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Abstract 

Data Mining is a process, where intelligent methods are 

applied to extract data patterns. Association rule mining 

is a technique in data mining used to find the objective 

measures based on the support and confidence.  

Nowadays, there are many efficient algorithms coping 

with computationally expensive task of association rule 

mining. Apriori is one of the algorithms that are employed 

in association rule mining. In this paper, an extensive 

survey on Apriori-like algorithms is done. The working 

process, efficiency of each apriori-like algorithm is also 

clearly explained in this paper. 

Keywords–Data Mining, Association Rule Mining, 

Apriori. 

 

1. Introduction 

Data Mining is the process of extracting non-trivial, 

implicit, previously unknown and potentially useful 

information from large information repositories such as 

relational database, data warehouses, etc [1]. In simple, 

data mining refers to extracting or mining knowledge 

from large amounts of data. Data mining techniques are 

employed in various kinds of research fields. Association 

rule mining is one of the data mining techniques used to 

find out the association from a large set of data items, 

usually from large databases.  

The idea of association rules were first introduced in 

(Agrawal, Imielinski, Swami, 1993). Association rule 

mining has a wide range of applicability such Market 

basket analysis, Medical diagnosis/ research, Website 

navigation analysis, Homeland security and so on. 

Association rules are used to identify relationships among 

a set of items in database [9]. Subsequent researches have 

made Association rule mining as one of the most 

interesting ideas by the introduction of the very-well 

known algorithm Apriori. The Apriori algorithm has not 

only influenced the association rule mining community, 

but it also affected other data mining functionalities. 

 

Since the introduction of Apriori algorithm in 1994 

(Agrawal, Srikant), number of improvements has been 

carried out on the original algorithm in order to raise its 

efficiency. This paper is organized as follows. In Section 

2, the concepts related to association rule mining are 

introduced. In Section 3, different kinds of Apriori-like 

algorithms are illustrated.  

2. Association Rule Mining 

Association rule mining is a mining technique that 

searches for interesting relationships among items in a 

given data set [1]. The research on the association rule 

mining originated from market basket analysis. Market 

managers like to find out customers‟ buying habit through 

studying the itemsets which frequently appear together in 

the shopping basket. Consequently, managers can use the 

discovered result to plan his/her marketing or advertising 

strategies, store layout design, and so on. For example, if 

computer and printer are likely to be bought together, then 

a sale on printer may encourage the sale of printers as well 

as computers.  

A formal definition of association rule is: Let J= {i1, 

i2…im} be a set of items. Let D be the set of database 

transactions where each transaction T is a set of items 

such that T J. Each transaction is associated with an 

identifier, called TID. Let A be a set of items. A 

transaction T is said to contain A if and only if A T. An 

association rule is an implication of the form A B, 

where A J, B J, and AB = . The rule A B holds 

in the transaction set D with support s, where s is the 

percentage of transactions in D that contain AB (i.e., 

both A and B). This is taken to be the probability, P 

(AB). The rule AB has confidence c in the transaction 

set D if c is the percentage of transactions in D containing 

A that also contain B. This is taken to be the conditional 

probability, P (B\A). Mathematically support and 

confidence measures are implied as, 

Support (A B) = P(AB). 

Confidence (A B) = P(B/A).  

P(B/A) = Support Count (AUB) / Support Count (A). 

A rule is said to be frequent if its support is greater 

than the minimum support threshold, and it is said to be 

strong if its confidence is more than the minimum 

confidence threshold. 
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3. Algorithms 

3.1. Apriori Algorithm  

 

The Apriori algorithm is one of the most important 

algorithms for association rule mining. Apriori is a 

seminal algorithm for finding frequent itemsets using 

candidate generation [2]. Most of the other algorithms are 

based on it or extensions of it. It is a main-memory based 

algorithm. Main memory imposes a limitation on the size 

of the dataset that can be mined.  

One of the most popular data mining approaches is, 

finding frequent itemsets from a transaction dataset and 

deriving association rules. Once frequent itemsets are 

obtained, it is easy to generate association rules with 

confidence larger than or equal to a user specified 

minimum confidence. 

It is characterized as a level-wise complete search 

algorithm using anti-monotonicity of itemsets. An Apriori 

property is used to reduce the search space, “All non 

empty subsets of a frequent item set must also be 

frequent”. By convention, Apriori assumes that items 

within a transaction or itemset are sorted in lexicographic 

order. 

The algorithm executes in two steps i.e. frequent 

itemsets generation and association rule generation. The 

frequent itemsets generation is again a two step process:  

 

 Candidate itemsets (Ck) generation i.e. all 

possible combination of items those are potential 

candidates for frequent itemsets.  

 Frequent itemsets (Fk) generation - support for 

all candidate itemsets are generated and itemsets 

having support greater than the user-specified 

minimum support are qualified as the frequent 

itemsets.  

