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Abstract  
 

Level Set is a deformable contour model where the user 

specifies a starting contour that is evolved to the image 

contour. As opposed to other contour models, e.g. 

Snakes [1], where the contour is described in a 

parametric manner, the Level Set method is a 

geometric deformable model. The contour is described 

as a surface developed by partial differential equations, 

where the contour is the zero level of the surface. In 

this paper we give novel pure-particle algorithm for the 

simulation of reaction-diffusion systems on deforming 

surfaces[5], which represent an important class of 

biological models, Because they provide explanations 

to complex phenomena such as pattern formation or 

morphogenesis. The algorithm uses an implicit 

Lagrangian level-set representation to track the motion 

of the surface, the framework of discretization-

corrected PSE operators to discretize the spatial 

derivatives of the governing equations as well as 

pseudo-forces to adapt the particle distribution to local 

resolution requirements, which renders the use of 

Cartesian grids unnecessary. A diffusion term is 

introduced into LSE, resulting in a TSSM equation, to 

which a piecewise constant solution can be derived. We 

propose a two-step splitting method (TSSM) to 

iteratively solve the RD-LSE equation: first iterating 

the LSE equation, and then solving the diffusion 

equation. The second step regularizes the level set 

function obtained in the first step to ensure stability, 

and thus the complex and costly re-initialization 

procedure is completely eliminated from LSE.  

 

1. Introduction  
 

In the last twenty years, the level set method (LSM) 

of Osher and Sethian [11] has become a popular 

numerical technique for tracking moving interfaces in 

computational geometry, fluid mechanics, computer 

graphics, computer vision and material sciences. The 

main reasons of its success are the high flexibility of 

this method to adapt to different problems, the ability to 

deal with changes of topology (contour breaking and 

merging) without any extra functions and the guarantee 

of the existence of solutions in the class of viscosity 

partial differential equations (PDEs). Moreover, 

extensive numerical algorithms based on Hamilton-

Jacobi equations have been developed, accurately 

handling shocks and providing stable numerical 

schemas. 

The key idea of the LSM is to implicitly represent a 

contour or interface as the zero level set of a higher 

dimensional function, called the level set function 

(LSF), and formulate the evolution of the contour 

through the evolution of the level set function. For 

closed contours, signed distance functions (SDFs) were 

originally adopted to represent level set functions 

because they directly provide stability and accuracy to 

the LSM. 

The rest of the paper is organized as follows. 

Section 2 illustrates the different types of methods for 

image segmentation Section 3 presents Level Set 

Method. Section 4 literature review of LSM and 

section-5 result of recent research on image 

segmentation using LSM Section 6 concludes the 

paper.  

 

2. IMAGE SEGMENTATION 

 

Segmentation is the process of partitioning an image 

into semantically interpretable regions. The purpose of 

segmentation is to decompose the image into parts that 

are meaningful with respect to a particular application. 

Image segmentation is typically used to locate objects 

and boundaries (lines, curves, etc.) in images. The 

result of image segmentation is a set of regions that 

collectively cover the entire image, or a set of contours 

extracted from the image. Each of the pixels in a region 

is similar with respect to some characteristic or 

computed property, such as color, intensity, or texture. 

Adjacent regions are significantly different with respect 

to the same characteristic.  
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2.1 IMAGE SEGMENTATION METHODS 

 

Several general-purpose algorithms and techniques 

have been developed for image segmentation. These 

are listed below: 

 

 Clustering methods 

 Compression-based methods 

 Histogram-based methods 

 Edge detection methods 

 Region growing methods 

 Split-and-merge methods 

 Partial differential equation-based methods 

1. Parametric methods 

2. Level set methods 

3. Fast Marching methods 

 Graph partitioning methods 

 Watershed transformation 

 Model based segmentation 

 Semi-automatic segmentation 

 Segmentation Benchmarking 

 Neural networks segmentation 

 

LEVEL SET METHOD 

 

Segmenting images with level set methods was 

introduced at the end of the 1980’s and was based on 

previous work on moving curvatures. Since then 

several variants and improvements have come up. 

