, 

we should reroute the flow 
*

ijx  along  ,P i j . This 

rerouting changes the optimal solution  structure  , ,P Q R  

due to a change in arc flow. Thus range of cost coefficients 

that maintains the optimal structure  , ,P Q R  is the range 

right before the point where the flow of arc is changed. 

Now suppose that the cost ijc  of an arc  ,i j  increases 

by îj ijc c   . Then we want to know the range of θ, that 

is e u    , where u  ( e )  denote the amount of 

maximum increasing (decreasing) flow that preserves the 

optimal solution structure  , ,P Q R . We first consider the 

following network  ,G V A  with multiple path 

 ,P i j  from node i to node j. Suppose that the cost ijc  of 

an arc  ,i j  is changed to îjc . This changes the reduced 

cost optimality conditions to restore the optimality condition 

of the arc, we must change the flow on arc  ,i j . We can 

both increase and decreare the flow in an arc  ,i j  while 

knowing the bounds an arc flows. However, in an arc 

 ,i h  at its lower bound (i.e., ih ihx l ) we can only 

increase the flow, and for flow on an arc  ,i m  at its upper 

bound (i.e., im imx u ) we can only decrease the flow.  

Using the three concepts, we can find two paths 

 and   that 

can send the flow from node j. In our example, per unit cost 

to send one unit of flow along the path  1 ,P i j  is 

ih hjc c . If ih hjk ijc c c  , then the flow is sent along 

 1 ,P i j . In this case the optimal structure  , ,P Q R
 
may 

change. But, if the per unit cost to send one unit of flow 

along  1 ,P i j  is greater than the per unit cost ijc , the 

flow is not sent along  1 ,P i j . In this case since the flow 

along  1 ,P i j  is not created, we can maintain the given 

optimal solution structure  , ,P Q R  in the interval of 

ij ih hjc e e     . Similarly, 
1

u  the per unit cost to send 

one unit of flow along  2 ,P i j , is ki hjc c  . If 

ˆ
ki hj ijc c c    the flow will not be sent along 

2

,i jP  and the 

structure  , ,P Q R  can be preserved in the interval of 

ij ih hjc e e     . Here, let 
1

u  and 
2

u  be the upper 

bound of   with respect to the path  1 ,P i j  and 

 2 ,P i j  can preserve the given structure  , ,P Q R . Then 

1

u ij ih hje c c      and 
2

u ij hi hje e e     . 

Consequently, u  that maintains the optimal structure 
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 , ,P Q R  is restricted in value of  1 2min ,u u u   . In 

order to do there calculations easily consider a definition of 

transformed network. 

 

DEFINITION 2.1. The transformed network  ' , 'G V A  

corresponding to a network  ,G V A  of the MCFP is 

defined as follows. We replace each arc  ,i j A  with 

flow 
*

ij ij ijl x u   by two arcs  ,i j  and  ,j i  with the 

cost ij ijc c  and ji jic c   respectively. We also replace 

each arc  ,i j A with the flow 
*

ij ijx u  by arc  ,j i  

with the cost ji jic c  . Finally, we replace each arc 

 ,i j A  with the flow 
*

ij ijx l  by arc  ,i j  with the 

cost ij ijc c . 

 

Using the above transformed network  ' , 'G V A , 

we can calculate u  by summing up the length of the 

directed path  ,P i j  from node i to node j and ijc in 

 ' , 'G V A . If there exists multiple directed paths 

 ,P i j  form node i to node j, calculate u  by summing 

the minimum length of the directed path from node i to node 

j, calculate u  by summing the minimum length of the 

directed path among various directed path and ijc  in 

 ' , 'G V A . Since among the various directed path the 

length of the directed path associated with the shortest path 

from node i to node j is the minimum, we need to calculate 

the length of the shortest path for the calculation of u  [12]. 

 

LEMMA 2.1. The transformed network  ' , 'G V A  

contains a negative cycles. 

 

PROOF. Assume the transformed network  ' , 'G V A  

contains a negative cycle. This means that the network 

 ,G V A  does not satisfy the optimality condition, and 

we can improve the current optimal solution with respect to 

this negative cycle. Because a feasible solution which is less 

than the objective function value of the given optimal 

solution 
*

ijx  exists, it contradicts the assumption that the 

optimum solution in given. Therefore, the transformed 

network  ' , 'G V A  contains no negative cycles.   

 

LEMMA 2.2. If the directed path  ,P i j  from node i to 

node j in  ' , 'G V A , the u  . 

 

PROOF. If the directed path  ,P i j  from node i to node j in 

 ' , 'G V A  does not exist, there is no path  ,P i j  that 

can send the flow from node i to node j in the network 

 ,G V A . Therefore, even if the cost ijc  of an arc 

 ,i j  increases infinitely, it is optimal to send the current 

flow 
*

ijx  along the arc  ,i j . So if the directed 

path  ,P i j  does not exist in  ' , 'G V A , the u  . 

Ultimately, if the shortest path exist in u   we obtain a 

constant as the upper bound value u . But, if the shortest 

path does not exist in  ' , 'G V A  we obtain an infinite 

value as the upper bound.                                                           

 

 

THEOREM 2.1. If  ' , 'G V A  contains a shortest path 

from node i to node j and l is the length of the shortest path, 

then u ijl c   . If  ' , 'G V A  contain no shortest 

path from node i to node j, then u  . 

