International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

An IDS (Intrusion Detection System) With Doubleguard

1JERTV21S70835

Ambreen Fatima
P.G Student,
Department Of Computer Science and Engineering,
Khaja Banda Nawaz College of Engineering,
Gulbarga, Karnataka, India

Abstract

In today’s world most of the people uses
computer especially for web application to do their
transaction. So there are chances of personal data
gets hacked then we need to provide more security
for both web server and database server. For that
double guard system is used. The double guard
system is used to detect attacks using Intrusion
detection system. An Intrusion Detection System
models the network behavior of user sessions across
both the front-end web server and the back-end
database. By monitoring the web and its subsequent
database requests, we are able to ferret out attacks
that an independent IDS, would not be able to
identify. DoubleGuard is implemented using an
Apache web server with MySQL and lightweight
virtualization technique. Finally, using
DoubleGuard, the wide range of attacks is detected.

Keywords: Virtualization, Intrusion Detection
System, Attacks, Container, Session ID.

1. INTRODUCTION

Over a past few years web services and
applications had increased in popularity and
complexity. As day to day our most of the task such
as banking, travel, social networking, and online
shopping are done and directly depend on web. The
services which are used on the web to run or use
the application [8] user interface logic for front end
web server which stores the database or file server for
particular user data are the back end server. Due to
the use of web services which is present everywhere
for personal as well as corporate data they have been
targeted for the attack. These attacks have recently

Sameena Banu
Assistant Professor,
Department Of Computer Science and Engineering,
Khaja Banda Nawaz College of Engineering,
Gulbarga, Karnataka, India

become more diverse, as attention has shifted from
attacking the front-end to exploiting vulnerabilities of
the web applications in order to corrupt the back-end
database system. A plethora of Intrusion Detection
Systems (IDS) currently examine network packets
individually within both the web server and the
database system. Intrusion detection [9], [11] systems
have been widely used to detect the attacks which
are known by matching misused traffic patterns or
signatures [3], [6] to protect the multi tiered web
services. The IDS class has a power of machine
learning which can detect unknown attack by
identifying the abnormal behavior of the network
traffic action from previous behavior of IDS phase.
The abnormal network traffic which are send by the
attacker to attack the server can be detected by
the web IDS and the database IDS [4] and prohibit to
enter within the server. But, if the attacker uses the
normal traffic to attack the web servers and
database server then such type of attack cannot be
able to detect by IDSs.

For example, if an attacker with non admin
privileges can log into a web server using normal-
user access credentials, he/she can find a way to issue
a privileged database query by exploiting
vulnerabilities in the web server. Neither the web IDS
nor the database IDS would detect this type of attack
since the web IDS would merely see typical user
login traffic and the database IDS would see only the
normal traffic of a privileged user. This type of attack
can be readily detected if the database IDS can
identify that a privileged request from the web server
is not associated with user-privileged access.
Unfortunately, within the current multi threaded web
server architecture, it is not feasible to detect or
profile such causal mapping between web server
traffic and DB server traffic since traffic cannot be
clearly attributed to user sessions.

www.ijert.org

2573

1JERTV21S70835

DoubleGuard is a system which is used to detect
the attacks in multitier web services. This approach
can create normality model of isolated user sessions
which include both the web front-end as HTTP and
back-end as File or SQL for network transaction. To
achieve this, a lightweight virtualization technique is
used for assigning each user’s web session to a
dedicated container which provides an isolating
virtual computing environment. The container ID is
used to accurately associate the web request with its
subsequent database queries. DoubleGuard will take
the web server and database traffic for building a
causal mapping profile into proper and accurate
account.

2. RELATED WORK

A network Intrusion Detection System can be
classified into two types: Anomaly Detection and
Misuse Detection.

Anomaly detection first requires the IDS to define
and characterize the correct and acceptable static
form and dynamic behavior of the system, which can
then be used to detect abnormal changes or
anomalous behaviors [4], [7]. The boundary between
acceptable and anomalous forms of stored code and
data is precisely definable. Behavior models are built
by performing a statistical analysis on historical data
[10], [5], [12] or by using rule-based approaches to
specify behavior patterns. An anomaly detector then
compares actual usage patterns against established
models to identify abnormal events.

In order to detect known web based attacks,
misuse detection systems are equipped with a large
number of signatures. Unfortunately, it is difficult to
keep up with the daily disclosure of web related
vulnerabilities, and, in addition, vulnerabilities may
be introduced by installation-specific web based
applications. Therefore, misuse detection systems
should be complemented with anomaly detection
systems. An Intrusion Detection System uses a
number of different anomaly detection techniques to
detect attacks against web servers and web based
applications.