Some of the improvements are aimed at speeding up 

the processing. Other methods have strength related to 

specific challenges like noise and broken edges. In the 

level set method, the curve is represented implicitly as 

a level set of a 2D scalar function referred to as the 

level set function which is usually defined on the same 

domain as the image. The level set is defined as the set 

of points that have the same function value. Fig1 shows 

an example of embedding a curve as a zero level set. It 

is worth noting that the level set function is different 

from the level sets of images, which are sometimes 

used for image enhancement. The sole purpose of the 

level set function is to provide an implicit 

representation of the evolving curve. Instead of 

tracking a curve through time, the level set method 

evolves a curve by updating the level set function at 

fixed coordinates through time. This perspective is 

similar to that of an Eulerian formulation of motion as 

opposed to a Lagrangian formulation, which is 

analogous to the parametric deformable model. A 

useful property of this approach is that the level set 

function remains a valid function while the embedded 

curve can change its topology. 

 

The level set method is a numerical technique used 

for tracking interfaces and shapes[1]. Level set is 

optimization method to extract or segment the object by 

its shape from an image. These interface can have sharp 

corners .The technique can find a wide range of 

application including problems in image processing, 

computer graphics, shape of snowflakes. Consider an 

image f with background and foreground. Boundaries 

can be detected using curve evolution. The boundary of 

an open domain can be represented using a curve C as 

the isoline of a Lipschitz continuous function: 

 

f:Ω → 𝑅 

ϕ: Ω → 𝐶 ,where C= {x, t}  ϕ(x, t) = 0 

ϕ(x, t) > 0 for x  𝜖  

ϕ(x, t) < 0 for x   𝛺  

ϕ(x, t) = 0 for x  𝜖 ∂ = Γ(t)         (1) 

 

 
 

Fig -1: arbitrary active contour 

 

In effect Φ divides the image into 3 regions, inside 

of the level set with positive Φ, boundary with Φ=0 and 

outside of the levelset with negative Φ. Then, an 

iterative procedure is followed, which uses an edge 

stopping function to decide the rate at which, the curve 

evolves. The evolution of curve happens in a direction 

normal to itself and the evolution stops when the curve 

meets an object or boundary. Broadly there are two 

approaches- Edge based and Region based. 

 

 
 

Fig -2: Level set evolution 
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Fig -3: Flow chart of image segmentation using 

level set method 

 

3. LITERATURE REVIEW 

  

Level set methods have seen tremendously 

expanded applications in many areas over the past 15 

years. This has been made possible by the exibility of 

the level set formulation in dealing with dynamic 

evolutions and topological changes of curves and 

surfaces, and by the mathematical theory and numerical 

tools developed in the past 15 years in studying these 

methods.The level set methods (LSM) can be 

categorized into partial differential equation (PDE) 

based ones and variational ones . 

 

It was first introduced by Osher and Sethian [1] and 

has become a more and more popular theoretical and 

numerical framework within image processing, fluid 

mechanics, graphics, computer vision, etc. The level set 

method is basically used for tracking moving fronts by 

considering the front as the zero level set of an 

embedded function, called the level set function. In 

image processing, it is used for propagating curves in 

2D or surfaces in 3D[11]. The applications of the level 

set method cover most fields in image processing, such 

as noise removal, image inpainting, image 

segmentation and reconstruction. In image 

segmentation, the level set method has some 

advantages compared to the active contour model. The 

level set method conquers the difficulties 

of topological transformations[2]. The level set 

approach is able to handle complex topological changes 

automatically. 

