
An Extensive Survey on Apriori-like Algorithms
1
K.J.Paulraj Ananth,

2
T.Arun Nehru

1, 2
 Assistant Professor, PG Department of Computer Applications,

1, 2
 Sacred Heart College (Autonomous), Tirupattur, Vellore Dt, Tamilnadu, India.

Abstract

Data Mining is a process, where intelligent methods are

applied to extract data patterns. Association rule mining

is a technique in data mining used to find the objective

measures based on the support and confidence.

Nowadays, there are many efficient algorithms coping

with computationally expensive task of association rule

mining. Apriori is one of the algorithms that are employed

in association rule mining. In this paper, an extensive

survey on Apriori-like algorithms is done. The working

process, efficiency of each apriori-like algorithm is also

clearly explained in this paper.

Keywords–Data Mining, Association Rule Mining,

Apriori.

1. Introduction

Data Mining is the process of extracting non-trivial,

implicit, previously unknown and potentially useful

information from large information repositories such as

relational database, data warehouses, etc [1]. In simple,

data mining refers to extracting or mining knowledge

from large amounts of data. Data mining techniques are

employed in various kinds of research fields. Association

rule mining is one of the data mining techniques used to

find out the association from a large set of data items,

usually from large databases.

The idea of association rules were first introduced in

(Agrawal, Imielinski, Swami, 1993). Association rule

mining has a wide range of applicability such Market

basket analysis, Medical diagnosis/ research, Website

navigation analysis, Homeland security and so on.

Association rules are used to identify relationships among

a set of items in database [9]. Subsequent researches have

made Association rule mining as one of the most

interesting ideas by the introduction of the very-well

known algorithm Apriori. The Apriori algorithm has not

only influenced the association rule mining community,

but it also affected other data mining functionalities.

Since the introduction of Apriori algorithm in 1994

(Agrawal, Srikant), number of improvements has been

carried out on the original algorithm in order to raise its

efficiency. This paper is organized as follows. In Section

2, the concepts related to association rule mining are

introduced. In Section 3, different kinds of Apriori-like

algorithms are illustrated.

2. Association Rule Mining

Association rule mining is a mining technique that

searches for interesting relationships among items in a

given data set [1]. The research on the association rule

mining originated from market basket analysis. Market

managers like to find out customers‟ buying habit through

studying the itemsets which frequently appear together in

the shopping basket. Consequently, managers can use the

discovered result to plan his/her marketing or advertising

strategies, store layout design, and so on. For example, if

computer and printer are likely to be bought together, then

a sale on printer may encourage the sale of printers as well

as computers.

A formal definition of association rule is: Let J= {i1,

i2…im} be a set of items. Let D be the set of database

transactions where each transaction T is a set of items

such that T J. Each transaction is associated with an

identifier, called TID. Let A be a set of items. A

transaction T is said to contain A if and only if A T. An

association rule is an implication of the form A B,

where A J, B J, and AB = . The rule A B holds

in the transaction set D with support s, where s is the

percentage of transactions in D that contain AB (i.e.,

both A and B). This is taken to be the probability, P

(AB). The rule AB has confidence c in the transaction

set D if c is the percentage of transactions in D containing

A that also contain B. This is taken to be the conditional

probability, P (B\A). Mathematically support and

confidence measures are implied as,

Support (A B) = P(AB).

Confidence (A B) = P(B/A).

P(B/A) = Support Count (AUB) / Support Count (A).

A rule is said to be frequent if its support is greater

than the minimum support threshold, and it is said to be

strong if its confidence is more than the minimum

confidence threshold.

2780

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90954

3. Algorithms

3.1. Apriori Algorithm

The Apriori algorithm is one of the most important

algorithms for association rule mining. Apriori is a

seminal algorithm for finding frequent itemsets using

candidate generation [2]. Most of the other algorithms are

based on it or extensions of it. It is a main-memory based

algorithm. Main memory imposes a limitation on the size

of the dataset that can be mined.

One of the most popular data mining approaches is,

finding frequent itemsets from a transaction dataset and

deriving association rules. Once frequent itemsets are

obtained, it is easy to generate association rules with

confidence larger than or equal to a user specified

minimum confidence.

