
An IDS (Intrusion Detection System) With Doubleguard

Ambreen Fatima Sameena Banu
 P.G Student, Assistant Professor,

Department Of Computer Science and Engineering, Department Of Computer Science and Engineering,

Khaja Banda Nawaz College of Engineering, Khaja Banda Nawaz College of Engineering,

Gulbarga, Karnataka, India Gulbarga, Karnataka, India

Abstract

In today’s world most of the people uses

computer especially for web application to do their

transaction. So there are chances of personal data

gets hacked then we need to provide more security

for both web server and database server. For that

double guard system is used. The double guard

system is used to detect attacks using Intrusion

detection system. An Intrusion Detection System

models the network behavior of user sessions across

both the front-end web server and the back-end

database. By monitoring the web and its subsequent

database requests, we are able to ferret out attacks

that an independent IDS, would not be able to

identify. DoubleGuard is implemented using an

Apache web server with MySQL and lightweight

virtualization technique. Finally, using

DoubleGuard, the wide range of attacks is detected.

Keywords: Virtualization, Intrusion Detection

System, Attacks, Container, Session ID.

1. INTRODUCTION

Over a past few years web services and

applications had increased in popularity and

complexity. As day to day our most of the task such

as banking, travel, social networking, and online

shopping are done and directly depend on web. The

services which are used on the web to run or use

the application [8] user interface logic for front end

web server which stores the database or file server for

particular user data are the back end server. Due to

the use of web services which is present everywhere

for personal as well as corporate data they have been

targeted for the attack. These attacks have recently

become more diverse, as attention has shifted from

attacking the front-end to exploiting vulnerabilities of

the web applications in order to corrupt the back-end

database system. A plethora of Intrusion Detection

Systems (IDS) currently examine network packets

individually within both the web server and the

database system. Intrusion detection [9], [11] systems

have been widely used to detect the attacks which

are known by matching misused traffic patterns or

signatures [3], [6] to protect the multi tiered web

services. The IDS class has a power of machine

learning which can detect unknown attack by

identifying the abnormal behavior of the network

traffic action from previous behavior of IDS phase.

The abnormal network traffic which are send by the

attacker to attack the server can be detected by

the web IDS and the database IDS [4] and prohibit to

enter within the server. But, if the attacker uses the

normal traffic to attack the web servers and

database server then such type of attack cannot be

able to detect by IDSs.

For example, if an attacker with non admin

privileges can log into a web server using normal-

user access credentials, he/she can find a way to issue

a privileged database query by exploiting

vulnerabilities in the web server. Neither the web IDS

nor the database IDS would detect this type of attack

since the web IDS would merely see typical user

login traffic and the database IDS would see only the

normal traffic of a privileged user. This type of attack

can be readily detected if the database IDS can

identify that a privileged request from the web server

is not associated with user-privileged access.

Unfortunately, within the current multi threaded web

server architecture, it is not feasible to detect or

profile such causal mapping between web server

traffic and DB server traffic since traffic cannot be

clearly attributed to user sessions.

2573

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70835

DoubleGuard is a system which is used to detect

the attacks in multitier web services. This approach

can create normality model of isolated user sessions

which include both the web front-end as HTTP and

back-end as File or SQL for network transaction. To

achieve this, a lightweight virtualization technique is

used for assigning each user‟s web session to a

dedicated container which provides an isolating

virtual computing environment. The container ID is

used to accurately associate the web request with its

subsequent database queries. DoubleGuard will take

the web server and database traffic for building a

causal mapping profile into proper and accurate

account.

2. RELATED WORK

A network Intrusion Detection System can be

classified into two types: Anomaly Detection and

Misuse Detection.

 Anomaly detection first requires the IDS to define

and characterize the correct and acceptable static

form and dynamic behavior of the system, which can

then be used to detect abnormal changes or

anomalous behaviors [4], [7]. The boundary between

acceptable and anomalous forms of stored code and

data is precisely definable. Behavior models are built

by performing a statistical analysis on historical data

[10], [5], [12] or by using rule-based approaches to

specify behavior patterns. An anomaly detector then

compares actual usage patterns against established

models to identify abnormal events.

In order to detect known web based attacks,

misuse detection systems are equipped with a large

number of signatures. Unfortunately, it is difficult to

keep up with the daily disclosure of web related

vulnerabilities, and, in addition, vulnerabilities may

be introduced by installation-specific web based

applications. Therefore, misuse detection systems

should be complemented with anomaly detection

systems. An Intrusion Detection System uses a

number of different anomaly detection techniques to

detect attacks against web servers and web based

applications.

