

An FPGA Based Double Precision Floating Point Arithmetic Unit using

Verilog

1
KavithaSravanthi,

2
Addula Saikumar

1
Assistant Professor, MRITS Dundigal Hyderabad, JNTUH affiliated,

2
M.Tech student,

MRITS Dundigal Hyderabad, JNTUH affiliated

Abstract

Floating point unit (FPU) addition, subtraction,

multiplication and division are widely used in large set of

scientific, commerce, financial and in signal processing

computation. A high speed floating point double precision

adder/subtractor, multiplier and divider are implemented

on a Virtex-7 Fpga. In addition /subtractor unit, the

proposed designs are compliant with IEEE-754 format and

handles overflow, underflow, rounding and various

exception conditions. The proposed FPU designs have

achieved the operating frequencies of 371.858 MHz while

sequential execution of all the operations with a selected

inputs given through a test bench.All the modules are

realized and validated using Verilog simulation in the

Model sim and synthesized using Xilinx 14.1 ISE

software.

Keywords- Double Precision, Floating point, IEEE-754,

adder/subtractor, multiplier, divider, FPGA, Virtex-7

1. Introduction

The real numbers represented in binary format are

known as floating point numbers. Based on IEEE-754

standard, floating point formats are classified into binary

and decimal interchange formats. Floating point

multipliers are very important in DSP applications.

This paper focuses on double precision normalized

binary interchange format. Figure 1 shows the IEEE-754

double precision binary format representation. Sign(S) is

represented with one bit, exponent (E) and fraction (M or

Mantissa) are represented with eleven and fifty two bits

respectively.

For a number is said to be a normalized number, it

must consist of „one‟ in the MSB of the significand and

exponent is greater than zero and smaller than 1023. The

real number is represented by equations (1) and (2).

Figure 1. IEEE-754 double precision floating point format

Z = (-1
S
) * 2

(E-Bias)
* (1.M) (1)

Value = (-1
Sign bit

) * 2
(Exponent-1023)

 * (1.Mantissa) (2)

 Floating point implementation on FPGAs has

been the interest of many researchers. In [2], an IEEE-754

single precision pipelined floating point multiplier is

implemented on multiple FPGAs (4 Actel A1280).

Nabeelshirazi, Walters, and peter Athanas implemented

custom 16/18 bit three stage pipelined floating point

multiplier, that doesn‟t support rounding modes [3].

L.Louca, T.A. Cook, W.H. Johnson [4] implemented a

single precision floating point multiplier by using a digit-

serial multiplier and Altera FLEX 8000. The design

achieved 2.3 MFlops and doesn‟t support rounding modes.

In [5], a parameterizable floating point multiplier is

implemented using five stages pipeline, Handel-C software

and Xilinx XCV1000 FPGA. The design achieved the

operating frequency of 28MFlops. The floating point unit

[6] is implemented using the primitives of Xilinx Virtex 7

FPGA. The design achieved the operating frequency of

576

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100200

100MHz with a latency of 4 clock cycles. Mohamed Al-

Ashrafy, Ashraf Salem, and WagdyAnis [7] implemented

an efficient IEEE-754 single precision floating point

multiplier and targeted for Xilinx Virtex-7 FPGA. The

multiplier handles the overflow and underflow cases but

rounding is not implemented. The design achieves 301

MFlops with latency of three clock cycles. The multiplier

was verified against Xilinx floating point multiplier core.

 The double precision floating point multiplier

presented here is based on IEEE-754 binary floating point

standard. We have designed a high speed Arithmetic

Floating point unit (FPU) which achieves the rounding

modes even for division operation also using Verilog

language and ported on Xilinx Virtex-7 FPGA. It operates

at a very high frequencies of 371.858 MHz for all

operations in a sequence and occupies 4205 slice registers.

It handles the overflow, underflow cases and rounding

mode.

2. Implementation of Double

precision FP Arithmetic unit

A) Adder/Subtractor

The black box view of double precision floating

point Adder/subtractor is shown in figure (2) and (3)

respectively. The input operands are separated into

their sign, mantissa and exponent components. This

module has input opa and opb of 64-bit width and clk,

enable, rst are of 1-bit width. One of the operands is

applied at opa and other operand at opb. Larger

operand goes into „mantissa_small‟ and

„exponent_small‟. To determine which operand is

larger, compare only the exponents of the two

operands, so in fact, if the exponents are equal, the

smaller operand might populate the mantissa_large and

exponent_large registers. This is not an issue because

the reason the operands with the smaller exponent can

be right shifted before performing the addition. If the

exponents are equal, the mantissa are added without

shifting. The inter-connection of sub-modules of

double precision floating point adder/subtractor are

connected such a way to improvise the FPU speed and

reduce latency at rounding and exceptionstages.