It is characterized as a level-wise complete search

algorithm using anti-monotonicity of itemsets. An Apriori

property is used to reduce the search space, “All non

empty subsets of a frequent item set must also be

frequent”. By convention, Apriori assumes that items

within a transaction or itemset are sorted in lexicographic

order.

The algorithm executes in two steps i.e. frequent

itemsets generation and association rule generation. The

frequent itemsets generation is again a two step process:

 Candidate itemsets (Ck) generation i.e. all

possible combination of items those are potential

candidates for frequent itemsets.

 Frequent itemsets (Fk) generation - support for

all candidate itemsets are generated and itemsets

having support greater than the user-specified

minimum support are qualified as the frequent

itemsets.

Let, the set of frequent itemsets of size k be Fk, and its

candidate set be Ck. Apriori first scans the database and

searches for frequent itemsets of size 1 by accumulating

the count for each item and collecting those that satisfy

the minimum support requirement. It then iterates on the

following three steps and extracts all the frequent

itemsets.

1) Generate Ck+1, candidates of frequent itemsets of

size k +1, from the frequent itemsets of size k.

2) Scan the database and calculate the support of each

candidate of frequent itemsets.

3) Add those itemsets that satisfies the minimum

support requirement to Fk+1.

The working of the Apriori algorithm consists of two

major steps:

1) Join step: Ck (candidate set) is generated by

joining Lk-1 with itself (cartesian product Lk-1 x

Lk-1).

2) Prune step (A-Priori property): Any (k − 1) size

itemset that is not frequent can‟t be a subset of a

frequent k size itemset, and hence it should be

removed.

It is evident that Apriori scans the database at most

k+1 times when the maximum size of frequent itemsets is

set at k. The Apriori achieves good performance by

reducing the size of candidate sets.

3.2. Apriori-C Algorithm

This section presents the APRIORI-C algorithm [3],

which adapts the APRIORI algorithm for classification

purposes. The advantages of APRIORI-C over its

predecessors are lower memory consumption, decreased

time complexity, and improved understandability of

results. In APRIORI-C, the association rule mining

algorithm “Apriori” is adapted for classification purposes

by implementing the following steps:

1) Discretize continuous attributes.

2) Binarize all (discrete) attributes.

3) Perform data pre-processing through feature subset

selection.

4) Run the optimized APRIORI algorithm by

considering only the rules, whose right-hand side

consist of a single item, representing the target

class value.

5) Post-process the set of induced rules by rule

ordering and best rule subset selection.

6) Use these rules to classify unclassified examples.

APRIORI-C algorithm includes the following

optimizations to do classification effectively:

Classification rule generation:

Rules with a single target item at the right hand side

can be created during the search. To do so, the algorithm

needs to save only the supported itemsets of sizes k and

k+1. This results in decreased memory consumption

(improved by factor 10). However, this does not improve

the algorithm‟s time complexity.

Prune irrelevant rules:

Classification rule generation can be suppressed if

one of the existing generalizations of the rule has support

and confidence above the given minSup and minConf

thresholds. To prevent rule generation, the algorithm

simply excludes the corresponding itemset from the set of

supported itemsets of size k+1. Time and space

complexity reduction are considerable (improved by

factor 10 or more).

Prune irrelevant items:

If an item cannot be found in any of the itemsets

containing the target item, then it is impossible to create a

rule containing this item. Hence, APRIORI-C prunes the

search by discarding all itemsets containing this item.

2781

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90954

3.3. Apriori-SP Algorithm

In this section, Apriori-SP algorithm is illustrated

briefly. Apriori-SP algorithm [4] is the improved version

of Apriori algorithm. In this algorithm, the basic Apriori

algorithm is improved with Sampling and Partitioning

techniques. The “SP” in the name of this algorithm came

after the Sampling and Partitioning techniques only. The

methodology of Apriori-SP algorithm is explained as

follows,

1) Pick a random sample „S‟, from the transaction

database (D)

2) Partition the random sample (S) into subsets (or

partitions), so that each partition size is appropriate

to the computer memory.