In Database Intrusion Detection Using Weighted
Sequence Mining, data mining has attracted a lot of
attention due to increased generation, transmission
and storage of high volume data and an imminent
need for extracting useful information and knowledge
from them. Database stores valuable information of
an application, its security has started getting
attention. An Intrusion Detection System (IDS) is
used to detect potential violations in database
security. In every database, some of the attributes are
considered more sensitive to malicious modifications
compared to others. The algorithm is proposed for

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

finding dependencies among important data items in
a relational database management system. Any
transaction that does not follow these dependency
rules are identified as malicious.

3. THREAT MODEL AND SYSTEM
ARCHITECTURE

The threat model is initially setup to include the
assumptions and the types of attacks to protect
against. The attackers can bypass the web server to
directly attack the database server. Assume that the
attacks can neither be detected nor prevented by the
current web server IDS, the attackers may take over
the web server after the attack, and that afterwards
they can obtain full control of the web server to
launch subsequent attacks.

3.1 Architecture and Confinement

In the design, a lightweight process container is
used, referred to as ‘“containers,” as ephemeral,
disposable servers for client sessions. It is possible to
initialize thousands of containers on a single
physical machine, and these virtualized containers
can be discarded, reverted, or quickly reinitialized to
Serve new sessions.

Rql

Rsl

5 Ra2
Client2 | |
L

Rq3

Client3
) Rs3

Figure 1. Classic 3 tier architecture

P’ Database
Web server S

Figure 1 shows the Classic 3 tier architecture.
The web server acts as the front end, with the file and
database servers as the content storage back end.
Database server, unable to know which transaction
corresponds to which client request. The
communication between the web server and the
database server is not separated, and hardly
understand the relationships among them. If Client 2
is malicious and takes over the web server, all
subsequent database transactions become suspect, as
well as the response to the client.

3.2 Building the Normality Model

The container-based and session-separated web
server architecture not only enhances the security
performances but also provides the isolated

www.ijert.org

2574

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

1JERTV21S70835

information flows that are separated in each container
session. It identifies the mapping between the web
server requests and the subsequent DB queries, and
utilizes a mapping model to detect abnormal
behaviors on a session/client level.

Client 1 (1) ;::_ VET T

Client2(52) [(TR VE2 [=Ta2—b
| Client3(83) [R3T1 vEs LI
Web Requests Manoi Database Queries
Anomaly Sensors ¥ Ggg:}g Anomaly Sensors

Figure 2. Web server instances running in container

DataBase
Server

Affected
Data

Figure 2 shows how communications are
categorized as sessions and how database
transactions can be related to a corresponding
session. Sensors are used at both sides of the servers.
At the web server, sensors are deployed on the host
system and cannot be attacked directly since only the
virtualized containers are exposed to attackers.
Sensors will not be attacked at the database server
either, assume that the attacker cannot completely
take control of the database server. In fact, assume
that sensors cannot be attacked and can always
capture correct traffic information at both ends.

Once the mapping model is build, it can be
used to detect abnormal behaviors. Both the web
request and the database queries within each session
should be in accordance with the model. If there
exists, any request or query that violates the
normality model within a session, then the session
will be treated as a possible attack.

3.3 Algorithm

3.3.1 User Control Algorithm

Input: Registration details with username and
password as input.

Output: Successful or unsuccessful login.

The above algorithm shows how to provide
security to the entire system to prevent unauthorized
access of system. If any new user is there, and they
want to enter into the system then he/she has to fill a
new user registration form. In the registration form
user has to fill his personal information along with
his username and password. When user clicks on
login button all his information get inserted into the
database.

Now the user has its own username and
password. By clicking on “login” button he/she will
redirect to login page. Here user will login into the
system by giving his personal username and
password. If user enters correct username and
password as filled in the registration form; then only
the user can successfully login into the system else if
the user enters wrong username or password then the
user cannot login into the system. Thus this algorithm
gives security and provides user control to the
system.

3.3.2 Session Handling Algorithm
Input: HTTP request r and SQL query q.

Output: Session id for r and q in the sets ARr and
AQq respectively.

