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Abstract— This paper describes an expert system designed 

for the analysis of an incomplete, non-stationary and non-

Gaussian, long-term, time series of wave significant heights by 

means of specific linear parametric model. Using this system 

makes it possible to complete missing-value gaps, forecast wave-

height short-term evolution or simulate arbitrarily long 

sequences of wave data preserving the key statistical properties 

of the observed series, including autocorrelation, persistence 

over threshold, non-Gaussian distribution and seasonality. 

The implemented improvements bear on specific key tasks of 

ARMA setup procedure, i.e. preliminary analysis, parameter 

estimation and optimal model-configuration identification. 

Specifically, a Seasonal Trend decomposition based on Loess 

robust method is applied to compute more stable and detailed 

seasonal trend, allowing assuming more confidently its 

deterministic nature. Moreover, aiming at accurately estimating 

the model parameters, a proficient method is taken in, which is 

based on the robust Whittle’s approximation of the maximum 

log-likelihood function as well as on the direct-search, non-

linear, multi-parameter, constrained, optimization technique 

called complex modified. Finally, an automatic expert system is 

developed, able to identify, almost correctly, ARMA orders by 

selecting the model with the smallest residuals variance and 

parameter numbers. 

Confident applicability of the suggested procedure is tested 

by means of both Monte Carlo simulations and comparisons of 

generated series with observed one, this latter measured 

offshore Alghero – Italy. Analysis of results clearly indicate that 

the accuracy in identifying the correct ARMA model is 

improved; furthermore, it is shown that the simulated time 

series exhibit all the primary statistical properties of the 

observed data, including winter and summer seasonal patterns 

as well as sea states sequencing, persistence and severeness. 

 

Keywords — Wave climate; ARMA model; Wave forecast; 

Storm duration; Sea state persistence; Sea severeness 

I.  INTRODUCTION 

For marine human activities and engineering applications, 

the understanding of sea-state sequences is important as well 

as the knowledge of extreme wave parameters, e.g. to evaluate 

a maritime traffic line efficiency, to guess a port/terminal 

operativeness or to assess risks of engineering processes. 

Actually, marine intervention and installation works involve 

long-lasting and complex operations. In these cases, the 

analysis of effects related to meteorological changes during 

specific operations is utmost relevant to disclose any possible 

critical situations and their related costs-growth. To these 

aims, linear models can be very helpful, being able to provide 

large database of information statistically equivalent to the 

observed one. 

 

Additionally, recorded time series are usually incomplete 

due to several reasons, e.g. to instrument failures, accidental 

data loss or spikes rejection. Considering that the data 

incompleteness can seriously bias statistical inferences, makes 

obvious the relevance of a procedure able to recover missing 

values by ensuring same statistical sample properties. 

Autoregressive, moving-average models (ARMA) are a 

specific class of the linear parametric family that, in few 

words, replicate time processes by combining some their 

outcomes with a white noise.  

In ocean engineering applications [1] and [2] have used 

ARMA to simulate individual waves in short-term elevation 

record, supposed to be stationary in time. Reference [3] have 

used ARMA to model the non-stationary, long-term, time-

series of significant wave-height, whereas [4] proposed a new 

methodology for the analysis, missing-value completion and 

simulation of an incomplete, non-stationary, time-series of 

wave data. Further researches were pointed at verifying data 

transferability between two wave-measuring stations [5]. 

Generally, two main problems have to be solved in order 

to apply ARMA models to long-term series of wave 

parameters. One is the presence in the series of missing-value 

gaps, which can sometimes be relatively long, and the other is 

the series non-stationarity and non-normality. Accordingly, 

gap filling as well as data transformation procedures are 

required. Furthermore, the common and challenging task of 

the model identification, i.e. selecting the most suitable 

ARMA order, has to be tackled.  

Here, the work of [4] is extended by improving the 

following tasks: the seasonal component assessment, the 

model parameter estimation and the choice of the optimal 

ARMA configuration. Namely, a technique called STL robust 

(Seasonal Trend decomposition based on Loess) able to 

compute more accurate seasonal components is adopted [6]. 

Furthermore, the more robust Whittle’s approximation of the 

maximum log-likelihood function is used to estimate ARMA 

coefficients, the set of which is found out by a proficient, 

nonlinear, constrained, multi-parameter, optimization 

technique. Finally, an expert system has been developed 

allowing automating the struggle step of model identification 

that, for mixed ARMA process, is quite tricky and someway 

affected by subjective interpretation. 