3) Read one partition into the memory.

4) Collect all the candidate 1-itemsets in the partition.

5) Count the number of occurrences of each 1-

itemsets to create the candidate set called C1. {C1:

candidate 1-items}.

6) Delete the infrequent candidate 1-items (i.e.,

itemsets that does not meet local-minimum-support

requirement) to generate a frequent or large 1-

itemset called L1. {Local-minimum-support =

(User threshold/ Number of partitions)}

7) Join L1 with itself to generate candidate 2-itemsets

C2. C2 consists of all combinations of 2-itemsets

and the algorithm checks for the Apriori property

that is, “all nonempty subsets of frequent itemsets

must also be frequent” which is the foundation for

pruning the infrequent itemsets.

8) Recursively perform steps 4 to 6 with the addition

of an itemset every pass, until some Lk becomes

empty which means that the join operation (step 6)

is not possible.

9) Combine all frequent Ln-itemsets into one list

called local frequent itemsets (LLp) for the given

partition. <where n=1, 2… K>.

10) Recursively perform steps 2 to 8 for each partition.

11) Combine all LLp to generate global candidate

itemsets (LG).

12) Scan the whole transactional database to count the

number of occurrences of each candidate K-itemset

in LG.

13) Delete infrequent candidate K-items (itemsets did

not meet global minimum-support threshold) to

generate global frequent itemset in the database (all

partitions).

The Apriori-SP algorithms produces better results

than Apriori due to the reduction of the number of scans

(actually two scans) of the database.

3.4. Apriori_HEAVY Algorithm

This section presents the Apriori_heavy algorithm

[5]. Suppose A is the set of all frequent 1-temsets in a

given transaction database D and a collection H = {h1,

h2… hk} of k heavy itemsets in D. Let B be the set of all

frequent items in A, which do not occur in any heavy

itemset in S. Apart from the association rules consisting of

items only in B, there may be additional association rules

involving (i) relationships between items in different

heavy itemsets in H; and (ii) relationships between items

in B and items in one or more heavy itemsets in H.

Apriori_heavy is an association rule mining

algorithm, which uses H and B as given inputs and finds

the set of all other “missing” association rules. The

algorithm also finds more heavy itemsets, not necessarily

disjoint from the given ones and adds them to H. Thus the

generated collection of heavy itemsets H and the

generated association rules complete the mining process.

The algorithm Apriori_heavy is nearly the same as

the original Apriori algorithm, except for the following.

The initial candidate itemsets are of size 2, obtained by

taking pair-wise Cartesian product of the heavy itemsets

in H among themselves and with the set B of “non-heavy”

frequent items. After finding the frequent k itemsets, the

algorithm checks (using subroutine is_heavy) if any of

them are heavy itemsets; if so, then it removes that set

from Lk and adds it to H, taking care to remove all proper

subsets of the newly added heavy itemset from H. Since

the set Lk may become empty in this process, the

terminating condition stated differently (stop when no

new frequent itemsets are found).

The apriori_heavy algorithm usually shows a

substantial improvement over the performance of the

Apriori algorithm, due to its use of heavy itemsets.

3.5. Apriori-INVERSE Algorithm

This section presents the Apriori-Inverse algorithm.

Like Apriori, this algorithm is based on a level-wise

search. On the first pass through the database, an inverted

index is built using the unique items as keys and the

transaction IDs as data. At this point, the support of each

unique item (the 1-itemsets) in the database is available as

the length of each data chain. To generate k-itemsets under

maxsup, the (k−1)-itemsets are extended in precisely the

same manner as Apriori to generate candidate k-itemsets.

That is, a (k − 1)-itemset i1 is turned into a k-itemset by

finding another (k−1)-itemset i2 that has a matching prefix

of size (k − 2), and attaching the last item of i2 to i1. For

example, the 3- itemsets {1, 3, 4} and {1, 3, 6} can be

extended to form the 4-itemset {1, 3, 4, 6}, but {1, 3, 4}

and {1, 2, 5} will not produce a 4-itemset due to their

prefixes not matching right up until the last item.