Figure 2, 3. Black box view of FPU‟s Adder/subtractor

577

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100200

B) Multiplier

 The black box view of the double precision floating

point multiplier is shown in figure 4. The multiplier

receives two 64-bit floating point numbers. First these

numbers are unpacked by separating the numbers into sign,

exponent and mantissa bits. The sign logic is a simple

XOR. The exponents of the two numbers are added and

then subtracted with a bias number i.e. 1023. Mantissa

multiplier block performs multiplication operation. After

this the output of mantissa division is normalized, i.e. if

the MSB of the result obtained is not 1, then it is left

shifted to make the MSB 1. If changes are made by

shifting then corresponding changes has to be made in

exponent also.

The multiplication operation is performed in the

module (fpu_mul). The mantissa of operand A and the

leading „1‟ (for normalized numbers) are stored in the 53-

bit register (mul_a). The mantissa of operand B and the

leading „1‟ (for normalized number) are storedin the 53-bit

register (mul_b). Multiplying all 53 bits of mul_a by 53

bits of mul_b would result in a 106-bit product.53 bit by

53-bit multiplier‟s are not available in the most popular

Xilinx and Altera FPGAs, so the multiply would be broken

down into smaller multiplies and the results would be

added together to give the final 106-bit product. The

module (fpu_mul) breaks up the multiply into smaller 24-

bit bit by 17-bit multiplies. The Xilinx Virtex-7 device

contains DSP48E1 slices with 25 by 18 twos complement

multipliers, which can perform a 24-bit by 17-bit unsigned

multiply.

The breakdown of the multiply in module (fpu_mul) is

broken up as follows

Product_a = mul_a [23:0]*mul_b[16:0]

Product_b = mul_a[23:0]*mul_b[33:17]

Product_c = mul_a[23:0]*mul_b[50:34]

Product_d = mul_a[23:0]*mul_b[52:51]

Product_e = mul_a[40:24]*mul_b[16:0]

Product_f = mul_a[40:24]*mul_b[33:17]

Product_g = mul_a[40:24]*mul_b[52:34]

Product_h = mul_a[52:41]*mul_b[16:0]

Product_i = mul_a[52:41]*mul_b[33:17]

Product_j = mul_a[52:41]*mul_b[52:34]

 The products (a-j) are added together, with the

appropriate offsets based on which part of the mul_a and

mul_b arrays they are multiplying.

 In this work the adders in the Virtex-7 DSP48E1

slices have been used that follow each 24 bit by 17 bit

multiply block. The final 106-bit product is stored in the

register (product). The output will be shifted if there is not

a „1‟ in the MSB of product. The number of leading zeros

in the register (product) is counted by signal

(product_shift).

The output exponent will also be reduced by

(product_shift). The exponent fields of operands A and B

are added together and then the value (1023) is subtracted

from the sum of A and B. If the resultant exponent is less

than 0, then the (product) register needs to be right shifted

by the amount. This value is stored in register

(exponent_under).

The final exponent of the output operand will be 0

in this case, and the result will be a denormalized number.

If exponent_under is greater than 52, then the mantissa

will be shifted out of the product register, and the output

will be 0, and the “underflow” signal will be asserted.

The mantissa output from the (fpu_mul) module

is in 56-bit register (product_7). The MSB is a leading „0‟

to allow for a potential overflow in the rounding module.

The first bit „0‟ is followed by the leading „1‟ for

normalized numbers, or „0‟ for denormalized numbers.

Then the 52 bit of the mantissa follow.

578

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100200

 Two extra bits follow the mantissa, and are used

for rounding purposes. The first extra bit is taken from the

next bit after the mantissa in the 106-bit product result of

the multiply. The second extra bit is an OR of the 52

LSB‟s of the 106 bit product.

Figure 4. The black box view of FPU‟s multiplier

C) Divider

 The divide operation is performed in the module

(fpu-div) and the black box view is shown in the figure (5).

The leading „1‟(if normalized) and mantissa of operand A

is the dividend, and the leading „1‟(if normalized) and

mantissa of operand B is the divisor. The divide is

executed long hand style, with one bit of the quotient

calculated each block cycle based on a comparison

between the dividend register (dividend_reg) and the

divisor register (divisor_reg). If the dividend is greater

than the divisor, the quotient bit is „1‟, and then the divisor

is subtracted from the dividend, this difference is shifted

one bit to the left, and it becomes the dividend for the next

clock cycle. If the dividend is less than the divisor, the

dividend is shifted one bit to the left, and then this shifted

value becomes the dividend for the next clock cycle.

 The exponent for the divide operation is

calculated from the exponent fields of operands A and B.

The exponent of operand A is added to 1023, and then the

exponent of operand B is subtracted from this sum. The

result is the exponent value of the output of the divide

operation. If the result is less than 0, the quotient will be

right shifted by the amount.