 Different Monte Carlo simulations have been carried out 

with a double purpose: the validation of the parameter 

estimation procedure and the verification of the automatic 

expert system proficiency. The obtained results have been 

gratifying, making possible to confidently say that the 

proposed enhancements are very efficient. 
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In the following, each step of the adopted ARMA 

modelling procedure is accurately described and the results of 

Monte Carlo simulations are illustrated. Afterwards, the 

application to real wave data is fully described and the 

comparison between two different techniques to normalize-

denormalize the series is plainly outlined. Finally, the 

conclusions are drawn out. 

II. LINEAR PARAMETRIC MODELS 

Starting from the Box and Jenkins definition [7], the 

family of linear models has been developed with the 

conception of several subtypes that roughly follow a common 

setup procedure. Here only the ARMA model is considered. 

Regarding a second-order stationary and Gaussian time 

series zt, the autoregressive and moving average parts of an 

ARMA(p,q) model define zt respectively as the combination 

of p previous terms of the series plus the combination of q+1 

terms of a white noise (i.e. a stationary random process with 

zero mean and variance equal to 2
r  ). Introducing the back-

shift operator defined as ntt
n zzBB : , an ARMA(p, q) can 

be written as     tt aBzB   , 

being p
pBBB   ....1)( 1 and 

q
qBBB   ....1)( 1 . 

The standard ARMA setup procedure can be resumed as 

follows [7]: preliminary analysis, model identification, 

parameter estimation, model verification and optimal model-

configuration selection. In what follows each task is accurately 

delineated. 

III. PRELIMINARY ANALYSIS 

With reference to the stationarity of significant wave-

height series, it is typically not satisfied and, according to the 

common knowledge of the environmental process, a seasonal 

component is expected to exist. According with [8], a non-

stationary time series zt can be decomposed as 

ttttt Xzz   ~ , where tz~ , t , t  are the deterministic 

functions, respectively, of long-term trend, seasonal mean and 

standard deviation. In what follows, the long-term trend is not 

considered. 

The seasonal mean and variance can be defined as follows 

by introducing the Buys-Ballot double index, i.e. by re-

indexing the time series zt as [9]: 
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Y

j

j
t MzNtz

1

1, 1, 


   

 



Y

j

jz
K 1

1
  M1  

  






Y

j

jz
K 1

22

1

1
   M1  

where Y and M are integers respectively equal to the series 

length in year and the annual number of observations, N=YM 

is the series numerosity,  is the index within the annual cycle, 

K is the number of existing values per each observation index 

 (if no missing values affects the wave series then clearly 

K=Y). The deseasonalized series is computed according to the 

following expression: 

     jj zy with Yj 1 and M1  

This approach, however, produces seasonal components 

possibly affected by large sample variability, especially when 

the time series length is not enough extended or when many 

missing-value gaps exist. This large variability contrasts with 

the assumed deterministic nature of the seasonal component 

and cannot therefore be accepted by both physical and 

stochastic points of view. 

Following [6], here is preferred a more robust method, 

derived from the STL one (Seasonal-Trend decomposition 

based on Loess). This technique, used for both the mean and 

variance seasonal components, is split into five tasks (here, 

only the evaluation of the mean component is illustrated as the 

variance computation is straightforwardly derivable). 

1. Identify the seasonal mean series *
  by (2) and reduce 

it to zero average. Compute the new time 

series *
  jj zX . 

2. Define the scaling factor   cXu jj  , where  is the 

median value of jX   and c is a constant (equal to 6 and 

36 respectively for the mean and variance seasonal 

components). 

3. Estimate the weighting factor j
 , for each jX  , 

according to: 


  
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4. Evaluate the weighted seasonal mean component, for 

each index  in the annual cycle, as: 

 



Y

j

j
Y

j

jjXm
11

*
   

5. Smooth *
m  by means of the interpolator called Loess. 

Specifically, considering a time window centered at       

, with amplitude W,  *
m  is smoothed according to: 
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For completing the missing-value gaps, the following 

procedure has been adopted. When the gap length is very 

small (dealing with one or two observations), the missing 

values are interpolated from neighbors. Otherwise, the 

smoothed mean seasonal component (7) is transformed in a 

Fourier series. The missing values are therefore replaced by 

[3]: 

     sincos~ baz j   

being   the average value of the smoothed mean seasonal 

component, =2/M, a and b the Fourier coefficients given 

by: 

  



M

M
a

1

cos
2


    




M

M
b

1

sin
2


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With reference to normality of the significant wave-height 

series, it is verified by performing a t-student test; if the tested 

hypothesis is rejected, a series transformation is applied. Two 

different approaches were implemented and compared: the 

first involves the classical Box-Cox transformation [10]; the 

second entails the Probability Level-Equivalence 

Transformation (PLET) used by [11].  