Algorithm:

1. for each session separated traffic Ti do

2. Get different HTTP requests ‘r’ and DB

queries ‘q’ in this session

for each different r do

if r is a request to static file then

Add r into set EQS (Empty Query Set)

else

if ris not in set REQ then

Add r into REQ

Append session ID i to the set ARr with

r as the key

10. for each different g do

11. if g is not in set SQL then

12. Add g into SQL

13. Append session ID i to the set AQq
with g as the key

©ONO AW

Algorithm: Session handling algorithm is responsible for
1. New user will il a registration form. assigning correct and unique 1D to the HTTP request
2. Get user name and password. and equival_ent SQIT query. If_input HTTP request is
3. Logs into the system. for any static data/file; means if the requested content
4. Starts his new session. is available at web server itself then r is added into
5. After completion of session user logs Empty Query Set. This type of query doesn’t get any

out.

kind of ID. If r is not in the set of REQ means the
input query is new of arrives first time into the
system then r is added into REQ i.e. request query

www.ijert.org

2575

1JERTV21S70835

set. By taking r as a key session ID i is appended to
the set of ARr. Similarly for each SQL query if q is
not into the set of SQL query then it is added into the
SQL set. Same as above by taking q as key session
ID i is appended to the set of AQq.

3.3.3 Query Mapping Algorithm
Input: Set of ARr, Set of AQq and Cardinality t.

Output: HTTP request gets mapped with equivalent
SQL query.

Algorithm:

for each distinct HTTP request r in REQ do
for each distinct DB query g in SQL do
Compare the set ARr with the set AQq

if ARr =AQq and Cardinality(ARr) >t then
Found a Deterministic mapping fromr to g
Add g into mapping model set MSr of r
Mark q in set SQL

else

9. Need more training sessions

10. return False

11. for each DB query g in SQL do

12. if q is not marked then

13. Add g into set NMR (No Matched Request)
14. for each HTTP request r in REQ do

15. if r has no deterministic mapping model then
16. Add rinto set EQS (Empty Query Set)

17. return True

NG~ wWNE

The user request comes to the web server in the
form of HTTP request and a equivalent SQL query is
generated by web server. Query mapping algorithm
maps the HTTP request with the equivalent SQL
query. Mapping algorithm use the output generated
by the session handling algorithm. A HTTP request
with its ID stored in ARr set and a SQL query with
its ID stored in AQq set; both are matched with each
other if both ID are equal and Cardinality of ARr is
greater than 1 then there is a deterministic map is
found. g is then added into the matched set query and
it is also marked in the set of SQL queries. After
performing all training data sets if any query from the
set g is not marked then that g is moved to the NMR
(No Matched Request) set. Similarly for every HTTP
request r; if r has no deterministic mapping then that r
is added into the EQS (Empty Query Set).

3.3.4 Intrusion Detection Algorithm

Input: HTTP request r and SQL query g.

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

Output: Log showing malicious attacks.

Algorithm:

1. If the rule for the request is Deterministic
Mapping r -> Q (Q #®), test whether Q is a
subset of a query set of the session. If so, this
request is valid then mark the queries in Q.
Otherwise, a violation is detected and considered
to be abnormal and the session will be marked as
suspicious.

2. If the rule is Empty Query Set r -> @, then the
request is not considered to be abnormal and it
will not mark any database queries. No intrusion
will be reported.

3. For the remaining unmarked database queries,
see if they are in the set NMR. If so, mark the
query as such.

4. Any untested web request or unmarked database
query is considered to be abnormal. If either
exists within a session, then that session will be
marked as suspicious.

The intrusion detection algorithm checks
every r and g with the mapping model and then
decides that whether it is from a general user or
attacker. If there is mapping found between r and ¢
then it is a considered as valid session, otherwise it
have to checks other query sets. If request r is found
in Empty Query Set then it not considered as
abnormal and no intrusion will be reported. For
remaining unmark queries, see if they are in the set
NMR. If so, mark the query as such. Any query that
comes directly to the database without any mapping
then that session is considered as abnormal.

4. PERFORMANCE EVALUATION

A prototype of DoubleGuard is implemented
using a web server with a back-end DB and setup the
dynamic websites. To evaluate the detection results
for the system, four classes of attacks is analyzed.

4.1 Implementation

In this prototype, each user session is assigned
into a different container. In the implementation,
containers were recycled based on events. The same
session tracking mechanisms is used as implemented
by the Apache server (cookies, mod user track, etc.)
because lightweight virtualization containers do not
impose high memory and storage overhead.

www.ijert.org

2576

1JERTV21S70835

4.2 Dynamic Model Detection Rate

The model building is conducted for the
dynamic blog website.