 The divide operation takes 54 clock cycles to

complete, as it takes 1 clock cycle to calculate each of the

54 bits of the quotient. The register (count_out) counts

down from 53 to 0, and when it reaches 0, the 54-bit

quotient register has its final value. The value that is

passed on to the rounding module is stored in the 56-bit

register (mantissa_7). The first most significant bit is a „0‟

to hold a value in case of overflow in the rounding stage,

the next bit is the leading „1‟ for normalized numbers, and

the next 52 bits are the mantissas bits. The remaining 2 bits

are extra bits rounding purposes. The first extra bit is the

last bit that was calculated in the quotient. The quotient has

54 bits, while the mantissa and leading „1‟ are only 53 bits,

so the extra bit is saved and passed on to the rounding

stage. The second extra bit is calculated by performing an

OR on all of the remainder bits that were left over after the

last compare between the dividend and divisor registers.

Figure 5. The black box view of FPU‟s divider

579

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100200

D) Rounding and Exceptions

 The IEEE standard specifies four rounding modes

such as round to nearest, round to zero, round to positive

infinity, and round to negative infinity. Table I shows the

rounding modes selected for various bit combinations of

mode. Based on the rounding changes to the mantissa

corresponding changes has to be made in the exponent

part also.

Table I: Rounding modes selected for various bit

combinations of mode

Bit combination Rounding mode

 00 Round to nearest even

 01 Round to zero

 10 Round up

 11 Round down

 In the exceptions module, all of the special cases

are checked for and the individual output signals of

underflow, overflow, inexact, exception, and invalid will

be asserted if the conditions for each case exist.

3. Results

The double precision floating point Arithmetic unit‟s

design was simulated in modelsim and synthesized using

Xilinx ISE 14.1 which was mapped on to the Virtex-7

FPGA. The simulation results of 64-bit floating point

double precision Arithmetic unit (FPU) are shown in

figure 6. The „opa‟ and „opb‟ are the inputs and „out‟ is the

output.

Table II shows the device utilization for implementing

the circuit on Virtex-7 FPGA. Table III shows the timing

summary of double precision floating point Arithmetic

unit (FPU). Table IV shows the area and operating

frequency of double precision floating point Arithmetic

unit.

Table II: Device utilization summary (XC7vx330t-

3ffg1157)

Logic utilization Used / Available

Number of slice registers 4205 / 408k

Number of slice LUTs 6116 / 204k

Number of fully used

LUT-FF pairs

 2895 / 7426

Number of bonded IOBs 206 / 600

Number of BUFG /

BUFGCTRLs

 2 / 32

Number of DSP48E1s 9 / 1120

Table III:The Timing summary

parameter Adder

/

subtractor

Multiplier Divider

Minimum

period(ns)

2.749 2.411 2.209

Maximum

frequency(M

Hz)

363.769

(for this

operation)

414.714

(for this

operation)

452.694

(for this

operation)

Table IV:Area and operating frequency of FPU

parameter value

area 1628

Operating frequency 371.858 (for all operations

in sequence)

4. Conclusion

The double precision floating point adder/subtractor,

multiplier and divider supports the IEEE 754 binary

interchange format, targeted on a Xilinx Virtex-7

XC7vx330t-3ffg1157 FPGA. The designs achieved the

operating frequencies of 363.76MHz, 414.714MHz and

452.694MHz with an area of 660, 648 and 841 slices

580

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100200

respectively. These designs handles the overflow,

underflow, rounding mode and various exception

conditions.

Figure 6. The simulation results of double precision

floating point Arithmetic unit

5. References

[1]An FPGA Based High Speed IEEE-754 Double Precision Floating

point multiplier using Verilog by A.P.Ramesh, AVN Tilak and AM

Prasad.

[2] B Fagin and C Renard,‟Field Programmable Gate Arrays and floating

point Arithmetic,” IEEE transactions on Vlsi, vol 2, no 3 pp 365-367,

1994.

[3] N.Shirazi, A Walters and p Athanas,‟Quantitative analysis of Floating

point Arithmetic on FPGA Based custom computing machines,‟

proceedings of the IEEE symposium on FPGAs for custom computing

machines (FCCM‟95), pp.155-162,1995.

[4] L.Louca, T.A Cook and W.H Johnson,”Implementation of IEEE

single precision Floating point addition and multiplication on FPGAs,”

proceedings of 83rd IEEE symposium on FPGAs for custom computing

machines (FCCM‟96), pp. 107-116, 1996.

[5] A Jaaenicke and W.Luk,‟Parameterized Floating point Arithmetic on

FPGAs”, proc of IEEE [CASSP, 2001, vol 2, pp.897-900.

[6] B. Lee and N Burgess,”Parameterisable Floating point operations on

FPGA,” conference on signals, systems, and computers, 2002.

[7] Mohamed Al-Asrafy, Asraf Salem, WagdyAnis, “An Efficient

Implementation of Floating Point Multiplier‟, Saudi International

Electronics, Communications and Photonics Conference (SIECPC), pp.

1-5, 24-26 April 2011.

581

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS100200