 

The traditional level set method depends on the 

gradient of the given image to stop the curve evolution 

[3]. Therefore, it has some drawbacks. Later, some 

variational level set methods are developed. In a 

sequence of papers beginning with Chan and Vese , the 

authors propose a different active contour model that 

does not use the gradient of the image  for the stopping 

process. The stopping term is based on the Mumford-

Shah functional for segmentation. The Chan-Vese 

model can detect contours both with and without 

gradients[10]. In addition, by using this model and its 

level set formulation, interior contours are 

automatically detected, and the initial curve can be 

anywhere in the image. The liberty of formulation of 

these level set methods gives us countless possibilities.  

 

In recent years, some variational level set 

formulations[3] have been proposed to regularize the 

LSF during evolution, and hence the re-initialization 

procedure can be eliminated. These variational LSMs 

without re-initialization have many advantages over the 

traditional methods, including higher efficiency and 

easier implementation. Chunming Lia proposed new 

variational formulation for geometric active contours 

that forces the level set function to be close to a signed 

distance function, and therefore completely eliminates 

the need of the costly re-initialization procedure. Other 

problems of Intensity inhomogeneities occur in real-

world images and may cause considerable difficulties 

in image segmentation. Chunming Li a new variational 

level set formulation in which the regularity of the level 

set function such that the derived level set evolution 

has a unique forward-and-backward (FAB) diffusion 

effect, which is able to maintain a desired shape of the 

level set function, particularly a signed distance profile 

near the zero level set. This yields a new type of level 

set evolution called distance regularized level set 

evolution (DRLSE). 

 

 

 

 

3.1 Comparison of different LSM method 

 

Reference Method Advantage 
Applicatio

n 

Chunnin

g Li, 

Chenyang 

Xu [3] 

New 

Variational 

Formulatio

n 

Good 

Performanc

e Over 

Weak 

Boundaries 

Stimula

ted & Real 

Images 

M. 

Airouche, 

L. bentabet 

Image 

Segmentati

on 

Easy To 

Detect Oil 

Spills. 

Real 

Satellite 

Images 
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[7] Using 

Active 

Contour 

Chunnin

g Le, 

Chenyang 

Xu [8] 

Distance 

Regularized 

Level 

Set Method 

Relativel

y Larger 

Timesta

mp To 

Reduce 

Iteration 

MRI 

images 

Li Mi, 

Xu 

Xiangmin, 

Qian 

Min [9] 

Fast 

Level Set 

Method 

On 

Overall 

Information 

Of 

Image 

More 

Accurate, 

Faster 

With 

Accuracy 

Of 95.2% 

Prostrat

e Of 

Nucleus 

Cells. 

Sheng 

Yan, 

Jianping 

Yuan, 

Chaohuan 

Hou [10] 

New 

Extended 

Chan 

Vese 

Level Set 

Model 

The 

Boundary 

Of Cyst Is 

Detected 

Even With 

Noise 

Synthet

ic And 

Ultraso

und 

Images 

Paresh 

Chandra 

Barman, 

Md. 

Sipon 

Miah, 

Bikash 

Chandra 

Singh [11] 

A New 

variational 

Level 

Set 

without re- 

initializa

tion 

Works 

on images 

with 

weak 

boundaries 

and 

strong 

noise. 

MRI 

images 

Chunnin

g Li, Rui 

Huang, 

Zhaohua 

Ding 

[12] 

A Novel 

Region 

Based 

Method 

Much 

More 

Robust To 

Piecewis

e Constant 

MRI 

Images 

And 

Bias 

Correction 

Amir 

Fazlollahi, 

Nicholas 

Dowson, 

Fabrice 

Meriaudeau

.9 

[13] 

Reaction 

Diffusion 

Model 

Selectio

n Of 

Threshold 

On Soft 

Segmentati

on To 

Be More 

Or Less 

Conserv

ative In 

Their 

Estimati

on. 