In Database Intrusion Detection Using Weighted

Sequence Mining, data mining has attracted a lot of

attention due to increased generation, transmission

and storage of high volume data and an imminent

need for extracting useful information and knowledge

from them. Database stores valuable information of

an application, its security has started getting

attention. An Intrusion Detection System (IDS) is

used to detect potential violations in database

security. In every database, some of the attributes are

considered more sensitive to malicious modifications

compared to others. The algorithm is proposed for

finding dependencies among important data items in

a relational database management system. Any

transaction that does not follow these dependency

rules are identified as malicious.

3. THREAT MODEL AND SYSTEM

ARCHITECTURE

 The threat model is initially setup to include the

assumptions and the types of attacks to protect

against. The attackers can bypass the web server to

directly attack the database server. Assume that the

attacks can neither be detected nor prevented by the

current web server IDS, the attackers may take over

the web server after the attack, and that afterwards

they can obtain full control of the web server to

launch subsequent attacks.

3.1 Architecture and Confinement

 In the design, a lightweight process container is

used, referred to as “containers,” as ephemeral,

disposable servers for client sessions. It is possible to

initialize thousands of containers on a single

physical machine, and these virtualized containers

can be discarded, reverted, or quickly reinitialized to

serve new sessions.

Figure 1. Classic 3 tier architecture

Figure 1 shows the Classic 3 tier architecture.

The web server acts as the front end, with the file and

database servers as the content storage back end.

Database server, unable to know which transaction

corresponds to which client request. The

communication between the web server and the

database server is not separated, and hardly

understand the relationships among them. If Client 2

is malicious and takes over the web server, all

subsequent database transactions become suspect, as

well as the response to the client.

3.2 Building the Normality Model

 The container-based and session-separated web

server architecture not only enhances the security

performances but also provides the isolated

2574

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70835

information flows that are separated in each container

session. It identifies the mapping between the web

server requests and the subsequent DB queries, and

utilizes a mapping model to detect abnormal

behaviors on a session/client level.

Figure 2. Web server instances running in container

 Figure 2 shows how communications are

categorized as sessions and how database

transactions can be related to a corresponding

session. Sensors are used at both sides of the servers.

At the web server, sensors are deployed on the host

system and cannot be attacked directly since only the

virtualized containers are exposed to attackers.

Sensors will not be attacked at the database server

either, assume that the attacker cannot completely

take control of the database server. In fact, assume

that sensors cannot be attacked and can always

capture correct traffic information at both ends.

 Once the mapping model is build, it can be

used to detect abnormal behaviors. Both the web

request and the database queries within each session

should be in accordance with the model. If there

exists, any request or query that violates the

normality model within a session, then the session

will be treated as a possible attack.

3.3 Algorithm

3.3.1 User Control Algorithm

Input: Registration details with username and

password as input.

Output: Successful or unsuccessful login.

Algorithm:

1. New user will fill a registration form.

2. Get user name and password.

3. Logs into the system.

4. Starts his new session.

5. After completion of session user logs

out.

The above algorithm shows how to provide

security to the entire system to prevent unauthorized

access of system. If any new user is there, and they

want to enter into the system then he/she has to fill a

new user registration form. In the registration form

user has to fill his personal information along with

his username and password. When user clicks on

login button all his information get inserted into the

database.

Now the user has its own username and

password. By clicking on “login” button he/she will

redirect to login page. Here user will login into the

system by giving his personal username and

password. If user enters correct username and

password as filled in the registration form; then only

the user can successfully login into the system else if

the user enters wrong username or password then the

user cannot login into the system. Thus this algorithm

gives security and provides user control to the

system.

3.3.2 Session Handling Algorithm

Input: HTTP request r and SQL query q.

Output: Session id for r and q in the sets ARr and

AQq respectively.