 

Let, the set of frequent itemsets of size k be Fk, and its 

candidate set be Ck. Apriori first scans the database and 

searches for frequent itemsets of size 1 by accumulating 

the count for each item and collecting those that satisfy 

the minimum support requirement. It then iterates on the 

following three steps and extracts all the frequent 

itemsets. 

 

1) Generate Ck+1, candidates of frequent itemsets of 

size k +1, from the frequent itemsets of size k. 

2) Scan the database and calculate the support of each 

candidate of frequent itemsets. 

3) Add those itemsets that satisfies the minimum 

support requirement to Fk+1. 

 

The working of the Apriori algorithm consists of two 

major steps: 

1) Join step: Ck (candidate set) is generated by 

joining Lk-1 with itself (cartesian product Lk-1 x 

Lk-1). 

2) Prune step (A-Priori property): Any (k − 1) size 

itemset that is not frequent can‟t be a subset of a 

frequent k size itemset, and hence it should be 

removed. 

 

It is evident that Apriori scans the database at most 

k+1 times when the maximum size of frequent itemsets is 

set at k. The Apriori achieves good performance by 

reducing the size of candidate sets.  

3.2. Apriori-C Algorithm 

 

This section presents the APRIORI-C algorithm [3], 

which adapts the APRIORI algorithm for classification 

purposes. The advantages of APRIORI-C over its 

predecessors are lower memory consumption, decreased 

time complexity, and improved understandability of 

results. In APRIORI-C, the association rule mining 

algorithm “Apriori” is adapted for classification purposes 

by implementing the following steps:  

1) Discretize continuous attributes. 

2) Binarize all (discrete) attributes. 

3) Perform data pre-processing through feature subset 

selection. 

4) Run the optimized APRIORI algorithm by 

considering only the rules, whose right-hand side 

consist of a single item, representing the target 

class value. 

5) Post-process the set of induced rules by rule 

ordering and best rule subset selection. 

6) Use these rules to classify unclassified examples. 

APRIORI-C algorithm includes the following 

optimizations to do classification effectively: 

Classification rule generation:  

Rules with a single target item at the right hand side 

can be created during the search. To do so, the algorithm 

needs to save only the supported itemsets of sizes k and 

k+1. This results in decreased memory consumption 

(improved by factor 10). However, this does not improve 

the algorithm‟s time complexity. 

Prune irrelevant rules: 

Classification rule generation can be suppressed if 

one of the existing generalizations of the rule has support 

and confidence above the given minSup and minConf 

thresholds. To prevent rule generation, the algorithm 

simply excludes the corresponding itemset from the set of 

supported itemsets of size k+1. Time and space 

complexity reduction are considerable (improved by 

factor 10 or more). 

Prune irrelevant items: 

If an item cannot be found in any of the itemsets 

containing the target item, then it is impossible to create a 

rule containing this item. Hence, APRIORI-C prunes the 

search by discarding all itemsets containing this item. 
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3.3. Apriori-SP Algorithm 

 

In this section, Apriori-SP algorithm is illustrated 

briefly. Apriori-SP algorithm [4] is the improved version 

of Apriori algorithm. In this algorithm, the basic Apriori 

algorithm is improved with Sampling and Partitioning 

techniques. The “SP” in the name of this algorithm came 

after the Sampling and Partitioning techniques only. The 

methodology of Apriori-SP algorithm is explained as 

follows, 

 

1) Pick a random sample „S‟, from the transaction 

database (D) 

2) Partition the random sample (S) into subsets (or 

partitions), so that each partition size is appropriate 

to the computer memory. 

3) Read one partition into the memory. 

4) Collect all the candidate 1-itemsets in the partition. 

5) Count the number of occurrences of each 1-

itemsets to create the candidate set called C1. {C1: 

candidate 1-items}. 

6) Delete the infrequent candidate 1-items (i.e., 

itemsets that does not meet local-minimum-support 

requirement) to generate a frequent or large 1-

itemset called L1. {Local-minimum-support = 

(User threshold/ Number of partitions)} 

7) Join L1 with itself to generate candidate 2-itemsets 

C2. C2 consists of all combinations of 2-itemsets 

and the algorithm checks for the Apriori property 

that is, “all nonempty subsets of frequent itemsets 

must also be frequent” which is the foundation for 

pruning the infrequent itemsets.  

8) Recursively perform steps 4 to 6 with the addition 

of an itemset every pass, until some Lk becomes 

empty which means that the join operation (step 6) 

is not possible. 

9) Combine all frequent Ln-itemsets into one list 

called local frequent itemsets (LLp) for the given 

partition. <where n=1, 2… K>. 

10) Recursively perform steps 2 to 8 for each partition. 