 

PROOF. By lemma 2.1,  ' , 'G V A contains no negative 

cycle. Therefore if the shortest path exists in 

 ' , 'G V A , we can solve it. If the shortest 

 ' , 'G V A , the directed paths  ,P i j  does not exist 

and by lemma 2.2.
u  . If there are multiple directed 

path  ,P i j  from node i to node j, the u  is obtained by 

summing the minimum length of the directed path among 

them, and ijc  in  ' , 'G V A . Let  ,hP i j  be the 

length of the both directed path among the multiple directed 

paths. Then   min ,hl P i j  and u ijl c   . Next we 

consider ij ijc c   . Because per unit cost to send are 

unit of flow along the arc  ,i j  is decreased by îjc , more 

flow along the arc  ,i j  sent instead of sending flow along 

the path from node i to node j. Here, the meaning of sending 

more flow along arc  ,i j  is equivalent to sending the 

flow along the path from node j to node i. Therefore in this 

case after comparing the per unit cost to send one unit of 

flow along the path from node j to node i with the per unit 

cost to send one unit of flow along the arc  ,i j  from node 

j to node i, a flow along the path associated with the cheaper 

cost of the two cases is created. In this case, l  is the sum 

of the length of the directed path  ,P j i  from node j to 
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node i and ijc  in  ' , 'G V A . If there are multiple 

directed paths  ,P j i  from node j to node i, l  is 

calculated by summing the minimum length of the directed 

path and ijc   ' , 'G V A . Here, let  ,hP i j  be the 

length of the both directed path among the multiple directed 

paths. Then the length l, the shortest path from node j to 

node i is   min ,hl P j i . Therefore, if the shortest 

path from node j to node i exists in  ' , 'G V A  we 

obtain l ijl c   . But if the shortest path does not exist in 

 ' , 'G V A , u   by lemma 2.2.                                                                          

 

  

In case the number of arcs, with a flow of the 

ij ij ijl x u  , is greater than or equal to 1n , we can 

easily compute the upper bound or the lower bound. Given a 

spanning tree optimal solution where the number of arcs 

with a flow of ij ij ijl x u   is exactly equal to 1n , we 

can obtain the node potentials w associated with the 

spanning tree optimal solution because arcs with a flow of 

ij ij ijl x u   consist of the optimum basis of the network 

 ,G V A . By using node potentials w we can compute 

the length of the shortest path more easily because the node 

potentials w is the length of the tree path with respect to the 

optimum basis O . We call this case as CS1. 

 

THEOREM 2.2.  If O  is an optimal basis and w is the node 

potentials with respect to O , then the length of the tree 

path  ,P r s  from node r to node s is r sw w . 

 

PROOF. We compute  ,P r s  using the fact that 

0ij ij i jc c w w    , for every arc  ,i j O   

 
 
 

 

 

             

because all w corresponding to the nodes in the path, other 

than the terminal nodes r and s, cancel each ofher in the 

expression  
   , ,

i j

i j P r s

w w


  is associated with the length 

of path  ,P r s , the length of the tree path  ,P r s  is 

r sw w .           ❑ 

Generally, given the optimal basis associated with 

spanning tree O , because the length of the shortest path 

from node i to node j is equivalent to the length of the tree 

path  ,P i j  from node i to node j, we can compute the 

sensitivity analysis more easily by calculating the length of 

the tree path using the node potentials. This case is called 

CS2 

By this result, CS2 and CS1 are the same in spanning 

tree solution [2]. Given an optimal solution that the number 

of arcs with a flow of ij ij ijl x u   is greater than 1n , 

there arcs with the intermediate flow always form cycle. Let 

C be a cycle that consist of arcs with intermediate flow, 

ij ij ijl x u  . Then the results of the sensitivity analysis 

with respect to an arc  ,i j  that belong to cycle C is given 

in theorem 2.3. 

 

THEOREM 2.3. Given a non-tree optimal solution where the 

number of arcs with a flow of ij ij ijl x u   is greater than 

1n , the range  of CS2 with respect to an arc  ,i j  

that belongs to a cycle C is zero. 

 

PROOF. Given a non-tree optimal solution arcs with 

intermediate flow always form cycles. Let C be a cycle that 

consists of arcs with the intermediate flow. Then 

 ,

0ij

i j c

c


  if the cost of ijc  of an arc  ,i j  is changed 

to ij ijc c   , then the value of the cycle C is 

 

  (11) 

 

If 0   (or 0  ) then it is better to send the flow in the 

opposite direction (or same direction) of cycle to improve 

the objective function value. In this case, since the flow 

along cycle C is created, the given optimal solution 

structure  , ,P Q R  may change. Therefore in order to 

maintain the given optimal solution structure  , ,P Q R , the 

range of   has to be zero.                                                  ❑ 
 

3. CONCLUSIONS 

In this paper, we have categorized the sensitivity 

analysis of the minimum cost flow problem into two types. 

We define CS1 to be the acquirement of a region where the 

given optimum basis is unchanged. This is the well known 

method applicable to a tree solution. However CS1 can not 

be applied to a non-tree solution or a degenerate tree 

solution. So we proposed the CS2 that finds the region 

where the upper bound valued arcs in the optimum solution 

maintain upper bound valued, low bound valued arcs 

maintain lower bound valued, and intermediate valued arcs 

maintain intermediate valued. This CS2 provides the 
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generalized concept of the sensitivity analysis for the 

optimum solution of the minimum cost flow problem. 
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