True Positive Rate (Senshtivity)
@
E
#
P

% L 0% 30N Sk 50RO 70N S0 SO 100

False Pasitive Rate (1 - Specificity)

—t— 23 Bbodals 1B Models =g Models T Modals -5 Bodels

Figure 3. False positive rate for dynamic models

Figure 3 shows the ROC curves for the
testing result. The model is built with different
number of operations, and each point on the curves
indicates the threshold value. The threshold value is
defined as the number of HTTP requests or SQL
queries in a session that are not matched with the
normality model. The threshold value is varied from
0 to 30 during the detection. As the ROC curves
depict, it could always achieve a 100 percent True
Positive Rate when doing strict detection (threshold
of 0) against attacks in the threat model. With a more
accurate model, it can reach 100 percent sensitivity
with a lower False Positive rate. The nature of the
false positives comes from the fact that manually
extracted basic operations are not sufficient to cover
all legitimate user behaviors. Figure 3 show that it
can reach 100 percent Sensitivity with six percent
False Positive rate.

5. ATTACKDETECTION

DoubleGuard is used to detect the malicious
attacks. It uses the attack tools listed in Table 1 and
also shows the experiment views for DG.

5.1 Privilege Escalation Attack

This type of attack is actually done by
accessing privilege of authorized user by
unauthorized users. Suppose there is an application
for the Payment System for Employee’s in which
Administrator privilege to update and change the
salary of the employee has and employee have
privilege to see their attendance. If any employee gets
the URL to update the salary then he/she gets the
access of all the employee salary. In case, the attacker
employee will get the privilege of the admin and

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

Table 1.
Detection Results for Attacks (GSQL Stands for
GreenSQL, and DG Stands for DoubleGuard, *Indicates
Attack Using Metasploit)

Operation Snort | GSQL | DG
Privilege Escalation (WordPress Vul) No No Yes
Web Server aimed attack (nikto) Yes No Yes
SQL Injection (sqlmap) No Yes Yes
DirectDB No No Yes
linux/http/ddwrt_cgibin_exec* No No Yes
linux/http/linksys_apply_cgi* No No Yes
linux/http/piranha_passwd_exec* No No Yes
unix/webapp/oracle_vm_agent_utl* No No Yes
unix/webapp/php_include* Yes No Yes
unix/webapp/php_wordpress_lastpost* No No Yes
windows/http/altn_webadmin* No No Yes
windows/http/apache_modjk_overflow * No No Yes
windows/http/oracle9i_xdb_pass* No No Yes
windows/http/maxdb_webdbm_database* | No No Yes

privilege escalation attack is done.

If the Payment System uses the
DoubleGuard application then it will be placed after
the DG. DG will store the admin privilege and
employee privilege separately in the DG database.
Whenever the admin or employee want to use the
Payment System application then they has to go from
DG’s privilege authentication where according to the
user i.e. admin or employee and its privilege the DG
application will take to their respective privilege
pages according to the user register privileges in the
DoubleGuard database. DG will never show the URL
of the respective application database. In this way,
DG will prevent privilege attack.

5.2 Hijack Future Session Attack

Whenever the internet services or
application through web browser is used, it generates
a unique session ID and it remains until or task is not
completed or web browser is closed. Attacker tries to
get this session ID. So that attacker can get the
valuable data and it’s most common examples are
FACEBOOK, GMAIL etc. After getting session 1D
the attacker can do anything he wants with the user
data. But the original user doesn’t know that attacker
is accessing his/her data which would turn harmful
for the user.

If the user uses the DG application he will
be prevented from such kind of attack. In DG

www.ijert.org

2577

1JERTV21S70835

application, the Mapping Model for the session ID
and IP address is created. If the attacker will be able
to get the session ID then also it will not possible to
him/her to attack the user data because the IP address
of the attacker will not match with DG’s Mapping
Model. DG will allow the access if the session 1D and
IP address are match according to the mapping model
of application database. Depending upon the result of
the DG it will decide the user is legal or not and
allow him/her access the database or not.

5.3 SQL Injection Attack

Now-a-days the attackers are using the SQL
queries to get the data or change the data of another
user by sending queries like INSERT, UPDATE,
DELETE, etc. In this kind of attack, the attacker
communicates with the database by sending queries.
But whiles ending the SQL queries by an attacker the
structure of the queries are changed and which are
never detected by the IDS. But, the DG application is
able to prevent the injection attack because the DG
will generate its own structure queries and which are
different from the attacker SQL queries structure. DG
will allows to access, update the database if structure
of the SQL queries are matched with the structure of
the DG application query structure.

5.4 Direct DB Attack

Most of the attacker directly attacks the
database server besides going to the web server. In
this kind of attacking, the attacker uses the IP address
of the database server. It is very easy and less time
requirement attack. In this attacker sends the SQL
queries directly to the database server by bypassing
the web server. If the DG is used then the attack will
be detected and attacker will not be allowed to the
database server. If DG is used then it will be placed
before the web server and the database server. So
that, DG will be able to hide the IP address and
location where the database server is located and DG
doesn’t match the web request with the SQL queries.
Thus DG can avoid such kind of attacks.