These candidates are then checked against the

inverted index to ensure they at least meet a minimum

absolute support requirement (say, at least 5 instances)

and are pruned if they do not (the length of the

intersection of a data chain in the inverted index provides

support for a k-itemset with k larger than 1).

The process continues until no candidate itemsets can

be generated, and then association rules are formed in the

2782

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90954

usual way. It should be clear that Apriori-Inverse finds all

perfectly sporadic rules, since we have simply inverted the

downward-closure principle of the Apriori algorithm;

rather than all subsets of rules being over minsup, all

subsets are under maxsup.

Since making a candidate itemset longer cannot

increase its support, all extensions are viable except those

that fall under our minimum absolute support

requirement. Those exceptions are pruned out, and are not

used to extend itemsets in the next round.

Apriori-Inverse does not find any imperfectly

sporadic rules, because it never considers itemsets that

have support above maxsup; therefore, no subset of any

itemset that it generates can have support above maxsup

[6]. However, it can be extended easily to find imperfectly

sporadic rules that are nearly perfect: for instance, by

setting maxsupi to maxsup/minconf where maxsup i is

maximum support for imperfectly sporadic rules and

maxsup is maximum support for reported sporadic rules.

3.6. REVERSE Apriori Algorithm

Apriori algorithm collects candidate itemsets. A

candidate itemset includes the items that have the

possibility to be member of frequent itemsets and is used

to discover frequent itemsets. It then discovers the

frequent itemsets from the candidate itemsets.

Apriori at first finds candidate-1 itemsets. It then

finds the frequent-1 itemsets by pruning candidate-1

itemsets. The pruned items are those which don‟t satisfy

the minimum support value. Then, it generates candidate-

2 itemsets from frequent-1 itemsets. Apriori algorithm

generates the frequent-2 itemsets from the candidate-2

itemsets in the same process as it generated the frequent-1

itemsets.

Reverse Apriori algorithm [7] is different from the

Apriori algorithm in that it generates large frequent

itemsets starting from considering maximum possible

number of items in the dataset. It generates this large

frequent itemsets only if it satisfies the user specified

minimum item support. It then gradually decreases the

number of items in the itemsets until it gets largest

frequent itemsets. At first, this algorithm checks for large

frequent itemsets with all the combinations of the distinct

values for all the items in the target dataset. If it is

satisfied by minimum support value, then large frequent

itemsets are revealed at first checking. If it is not satisfied,

then checks for next large frequent itemsets by

combinations of next large number of items and thus

generate large frequent itemsets by checking the minimum

support value.

Whenever Reverse Apriori algorithm finds frequent

itemsets, it does not go to next searching step to check

larger frequent itemsets like Apriori does. The working

nature of Reverse Apriori algorithm is described in the

following steps:

1) First, the total number of attributes is calculated.

2) Then, for all combinations of k number of

attributes, every combination is checked for

predefined support.

3) If it satisfies the support value, then the

combination is the member of frequent itemsets.

And, the itemset is said to be the large frequent

itemset.

4) If the large frequent itemset is not generated, then

the above said process (steps 1, 2, 3) continues

until the large frequent itemset is generated.

In Apriori, large frequent itemsets were generated after

fourth pass of the database, whereas in Reverse Apriori, it

stops scanning as soon as it gets an itemset having items

which satisfy the minimum support value.

3.7. QUANTITATIVE Apriori Algorithm

The Quantitative Apriori algorithm is an enhanced

version of Apriori. This algorithm is used to minimize the

number of candidate sets while generating association

rules by evaluating quantitative information associated

with each item that occurs in a transaction, which is

usually discarded, as traditional association rules focus

just on qualitative correlations. The algorithm for

generating quantitative association rules starts by counting

the item ranges in the database, in order to find out the

frequent ones [8]. These frequent item ranges are the basis

for generating higher order item ranges. The size of a

transaction must be considered as the number of items

that it comprises.

 Define an item set „m‟ as a set of items of size „m‟.