11) Combine all LLp to generate global candidate 

itemsets (LG). 

12) Scan the whole transactional database to count the 

number of occurrences of each candidate K-itemset 

in LG. 

13) Delete infrequent candidate K-items (itemsets did 

not meet global minimum-support threshold) to 

generate global frequent itemset in the database (all 

partitions). 

 

The Apriori-SP algorithms produces better results 

than Apriori due to the reduction of the number of scans 

(actually two scans) of the database. 

 

3.4. Apriori_HEAVY Algorithm 

This section presents the Apriori_heavy algorithm 

[5]. Suppose A is the set of all frequent 1-temsets in a 

given transaction database D and a collection H = {h1, 

h2… hk} of k heavy itemsets in D. Let B be the set of all 

frequent items in A, which do not occur in any heavy 

itemset in S. Apart from the association rules consisting of 

items only in B, there may be additional association rules 

involving (i) relationships between items in different 

heavy itemsets in H; and (ii) relationships between items 

in B and items in one or more heavy itemsets in H.  

Apriori_heavy is an association rule mining 

algorithm, which uses H and B as given inputs and finds 

the set of all other “missing” association rules. The 

algorithm also finds more heavy itemsets, not necessarily 

disjoint from the given ones and adds them to H. Thus the 

generated collection of heavy itemsets H and the 

generated association rules complete the mining process. 

The algorithm Apriori_heavy is nearly the same as 

the original Apriori algorithm, except for the following. 

The initial candidate itemsets are of size 2, obtained by 

taking pair-wise Cartesian product of the heavy itemsets 

in H among themselves and with the set B of “non-heavy” 

frequent items. After finding the frequent k itemsets, the 

algorithm checks (using subroutine is_heavy) if any of 

them are heavy itemsets; if so, then it removes that set 

from Lk and adds it to H, taking care to remove all proper 

subsets of the newly added heavy itemset from H. Since 

the set Lk may become empty in this process, the 

terminating condition stated differently (stop when no 

new frequent itemsets are found). 

The apriori_heavy algorithm usually shows a 

substantial improvement over the performance of the 

Apriori algorithm, due to its use of heavy itemsets.  

 

3.5. Apriori-INVERSE Algorithm 

 

This section presents the Apriori-Inverse algorithm. 

Like Apriori, this algorithm is based on a level-wise 

search. On the first pass through the database, an inverted 

index is built using the unique items as keys and the 

transaction IDs as data. At this point, the support of each 

unique item (the 1-itemsets) in the database is available as 

the length of each data chain. To generate k-itemsets under 

maxsup, the (k−1)-itemsets are extended in precisely the 

same manner as Apriori to generate candidate k-itemsets. 

That is, a (k − 1)-itemset i1 is turned into a k-itemset by 

finding another (k−1)-itemset i2 that has a matching prefix 

of size (k − 2), and attaching the last item of i2 to i1. For 

example, the 3- itemsets {1, 3, 4} and {1, 3, 6} can be 

extended to form the 4-itemset {1, 3, 4, 6}, but {1, 3, 4} 

and {1, 2, 5} will not produce a 4-itemset due to their 

prefixes not matching right up until the last item.  

These candidates are then checked against the 

inverted index to ensure they at least meet a minimum 

absolute support requirement (say, at least 5 instances) 

and are pruned if they do not (the length of the 

intersection of a data chain in the inverted index provides 

support for a k-itemset with k larger than 1). 

The process continues until no candidate itemsets can 

be generated, and then association rules are formed in the 
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usual way. It should be clear that Apriori-Inverse finds all 

perfectly sporadic rules, since we have simply inverted the 

downward-closure principle of the Apriori algorithm; 

rather than all subsets of rules being over minsup, all 

subsets are under maxsup. 

Since making a candidate itemset longer cannot 

increase its support, all extensions are viable except those 

that fall under our minimum absolute support 

requirement. Those exceptions are pruned out, and are not 

used to extend itemsets in the next round. 

Apriori-Inverse does not find any imperfectly 

sporadic rules, because it never considers itemsets that 

have support above maxsup; therefore, no subset of any 

itemset that it generates can have support above maxsup 

[6]. However, it can be extended easily to find imperfectly 

sporadic rules that are nearly perfect: for instance, by 

setting maxsupi to maxsup/minconf where maxsup i is 

maximum support for imperfectly sporadic rules and 

maxsup is maximum support for reported sporadic rules. 

 

3.6. REVERSE Apriori Algorithm 

 

Apriori algorithm collects candidate itemsets. A 

candidate itemset includes the items that have the 

possibility to be member of frequent itemsets and is used 

to discover frequent itemsets. It then discovers the 

frequent itemsets from the candidate itemsets. 