Using the Box-Cox formula, the time series is transformed 

as: 


 









0   log

0   1
)(ˆ

BCt
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z
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



 

Differently, the PLET method is based on the percentile 

equivalence among the standardized normal distribution () 

and the wave-height best-fitting distribution (Pz). The 

standardized normal series is therefore obtained by: 

   tzt zPz 1ˆ   

The inverse transformation used in the simulation task is: 

   tzt zPz ˆ1    

IV. MODEL PARAMETERS ESTIMATION 

This task is here completed in two steps: the preliminary 

estimation and the accuracy refining. The method of moments 

[7] is adopted for the former, whereas the maximum log-

likelihood method along with the Whittle’s function 

approximation is implemented for the latter.  

Actually, for a Gaussian stationary process, the 

approximated expression of log-likelihood function is [12]: 

    zAz
N

dSzL T
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being =(1,…,p,1,…,q, r) the parameters vector to 

estimate, () the inverse of the process covariance-matrix 

and S(, ) the parametric power spectrum. The latter is the 

Fourier transform of the autocorrelation function and can be 

seen as expressing the energy level of each periodicity   

composing the time series. Its expression, computed by 

parametric method, can be written as [13]: 
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Equation (13) can be rewritten in terms of the series 

periodogram (P), i.e. the series power-spectrum computed by 

Fourier method, as follows [14]: 
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The maximization of (15) is here carried out by a direct-

search, non-linear, multi-parameter, constrained, optimization 

technique called complex modified [15] [16], which has been 

proved to perform very efficiently [17].  

 

 

Aiming to enlighten the proficiency of the maximum log-

likelihood method, two set of tests were carried out. In the 

first one, three different spectra were firstly defined by 

assigning p, q, r, j and  in (14) and then randomly 

perturbed by adding a white noise drawn out from U[-0.05r; 

0.05r]. The resulting frequency distributions were assumed 

as periodograms to be fitted by the complex modified method 

with (15) as target function. Fig. 1 shows the results along 

with those achieved using the spectral least-square target-

function, given by [4]: 
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The fig. 1 and the herein reported table clearly state that, 

even if both (15) and (16) fulfil the optimization by producing 

a nearly perfect fitting of ARMA spectra, (15) is more 

efficient to accurately estimate each parameter value, reducing 

the maximum relative approximation-error form 200% to 2% 

(for AR(4) – AR(10)) or from 20% to 3% (ARMA(10,10)). 

In the second test case, a Monte Carlo simulation was 

carried out by modelling 500 synthetic series, generated from 

an ARMA(1,1) with r = 1.0 and both (,  ranging from 0.0 

to 1.0, step 0.2. For each generated series, (15) was used to 

estimate the ARMA parameter values. The difference between 

the assigned values and the finally estimated one have been 

represented, in fig. 2, as relative errors in a box-plot form. The 

relative errors obtained by using the widespread method of 

moments [18] along with those achieved by minimizing (16) 

are also reported. The illustrated results, revealing a great 

error variance reduction (at least halved) as well as an 

unbiased zero averages, confidently confirm the proficient 

improvement achieved by the herein implemented method. 

V. VERIFICATION OF ESTIMATED MODELS AND SELECTION 

OF THE OPTIMAL ONE 

To verify ARMA stationarity and invertibility, 

respectively, all roots of following (17) should lie externally to 

the unit circle (here IMSL® ZPORC routine is used):  

 01
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
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i
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If one of the tested hypothesis is rejected the model is not 

considered further, otherwise a Portmanteau test is completed. 