 Specify frequent (large) item sets by „Fm‟.

 Specify candidate item sets (possibly frequent) by

„Lm‟.

A „n‟ range set is a set of n- item ranges, and each m-

item set has a n-range set that stores the quantitative rules

of the item set. During each iteration of the algorithm, the

system uses the frequent sets from the previous iteration

to generate the candidate sets and check whether their

support is above the threshold. The set of candidate sets

found is pruned by a strategy that discards sets which

contain infrequent subsets. The algorithm ends when there

are no more candidates‟ sets to be verified.

The enhancement of Apriori is done by increasing the

efficiency of candidate pruning phase by reducing the

number of candidates that are generated for further

verification. This algorithm uses quantitative information

to estimate more accurately the overlap in terms of

transactions. The major elements that should be

considered in this algorithm are the number of

transactions, average size of transaction, average size of

the maximal large item sets, number of items, and

distribution of occurrences of large item sets.

2783

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90954

This algorithm has no need to maintain the covers of

all past itemsets into main memory. In this way, this level-

wise algorithm accesses a database less often than Apriori

and requires less memory because of the utilization of

additional upward closure properties. Though the

performance of quantitative Apriori is considerably lower

than Apriori, they are promising for the cases when

sufficient memory for supporting full replication may not

be available.

This algorithm reduces not only the number of

itemsets generated but also the overall execution time of

the algorithm. Any valued attribute will be treated as

quantitative and will be used to derive the quantitative

association rules which usually increases the rules'

information content. Transaction reduction is achieved by

discarding the transactions that does not contain any

frequent itemset in subsequent scans which in turn

reduces overall execution time.

Conclusion

Association Rule Mining is one of the well known

research area in the field of data mining. It aims at

extracting interesting correlations, frequent patterns,

associations among sets of items in the transaction

databases or other data repositories. Apriori is one of the

algorithms used in association rule mining to find out the

correlation between the items that present in the

transaction database. In this paper, a wide survey has been

carried out to find the efficiency, advantages, and

drawbacks of various Apriori-like algorithms.

References

[1] Jiawei Han and Micheline Kamber, “Data Mining:

Concepts and Techniques”, Morgan Kaufmann Publishers,

2006.

[2] Agrawal R, Srikant R, “Fast algorithms for mining

association rules”, Proceedings of the 20th VLDB

conference, pp.487–499, 1994.

[3] Jovanoski, V. and N. Lavrac., “Classification rule learning

with APRIORI-C”, Progress in Artificial Intelligence:

Proceedings of the 10th Portuguese Conference on

Artificial Intelligence, pp.44–51, Springer, 2001.

[4] F. A. El-Mouadib, Salem A. Mohammed, “Combining

Some of The Improvements of Apriori Algorithm”, Science

and Its Applications, Part-II: Mathematical Sciences –

Chapter-9, Garyounis University, 2006.

[5] Palshikar G., Kale M., Apte M., “Association rules mining

using heavy itemsets”, Data & Knowledge Engineering

61(1), Elsevier, pp.93-113, 2007.

[6] Yun Sing Koh and Nathan Rountree, “Finding Sporadic

Rules Using Apriori-Inverse”, Advances in Knowledge

Discovery and Data Mining, Springer-Berlin/ Heidelberg,

ISSN 0302-9743, pp.97-106, 2005.

[7] Kamrul Abedin Tarafer, Shah Mostafa Khaled, “Reverse

Apriori Algorithm for Frequent Pattern Mining”, Asian

Journal of Information Technology 7(12), ISSN: 1682-

3915, pp.524-530, Medwell Journals, 2008.

[8] S.Prakash, R.M.S.Parvathi, “An Enhanced Scaling Apriori

for Association Rule Mining Efficiency”, European Journal

of Scientific Research 2(39), ISSN 1450-216X, pp.257-264,

2010.

[9] M. H.Marghny and A.A.Mitwaly., “Fast Algorithm for

Mining Association Rules”, In proc. Of the First ICGST

International Conference on Artificial Intelligence and

Machine Learning AIML05, pp.36-40, 2005.

2784

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90954