PET, 

MRI, DTI 

Images 

 

Table 1: Comparison of different LSM method 

 

4. PROPOSED METHODOLOGY DIFFUSION 

LEVEL SET EVOLUTION  

 

Since the zero level is used to represent the object 

contour, we only need to consider the zero level set of 

the LSF. As pointed out in [8], with the same initial 

zero level set, different embedded LSFs will give the 

same final stable interface. Therefore, we can use a 

function with different phase fields as the LSF. 

Motivated by the phase transition theory, we propose to 

construct a TSSM equation by adding a diffusion term 

into the conventional LSE equation. Such an 

introduction of diffusion to LSE will make LSE stable 

without re-initialization.  

 

By adding a diffusion term “εΔφ” into the LSE 

equation in Eq. (3) or Eq. (4), we have the following 

RD equation for LSM: 

 

𝜑t = 𝜀∆𝜑 −  
1

𝜀  L(𝜑) , x∈ Ω ⊂ R
n 

Subject to 𝜑 𝑥, 𝑡 = 0, 𝜀 = 𝜑0 (x) 

 

where ε is a small positive constant, L(𝜑)= -F|∇φ|, 
for PDE-based LSM or L(φ) = –Fδ(φ) for variational 

LSM, Δ is the Laplacian operator defined by Eq. (1) 

has two dynamic processes: the diffusion term “εΔφ” 

gradually regularizes the LSF to be piecewise constant 

in each segment domain Ωi, and the reaction term 

“−ε−1L(φ)” forces the final stable solution of Eq. (1) to 

L(φ)=0, which determines Ωi. In the traditional LSMs , 

due to the absence of the diffusion term we have to 

regularize the LSF by an extra procedure, i.e., re-

initialization. In the following, based on the Van der 

Waals-Cahn-Hilliard theory of phase transitions, we 

will first analyze the equilibrium solution of Eq. (1) 

when ε→0+ for variational LSM, and then generalize 

the analysis into a unified framework for both PDE-

based LSM and variational LSM. Let Ω с R 
n
, n=2 or 3, 

be the domain of the level set function φ and assume 

that E(φ) is an energy functional w.r.t. φ, the Euler 

equations of E(φ) and F(φ) are the same, i.e., 

Eφ(φ)=Fφ(φ), where F(φ ) E(φ). For variational 

LSM, assuming that the L(φ) in Eq. (1) is obtained by 

minimizing an energy functional E(φ), i.e., 

L(φ)=Eφ(φ). 

 

Algorithm : Diffusion based level set evolution(D-

LSE): 

 

1. Initialization: Φ
n
 = φ0, n = 0 

2. Compute φ
n+1/2

as 

          φ
n+1/2

= Φ
n
 - t1. L(𝜑𝑛 

  3. Compute φ
n+1 

as 
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φ
n+1

= Φ
n
  + t2 ∆𝜑𝑛  

 Where Φ
n
 = φ

n+1/2
 

4. If φn+1 satisfies stationary condition, stop; 

otherwise, n = n+1 and return to Step 2. 

 

5.2 IMPLEMENTATION 

 

From the analysis, we see that the equilibrium 

solution of Eq. (1) is piecewise constant as ε→0+, 

which is the characteristic of phase transition [13][14]. 

On the other hand, Eq. (1) has the intrinsic problem of 

phase transition, i.e., the stiff parameter ε–1 makes Eq. 

(1) difficult to implement [11][13][14]. In this section, 

we propose a splitting method to implement Eq. (1) to 

reduce the side effect of stiff parameter ε–1. 

 

5.3 Two-Step Splitting Method (TSSM)  

 

A TSSM algorithm to implement RD has been 

proposed in [11] to generate the curvature dependent 

motion. The reaction function is first forced to generate 

a binary function with values 0 and 1, and then the 

diffusion function is applied to the binary function to 

generate curvature-dependent motion. Different where 

the diffusion function is used to generate curvature-

dependent motion, in our proposed RD based LSM, the 

LSE is driven by the reaction function, i.e., the LSE 

equation. Therefore, we propose to use the diffusion 

function to regularize the LSF generated by the reaction 

function. To this end, we propose the following TSSM 

to solve the RD. 