Algorithm:

1. for each session separated traffic Ti do

2. Get different HTTP requests „r‟ and DB

queries „q‟ in this session

3. for each different r do

4. if r is a request to static file then

5. Add r into set EQS (Empty Query Set)

6. else

7. if r is not in set REQ then

8. Add r into REQ

9. Append session ID i to the set ARr with

r as the key

10. for each different q do

11. if q is not in set SQL then

12. Add q into SQL

13. Append session ID i to the set AQq

with q as the key

Session handling algorithm is responsible for

assigning correct and unique ID to the HTTP request

and equivalent SQL query. If input HTTP request is

for any static data/file; means if the requested content

is available at web server itself then r is added into

Empty Query Set. This type of query doesn‟t get any

kind of ID. If r is not in the set of REQ means the

input query is new of arrives first time into the

system then r is added into REQ i.e. request query

2575

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70835

set. By taking r as a key session ID i is appended to

the set of ARr. Similarly for each SQL query if q is

not into the set of SQL query then it is added into the

SQL set. Same as above by taking q as key session

ID i is appended to the set of AQq.

3.3.3 Query Mapping Algorithm

Input: Set of ARr, Set of AQq and Cardinality t.

Output: HTTP request gets mapped with equivalent

SQL query.

Algorithm:

1. for each distinct HTTP request r in REQ do

2. for each distinct DB query q in SQL do

3. Compare the set ARr with the set AQq

4. if ARr =AQq and Cardinality(ARr) > t then

5. Found a Deterministic mapping from r to q

6. Add q into mapping model set MSr of r

7. Mark q in set SQL

8. else

9. Need more training sessions

10. return False

11. for each DB query q in SQL do

12. if q is not marked then

13. Add q into set NMR (No Matched Request)

14. for each HTTP request r in REQ do

15. if r has no deterministic mapping model then

16. Add r into set EQS (Empty Query Set)

17. return True

The user request comes to the web server in the

form of HTTP request and a equivalent SQL query is

generated by web server. Query mapping algorithm

maps the HTTP request with the equivalent SQL

query. Mapping algorithm use the output generated

by the session handling algorithm. A HTTP request

with its ID stored in ARr set and a SQL query with

its ID stored in AQq set; both are matched with each

other if both ID are equal and Cardinality of ARr is

greater than 1 then there is a deterministic map is

found. q is then added into the matched set query and

it is also marked in the set of SQL queries. After

performing all training data sets if any query from the

set q is not marked then that q is moved to the NMR

(No Matched Request) set. Similarly for every HTTP

request r; if r has no deterministic mapping then that r

is added into the EQS (Empty Query Set).

3.3.4 Intrusion Detection Algorithm

Input: HTTP request r and SQL query q.

Output: Log showing malicious attacks.

Algorithm:

1. If the rule for the request is Deterministic

Mapping r -> Q (Q ≠Φ), test whether Q is a

subset of a query set of the session. If so, this

request is valid then mark the queries in Q.

Otherwise, a violation is detected and considered

to be abnormal and the session will be marked as

suspicious.

2. If the rule is Empty Query Set r -> Φ, then the

request is not considered to be abnormal and it

will not mark any database queries. No intrusion

will be reported.

3. For the remaining unmarked database queries,

see if they are in the set NMR. If so, mark the

query as such.

4. Any untested web request or unmarked database

query is considered to be abnormal. If either

exists within a session, then that session will be

marked as suspicious.

The intrusion detection algorithm checks

every r and q with the mapping model and then

decides that whether it is from a general user or

attacker. If there is mapping found between r and q

then it is a considered as valid session, otherwise it

have to checks other query sets. If request r is found

in Empty Query Set then it not considered as

abnormal and no intrusion will be reported. For

remaining unmark queries, see if they are in the set

NMR. If so, mark the query as such. Any query that

comes directly to the database without any mapping

then that session is considered as abnormal.

4. PERFORMANCE EVALUATION

 A prototype of DoubleGuard is implemented

using a web server with a back-end DB and setup the

dynamic websites. To evaluate the detection results

for the system, four classes of attacks is analyzed.

4.1 Implementation

 In this prototype, each user session is assigned

into a different container. In the implementation,

containers were recycled based on events. The same

session tracking mechanisms is used as implemented

by the Apache server (cookies, mod user track, etc.)

because lightweight virtualization containers do not

impose high memory and storage overhead.

2576

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70835

4.2 Dynamic Model Detection Rate

The model building is conducted for the

dynamic blog website.