6. CONCLUSION

In this paper, an Intrusion Detection System
builds the normality model for multitier web
applications. Unlike previous approaches that
correlated or summarized alerts generated by
independent IDSs, DoubleGuard forms container-
based IDS with multiple input streams to produce
alerts. The lightweight virtualization technique is
used to assign session ID to a dedicated container
which is nothing but isolated virtual computing

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

environment. Furthermore, there will specific
detection of attacks such as Privilege Escalation
Attack, Hijack Future Session Attack, SQL
Injection Attack and Direct DB Attack. Also the
requests which violate the normality model that
will be treat as an intruder. DoubleGuard was able
to identify a wide range of attacks with minimal false
positives. DoubleGuard is used for dynamic web
server which provides better security for data and
web application.

7. FUTURE SCOPE

It is possible to make some future
modifications into the Intrusion Detection System.
The Intrusion Detection Systems can be installing on
wide range of machines having different operating
system and platforms. The query processing
mechanism can be made simpler by applying natural
language processing (NLP); so as to convert simple
English sentences into SQL queries. New attacks are
often unrecognizable by popular IDS. So there is
continuous race going in between new attacks and
detection systems have been a challenge. Nowadays
Intrusion Detection Systems also work on the
wireless networks. The latest wireless devices come
with its own set of protocols for communication that
break the traditional OSI layer model. So IDS must
learn new communication patterns of the latest
wireless technology.

8. REFERENCES

[1] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kru”
gel, and G. Vigna, “Cross Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis,” Proc.
Network and Distributed System Security Symp. (NDSS
’07), 2007.

[2] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,
“Toward Automated Detection of Logic Vulnerabilities in
Web Applications,” Proc. USENIX Security Symp., 2010.

[3] B.ILA. Barry and H.A. Chan, “Syntax, and Semantics-
Based Signature Database for Hybrid Intrusion Detection

Systems,” Security and Comm. Networks, vol. 2, no. 6, pp.
457-475, 20009.

[4] H. Debar, M. Dacier, and A. Wespi, “Towards a
Taxonomy of Intrusion-Detection Systems,” Computer
Networks, vol. 31, no. 9, pp. 805-822, 1999.

[5] G. Vigna, W.K. Robertson, V. Kher, and R.A.
Kemmerer, “A Stateful Intrusion Detection System for
World-Wide Web Servers,” Proc. Ann. Computer Security
Applications Conf. (ACSAC ’03), 2003.

[6] J. Newsome, B. Karp, and D.X. Song, “Polygraph:
Automatically Generating Signatures for Polymorphic
Worms,” Proc. IEEE Symp. Security and Privacy, 2005.

www.ijert.org

2578

International Journal of Engineering Research & Technology (IJERT)
ISSN: 2278-0181
Vol. 2 Issue 7, July - 2013

[71 T. Verwoerd and R. Hunt, “Intrusion Detection
Techniques and Approaches,” Computer Comm., vol. 25,
no. 15, pp. 1356-1365, 2002.

[8] S. Potter and J. Nieh, “Apiary: Easy-to-Use Desktop
Application Fault Containment on Commodity Operating
Systems,” Proc. USENIX Ann. Technical Conf., 2010.

[9] A. Srivastava, S. Sural, and A.K. Majumdar, “Database
Intrusion Detection Using Weighted Sequence Mining,” J.
Computers, vol. 1, no. 4, pp. 8-17, 2006.

[10] C. Kruegel and G. Vigna, “Anomaly Detection of
Web-Based Attacks,” Proc. 10th ACM Conf. Computer and
Comm. Security (CCS ’03), Oct. 2003.

[11] F. Valeur, G. Vigna, C. Krugel, and R.A. Kemmerer,
“A Comprehensive Approach to Intrusion Detection Alert
Correlation,” 1EEE Trans. Dependable and Secure
Computing, vol. 1, no. 3, pp. 146-169, July-Sept. 2004.

[12] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
“Swaddler: An Approach for the Anomaly-Based Detection
of State Violations in Web Applications,” Proc. Int’l Symp.
Recent Advances in Intrusion Detection (RAID ’07), 2007.

[13] “Wordpress,” http://www.wordpress.org/, 2011.
[14] nikto, http://cirt.net/nikto2, 2011.

[15]sqlmap,http://sqimap.sourceforge.net/, 2011.

1JERTV21S70835 www.ijert.org 2579