Namely, if an ARMA is stationary and invertible as well as 

properly identified with accurately estimated parameters, the 

model residuals, given by 

 
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have nearly null random values. 
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Model = AR(4) Model = AR(10) Model = ARMA(10.10) 

fixed MLM LSM fixed MLM LSM fixed MLM LSM 

r = 1.00 r = 1.01 r = 2.98 r = 1.00 r = 0.98 r = 3.04 r = 1.00 r = 1.01 r = 1.03 

j j j j j j j i j i j i
0.94 0.95 2.81 -0.82 -0.78 -2.38 -0.41 0.87 -0.42 0.87 -0.47 0.84 

-0.62 -0.63 -1.87 0.12 0.12 0.41 -0.15 -0.17 -0.14 -0.18 -0.13 -0.14 

0.03 0.02 0.10 0.16 0.21 0.71 0.80 -0.38 0.84 -0.37 0.86 -0.33 

-0.20 -0.20 -0.59 0.62 0.56 1.54 0.31 0.03 0.36 0.07 0.38 0.09 
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- - - 0.02 0.01 0.28 0.92 0.58 0.92 0.56 1.13 0.68 

- - - 0.75 0.72 2.06 -0.67 0.38 -0.68 0.39 -0.62 0.46 
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- - - 0.45 0.42 1.19 0.81 0.18 0.86 0.20 0.92 0.22 
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Fig. 1. Comparison between synthetics periodograms and spectral distributions obtained by the complex modified optimization technique. 
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Fixed parameter values 

 a b c d e f g h i j k l n o p q r s t u 

p 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

q 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 

1 # # # # 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.8 .8 .8 .8 

1 0.2 0.4 0.6 0.8 # 0.4 0.6 0.8 # 0.2 0.6 0.8 # 0.2 0.4 0.8 # 0.2 0.4 0.6 
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Fig. 2. Results of the Monte Carlo simulation for the ARMA(1,1) parameter estimation obtained by means of three different techniques: the methods of 

moments (right panels), the spectral Least Square Method (central panels) and the Whittle’s approximation of the Maximum log-Likelihood Function 

(left panels). 
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To verify this hypothesis, the Ljung-Box Portmanteau-test 

is used [19]. A weighted sum (Q) of residual autocorrelation 

coefficients is computed according to the following 

expression: 

  
 


s

k

k

kN
NNQ

1

2

2


 

where N is the residuals number, k is the time lag, k is the 

autocorrelation coefficient (computed by IMSL® ACF 

routine) and s is the maximum lag (here s=75 is adopted). Q is 

then compared to the quantile of a 2 distribution, with s 

degrees of freedom, at the level of probability P. If Q is 

greater than 2 (s), the test is rejected and at least one of the 

examined autocorrelation coefficients is statistically different 

from zero, to the fixed significance level P. 

If the tested ARMA is stationary, invertible, with random 

residuals, it will be considered for the final task of optimal 

model selection, i.e. the choice of model order (p, q). Aiming 

at automating this specific task, many methods based on some 

patterns of different ACF functions have been proposed [20]. 

Here a different approach is used. 

Starting from both the definition and meaning of a linear 

model, the more efficient configuration can be defined as the 

one that outlines the process correlation structure by using the 

lowest parameter number and, at the same time, produces 

random residuals with the lowest variance. Considering that 

the latter generally decreases as the former increases, makes it 

necessary to choose the “optimal configuration” on the basis 

of statistical indices. In the present work, the following is 

taken into consideration [21]: 

    
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
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



qp

σσN
qp+

N-p-q

σN
N-p-qBIC= rrr

222 ˆ
ln

ˆ
ln  

where 2ˆ
rσ  is the variance of series-residuals. 

The combination of p and q that minimize (20) is regarded 

as the ARMA “optimal configuration”. 

To show the consistency of the proposed procedure, two 

series of tests were carried out. The first one was performed 

analyzing the identified ranking of ten different AR, MA and 

mixed ARMA models of arbitrary orders. The obtained results 

are reported in Table I and support, although not on a 

statistical basis, the developed expert-system robustness. 

Namely, the true model order is ranked for seven times in the 

first two positions and it is always high-ranked. Furthermore, 

only one attempt gave the sum p+q of the fitted model 

underestimated by more than one order (settled ARMA(2,3) – 

selected MA(3)). 

The second Monte Carlo simulation was carried out with 

the goal of comparing the proposed expert-system proficiency 

with that of the three best-performing ACF pattern-selection 

methods; namely, the Corner, the EACF and the SCAN 

methods. The efficiency of these latter methods was found out 

from [20].  

The ARMA(2,1)      tt aBzBB 5.015.018.01   with 

0.12 r , was used for simulating 1000 series of 1000 terms, 

which were successively analyzed. 