Figure 3. False positive rate for dynamic models

Figure 3 shows the ROC curves for the

testing result. The model is built with different

number of operations, and each point on the curves

indicates the threshold value. The threshold value is

defined as the number of HTTP requests or SQL

queries in a session that are not matched with the

normality model. The threshold value is varied from

0 to 30 during the detection. As the ROC curves

depict, it could always achieve a 100 percent True

Positive Rate when doing strict detection (threshold

of 0) against attacks in the threat model. With a more

accurate model, it can reach 100 percent sensitivity

with a lower False Positive rate. The nature of the

false positives comes from the fact that manually

extracted basic operations are not sufficient to cover

all legitimate user behaviors. Figure 3 show that it

can reach 100 percent Sensitivity with six percent

False Positive rate.

5. ATTACK DETECTION

DoubleGuard is used to detect the malicious

attacks. It uses the attack tools listed in Table 1 and

also shows the experiment views for DG.

5.1 Privilege Escalation Attack

This type of attack is actually done by

accessing privilege of authorized user by

unauthorized users. Suppose there is an application

for the Payment System for Employee‟s in which

Administrator privilege to update and change the

salary of the employee has and employee have

privilege to see their attendance. If any employee gets

the URL to update the salary then he/she gets the

access of all the employee salary. In case, the attacker

employee will get the privilege of the admin and

Table 1.

 Detection Results for Attacks (GSQL Stands for

GreenSQL, and DG Stands for DoubleGuard, *Indicates

Attack Using Metasploit)

privilege escalation attack is done.

If the Payment System uses the

DoubleGuard application then it will be placed after

the DG. DG will store the admin privilege and

employee privilege separately in the DG database.

Whenever the admin or employee want to use the

Payment System application then they has to go from

DG‟s privilege authentication where according to the

user i.e. admin or employee and its privilege the DG

application will take to their respective privilege

pages according to the user register privileges in the

DoubleGuard database. DG will never show the URL

of the respective application database. In this way,

DG will prevent privilege attack.

5.2 Hijack Future Session Attack

Whenever the internet services or

application through web browser is used, it generates

a unique session ID and it remains until or task is not

completed or web browser is closed. Attacker tries to

get this session ID. So that attacker can get the

valuable data and it‟s most common examples are

FACEBOOK, GMAIL etc. After getting session ID

the attacker can do anything he wants with the user

data. But the original user doesn‟t know that attacker

is accessing his/her data which would turn harmful

for the user.

 If the user uses the DG application he will

be prevented from such kind of attack. In DG

Operation Snort GSQL DG

Privilege Escalation (WordPress Vul) No No Yes

Web Server aimed attack (nikto) Yes No Yes

SQL Injection (sqlmap) No Yes Yes

DirectDB No No Yes

linux/http/ddwrt_cgibin_exec* No No Yes

linux/http/linksys_apply_cgi* No No Yes

linux/http/piranha_passwd_exec* No No Yes

unix/webapp/oracle_vm_agent_utl* No No Yes

unix/webapp/php_include* Yes No Yes

unix/webapp/php_wordpress_lastpost* No No Yes

windows/http/altn_webadmin* No No Yes

windows/http/apache_modjk_overflow * No No Yes

windows/http/oracle9i_xdb_pass* No No Yes

windows/http/maxdb_webdbm_database* No No Yes

2577

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70835

application, the Mapping Model for the session ID

and IP address is created. If the attacker will be able

to get the session ID then also it will not possible to

him/her to attack the user data because the IP address

of the attacker will not match with DG‟s Mapping

Model. DG will allow the access if the session ID and

IP address are match according to the mapping model

of application database. Depending upon the result of

the DG it will decide the user is legal or not and

allow him/her access the database or not.

5.3 SQL Injection Attack

 Now-a-days the attackers are using the SQL

queries to get the data or change the data of another

user by sending queries like INSERT, UPDATE,

DELETE, etc. In this kind of attack, the attacker

communicates with the database by sending queries.

But whiles ending the SQL queries by an attacker the

structure of the queries are changed and which are

never detected by the IDS. But, the DG application is

able to prevent the injection attack because the DG

will generate its own structure queries and which are

different from the attacker SQL queries structure. DG

will allows to access, update the database if structure

of the SQL queries are matched with the structure of

the DG application query structure.

5.4 Direct DB Attack

Most of the attacker directly attacks the

database server besides going to the web server. In

this kind of attacking, the attacker uses the IP address

of the database server. It is very easy and less time

requirement attack. In this attacker sends the SQL

queries directly to the database server by bypassing

the web server. If the DG is used then the attack will

be detected and attacker will not be allowed to the

database server. If DG is used then it will be placed

before the web server and the database server. So

that, DG will be able to hide the IP address and

location where the database server is located and DG

doesn‟t match the web request with the SQL queries.