 

Step 1: Solve the reaction term φ t=–ε–1L(φ) with 

φ(x,t=0)=φn till some time Tr to obtain the 

intermediate solution, denoted by φ
n+1/2 

=φ (x,Tr); 

 

Step 2: Solve the diffusion term φt =εΔφ, φ(x,t=0) 

= φ
n+1/2

till some time Td , and then the final level set is 

φ
n+1 

=φ(x,Td). 

5.4 Numerical Implementation 

 

A. Numerical approximation for the spatial and 

time derivatives:  

 

In implementing the traditional LSMs, the upwind 

scheme is often used to keep numerical stability. By 

introducing the diffusion term, in the proposed D-LSE 

the simple central difference scheme  can be used to 

compute all the spatial partial derivatives ∂(⋅)/∂xi, i = 

1,…,n, and the simple forward difference scheme can 

be used to compute the temporal partial derivative φt . 

 

B. Setting for the time steps Δt1 and Δt2: Since 

Eq. (19) is a linear PDE, the standard Von Neumann 

analysis [19][23][24] can be used to analyze the 

stability for the time step Δt2. 

 

6. EXPERIMENTAL RESULTS 

 

In our experiments, all the competing methods use 

the same level set model, while the only differences are 

the different regularization terms used in them. We set 

ρ = 0.5, other parameters are set according to the 

different experiments.  

 

We first apply the diffusion method to PDE-based 

LSM to demonstrate its superior performance to re-

initialization methods; second, we apply it to edge-

based variational level set models with different Dirac 

functionals and compare it with GDRLSE methods for 

images with weak boundaries; third, we apply the 

DIFFUSION method to classical GAC model [5] and 

the CV model [18] in comparison with GDRLSE and 

representative LSMs with re-initialization; finally, we 

quantitatively compare DIFFUSION with GDRLSE 

methods for the edge-based variational level set model, 

the PDE-based GAC model and the region-based CV 

model. The advantages of our DIFFUSION method 

over re-initialization methods and GDRLSE methods 

are summarized as follows. 

 

A. The DIFFUSION method can keep the LSE 

process stable for both variational LSM and PDE-based 

LSM, and it is much more efficient than re-

initialization method (refer to Figs. 5 and 6 in Section 

5.2). 

 
 

fig(4) Top row: the final LSFs. Bottom row: the 

middle slices of the LSFs in iterations. From left to 

right: results by RD method, re-initialization method 

and the direct implementation without re-initialization. 

We set Δt1=Δt2=0.1.  
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Fig (5) the final LSFs. We set Δt1=Δt2=0.1. 

 

 

Table 2: Comparison of experimental results of 

Diffusion based LSM and DRLSE method. 

 

 

CONCLUSION 

 

In this paper, we proposed a reaction-diffusion 

based level set evolution (LSE), which is completely 

free of the re-initialization procedure required by 

traditional level set methods. A two-step-splitting-

method (TSSM) was then proposed to effectively solve 

the DIFFUSION based LSE. The proposed 

DIFFUSION method can be generally applied to either 

variational level set methods or PDE-based level set 

methods. It can be implemented by using the simple 

finite difference scheme. The DIFFUSION method has 

the following advantages over the traditional level set 

method and state-of-the-art algorithms [9][59][34]. 

First, the DIFFUSION method is general, which can be 

applied to the PDE-based level set methods and 

variational ones. Second, the DIFFUSION method has 

much better performance on weak boundary anti-

leakage. Third, the implementation of the DIFFUSION 

equation is very simple and it does not need the upwind 

scheme at all. Fourth, the DIFFUSION method is 

robust to noise. The experiments on synthetic and real 

images demonstrated the promising performance of our 

approach.  
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