TABLE I.  RESULTS OF THE “OPTIMAL MODEL IDENTIFICATION” TEST FOR 

TEN DIFFERENT AR, MA AND ARMA MODELS OF ARBITRARY 

ORDER. 

FIXED Identified 
Fixed 

ranking 

p q p q BIC 

1 1 1 1 1st 

1 2 1 2 1st 

1 3 1 3 1st 

2 1 1 1 3rd 

2 3 0 3 4th 

3 1 3 0 2nd 

3 2 3 2 1st 

5 7 4 8 2nd 

6 4 6 5 6th 

20 2 18 20 2nd 

 

The occurrence of the identified combinations (p, q) 

obtained by the different methods are summarized in Table II. 

All the methods fairly spread out the identified configurations 

but, in this specific case, any of them significantly 

underestimate the model total order (p+q).  

The expert system performs better than the corner method. 

Namely, the former achieves nearly equal results in selecting 

the true model configuration (scoring just a 1% less than the 

latter), but it shows greater sensitivity in both recognizing the 

minimum model orders and identifying the correct influence 

of the AR and MA model parts. Actually, when one of the 

identified model order is equal or greater than the fixed one, 

the expert system 35% of times overestimates the other one 

whereas the corner method underestimates it 49% of times. 

Moreover, the expert system 21% of times bias the 

autoregressive character of the process with the MA one 

whereas the corner method makes the same error for the 41% 

of times. The ESACF and SCAN methods have instead a 

worse hit percentage for the correct model identification and 

have the same biasing character of the Corner one.  

 

On these bases, it could be stated that the implemented 

expert system works nicely well, slightly better than the best 

performing pattern selection method here considered. 

Moreover, it has to be highlighted that the expert system 

automatically provides in output a list of ranked models, 

opening to chances of trying different configurations having 

similar statistical index values. 

TABLE II.  NUMBER OF IDENTIFIED COMBINATIONS (p, q) FOR THE 1000 

SERIES GENERATED FROM AN ARMA (2,1). 

  
Expert  

system 

Corner  

method 

ESACF  

method 

SCAN  

method 

(1,0) - - - - - - - - 
(0,1) - - - - - - - - 

(2,0) 3 0% - - - - 88 9% 

(0,2) - - - - - - - - 
(3,0) 59 6% 86 9% - - 309 31% 

(0,3) - - - - - - - - 

(1,1) - - - - - - - - 

(2,1) 472 47% 483 48% 339 34% 206 21% 

(3,1) 80 8% 7 1% 30 3% 6 1% 

(1,2) 12 1% 155 15% 110 11% 195 20% 

(2,2) 108 11% 7 1% 92 9% 10 1% 

(3,2) 22 2% 2 0% 59 6% 4 0% 

(1,3) 45 4% 253 25% 303 30% 179 18% 
(2,3) 156 16% 7 1% 66 7% 2 0% 

(3,3) 42 4% - - - - - - 
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TABLE III.  RATES OF UNDER-SPECIFICATION OF THE TOTAL ARMA ORDER. 

 0 3 5 7 9 

Expert system 0% 32% 40% 59% 62% 100% 

Corner method 0% 0% 2% 47% 49% 100% 

ESACF method 0% 0% 0% 7% 3% 87% 

SCAN method 9% 9% 9% 46% 49% 100% 

 
Finally, the influence of outlier occurrences on the 

methods performance has been analyzed. Accordingly, a new 

Monte Carlo simulation similar to the previous one was 

carried out; the same number of series, with equal numerosity, 

were generated and some spiked values were introduced at 

fixed time lags (i1=0.25N, i2=0.5N, i3=0.75N). The Monte 

Carlo simulation was replicated five times, varying the outlier 

magnitude  2
r . The obtained results were analyzed to 

compute the total order underestimation percentage. The 

results reported in Table III show that the expert system is the 

more affected one, as could be expected, inasmuch as it is 

based on indices being functions of the series and residual 

variances. 

VI. SERIES SIMULATION 

An infinite moving average representation [22] is here 

adopted with 100 terms. The implemented procedure has been 

compared against the widely used Splus software and results 

have shown the statistical equivalence of generated series. 