Thus DG can avoid such kind of attacks.

6. CONCLUSION

In this paper, an Intrusion Detection System

builds the normality model for multitier web

applications. Unlike previous approaches that

correlated or summarized alerts generated by

independent IDSs, DoubleGuard forms container-

based IDS with multiple input streams to produce

alerts. The lightweight virtualization technique is

used to assign session ID to a dedicated container

which is nothing but isolated virtual computing

environment. Furthermore, there will specific

detection of attacks such as Privilege Escalation

Attack, Hijack Future Session Attack, SQL

Injection Attack and Direct DB Attack. Also the

requests which violate the normality model that

will be treat as an intruder. DoubleGuard was able

to identify a wide range of attacks with minimal false

positives. DoubleGuard is used for dynamic web

server which provides better security for data and

web application.

7. FUTURE SCOPE

It is possible to make some future

modifications into the Intrusion Detection System.

The Intrusion Detection Systems can be installing on

wide range of machines having different operating

system and platforms. The query processing

mechanism can be made simpler by applying natural

language processing (NLP); so as to convert simple

English sentences into SQL queries. New attacks are

often unrecognizable by popular IDS. So there is

continuous race going in between new attacks and

detection systems have been a challenge. Nowadays

Intrusion Detection Systems also work on the

wireless networks. The latest wireless devices come

with its own set of protocols for communication that

break the traditional OSI layer model. So IDS must

learn new communication patterns of the latest

wireless technology.

8. REFERENCES

[1] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kru¨

gel, and G. Vigna, “Cross Site Scripting Prevention with

Dynamic Data Tainting and Static Analysis,” Proc.

Network and Distributed System Security Symp. (NDSS

‟07), 2007.

[2] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna,

“Toward Automated Detection of Logic Vulnerabilities in

Web Applications,” Proc. USENIX Security Symp., 2010.

[3] B.I.A. Barry and H.A. Chan, “Syntax, and Semantics-

Based Signature Database for Hybrid Intrusion Detection

Systems,” Security and Comm. Networks, vol. 2, no. 6, pp.

457-475, 2009.

[4] H. Debar, M. Dacier, and A. Wespi, “Towards a

Taxonomy of Intrusion-Detection Systems,” Computer

Networks, vol. 31, no. 9, pp. 805-822, 1999.

[5] G. Vigna, W.K. Robertson, V. Kher, and R.A.

Kemmerer, “A Stateful Intrusion Detection System for

World-Wide Web Servers,” Proc. Ann. Computer Security

Applications Conf. (ACSAC ‟03), 2003.

[6] J. Newsome, B. Karp, and D.X. Song, “Polygraph:

Automatically Generating Signatures for Polymorphic

Worms,” Proc. IEEE Symp. Security and Privacy, 2005.

2578

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70835

[7] T. Verwoerd and R. Hunt, “Intrusion Detection

Techniques and Approaches,” Computer Comm., vol. 25,

no. 15, pp. 1356-1365, 2002.

[8] S. Potter and J. Nieh, “Apiary: Easy-to-Use Desktop

Application Fault Containment on Commodity Operating

Systems,” Proc. USENIX Ann. Technical Conf., 2010.

[9] A. Srivastava, S. Sural, and A.K. Majumdar, “Database

Intrusion Detection Using Weighted Sequence Mining,” J.

Computers, vol. 1, no. 4, pp. 8-17, 2006.

[10] C. Kruegel and G. Vigna, “Anomaly Detection of

Web-Based Attacks,” Proc. 10th ACM Conf. Computer and

Comm. Security (CCS ‟03), Oct. 2003.

[11] F. Valeur, G. Vigna, C. Krugel, and R.A. Kemmerer,

“A Comprehensive Approach to Intrusion Detection Alert

Correlation,” IEEE Trans. Dependable and Secure

Computing, vol. 1, no. 3, pp. 146-169, July-Sept. 2004.

 [12] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,

“Swaddler: An Approach for the Anomaly-Based Detection

of State Violations in Web Applications,” Proc. Int‟l Symp.

Recent Advances in Intrusion Detection (RAID ‟07), 2007.

[13] “Wordpress,” http://www.wordpress.org/, 2011.

[14] nikto, http://cirt.net/nikto2, 2011.

[15]sqlmap,http://sqlmap.sourceforge.net/, 2011.

2579

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 7, July - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS70835