Apriori at first finds candidate-1 itemsets. It then 

finds the frequent-1 itemsets by pruning candidate-1 

itemsets. The pruned items are those which don‟t satisfy 

the minimum support value. Then, it generates candidate-

2 itemsets from frequent-1 itemsets. Apriori algorithm 

generates the frequent-2 itemsets from the candidate-2 

itemsets in the same process as it generated the frequent-1 

itemsets. 

Reverse Apriori algorithm [7] is different from the 

Apriori algorithm in that it generates large frequent 

itemsets starting from considering maximum possible 

number of items in the dataset. It generates this large 

frequent itemsets only if it satisfies the user specified 

minimum item support. It then gradually decreases the 

number of items in the itemsets until it gets largest 

frequent itemsets. At first, this algorithm checks for large 

frequent itemsets with all the combinations of the distinct 

values for all the items in the target dataset. If it is 

satisfied by minimum support value, then large frequent 

itemsets are revealed at first checking. If it is not satisfied, 

then checks for next large frequent itemsets by 

combinations of next large number of items and thus 

generate large frequent itemsets by checking the minimum 

support value. 

Whenever Reverse Apriori algorithm finds frequent 

itemsets, it does not go to next searching step to check 

larger frequent itemsets like Apriori does. The working 

nature of Reverse Apriori algorithm is described in the 

following steps: 

1) First, the total number of attributes is calculated. 

2) Then, for all combinations of k number of 

attributes, every combination is checked for 

predefined support. 

3) If it satisfies the support value, then the 

combination is the member of frequent itemsets. 

And, the itemset is said to be the large frequent 

itemset. 

4) If the large frequent itemset is not generated, then 

the above said process (steps 1, 2, 3) continues 

until the large frequent itemset is generated. 

In Apriori, large frequent itemsets were generated after 

fourth pass of the database, whereas in Reverse Apriori, it 

stops scanning as soon as it gets an itemset having items 

which satisfy the minimum support value. 

 

3.7. QUANTITATIVE Apriori Algorithm 

 

The Quantitative Apriori algorithm is an enhanced 

version of Apriori. This algorithm is used to minimize the 

number of candidate sets while generating association 

rules by evaluating quantitative information associated 

with each item that occurs in a transaction, which is 

usually discarded, as traditional association rules focus 

just on qualitative correlations. The algorithm for 

generating quantitative association rules starts by counting 

the item ranges in the database, in order to find out the 

frequent ones [8]. These frequent item ranges are the basis 

for generating higher order item ranges. The size of a 

transaction must be considered as the number of items 

that it comprises. 

 Define an item set „m‟ as a set of items of size „m‟. 

 Specify frequent (large) item sets by „Fm‟. 

 Specify candidate item sets (possibly frequent) by 

„Lm‟. 

A „n‟ range set is a set of n- item ranges, and each m-

item set has a n-range set that stores the quantitative rules 

of the item set. During each iteration of the algorithm, the 

system uses the frequent sets from the previous iteration 

to generate the candidate sets and check whether their 

support is above the threshold. The set of candidate sets 

found is pruned by a strategy that discards sets which 

contain infrequent subsets. The algorithm ends when there 

are no more candidates‟ sets to be verified. 

The enhancement of Apriori is done by increasing the 

efficiency of candidate pruning phase by reducing the 

number of candidates that are generated for further 

verification. This algorithm uses quantitative information 

to estimate more accurately the overlap in terms of 

transactions. The major elements that should be 

considered in this algorithm are the number of 

transactions, average size of transaction, average size of 

the maximal large item sets, number of items, and 

distribution of occurrences of large item sets. 
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This algorithm has no need to maintain the covers of 

all past itemsets into main memory. In this way, this level-

wise algorithm accesses a database less often than Apriori 

and requires less memory because of the utilization of 

additional upward closure properties. Though the 

performance of quantitative Apriori is considerably lower 

than Apriori, they are promising for the cases when 

sufficient memory for supporting full replication may not 

be available. 

This algorithm reduces not only the number of 

itemsets generated but also the overall execution time of 

the algorithm. Any valued attribute will be treated as 

quantitative and will be used to derive the quantitative 

association rules which usually increases the rules' 

information content. Transaction reduction is achieved by 

discarding the transactions that does not contain any 

frequent itemset in subsequent scans which in turn 

reduces overall execution time. 

 

Conclusion 

Association Rule Mining is one of the well known 

research area in the field of data mining. It aims at 

extracting interesting correlations, frequent patterns, 

associations among sets of items in the transaction 

databases or other data repositories. Apriori is one of the 

algorithms used in association rule mining to find out the 

correlation between the items that present in the 

transaction database. In this paper, a wide survey has been 

carried out to find the efficiency, advantages, and 

drawbacks of various Apriori-like algorithms. 
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