With reference to the series inverse transformation, the 

following is noteworthy; when the hydrologist preferred Box-

Cox transformation is considered, depending on BC, the 

generated series can contain data with no physical 

correspondence. Actually, if BC=0, an exponential inverse 

transformation is required, making the simulated peak values 

significantly increase and so possibly involving maximum 

wave-height of 50m, value that actually have never been 

observed in the Central Mediterranean Sea [24] or by any 

ocean buoy all over the world [23]. Moreover, if BC  0, the 

transformed series could have negative values, again with no 

physical sense. To overcome in some extends these problems, 

a method to remove negative value is applied retaining the 

original occurrence of calms (generally defined as sea states 

having Hmo0.20m); namely, a constant quantity is added to 

the generated series so that the original number of calms Nc is 

equal to the number of series elements xt0.2. Afterwards, the 

loess-smoothing procedure is used to trim off the peak values. 

These shortcomings are eliminated by using PLET. 

VII. APPLICATION TO OBSERVED WAVE DATA 

The analysed time series of significant wave-height was 

recorded by the RON directional wave-buoy located one mile 

offshore the Alghero coast – Sardinia (Italy), at a depth of 

about 100m. The analysed wave record was observed from 1 

July 1989 to 31 December 2000, with a time interval of three 

hours, resulting in a series numerosity of 33615 observations.  

For a deeper description of both the Italian Data Buoy 

Network (RON), managed by ISPRA – Oceanographical 

Service, and the measured data see respectively [25] and [26]. 

The missing values are 1224, equal to 3.6% of the data. 

The frequency distribution of the gap-length showed that 

almost all gaps cover less than one day and that many of them 

(equal to the 75% of gaps) can be simply recovered by 

neighbouring interpolation. The remaining 80% of missing 

data have been recovered by (8) with  -0.169,  a = -0.190, 

b = -0.043 

The time series shows no significant daily non-stationarity 

but there is a clear seasonal component (fig. 3) having 

periodicity of about three months (2200 hours), which were 

identified and removed according to the herein illustrated 

procedure. Fig. 4 shows that the seasonal component is 

markedly affecting the mean value of the observed time series, 

whereas its standard deviation is nearly invariant within the 

averaged year. It is noteworthy that the application of the STL 

robust method give seasonal components much more stable 

than those computed by the classical averaging method as well 

as more detailed than those estimated by the Fourier 

representation (fig. 4).  

 

Lag k [hh] 

k [-] 

 
Fig. 3. Autocorrelation function of the observed time series at Alghero. 
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Fig. 4. Seasonal components (mean and standard deviation) of the observed 

time series at Alghero estimated by the classical hydrological method, by low 

order Fourier transform method and by the STL robust method (here, the 

window amplitude used by the loess smoothing is equal to 240 steps, which 
is nearly equal to one month). Time scale ranges from July to June. 
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Fig. 5. Autocorrelation function of the detrended, deseasonalized series at 

Alghero. 
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Fig. 6. Cumulate frequency distributions of the observed time series as well 

as those (overlapped) of the standardized series by both Box-Cox and 

Probability Level-Equivalence transformations, as a function of the standard 

variable (ζ). 
 

Fig. 5 shows the autocorrelation of the detrended time 

series giving clear evidence of the performance of the applied 

method. Fig. 5 also shows a small residual fluctuation of the 

autocorrelation with a periodicity of about half a week. No 

physical causality could be disclosed in this cycling; 

accordingly, it has been considered tolerable and no more 

effort to remove it from the detrended series has been done. 

The time series turned to be non-Gaussian as well, and 

both (10) and (11) have been applied to recover the time series 

normality; the obtained results are shown in fig. 6. Both 

transformations have performed accurately and efficiently by 

turning the non-Gaussian time series into a Gaussian 

distributed one; nonetheless, the inverse Box-Cox 

transformation has showed to be failing by recovering all the 

storm parametric characteristics when the reverse task of 

generation is considered. Namely, several attempts were 

carried out by varying the Box-Cox exponent value BC in the 

range between 0 and 1, with a step of 0.01, as well as the 

width of the loess-smoothing window (see fig. 7 where some 

of the achieved results are reported). Unfortunately, none of 

the tested combinations gave fully satisfying results by 

obtaining a simultaneous reasonable agreement between non-

exceedance cumulate frequency distributions of both storm 

duration and its peak-value wave-height. Actually, fixing BC 

= 0.0 gives a good agreement between the duration cumulate 

frequencies but produces too many sea state with unreal giant 

waves. Conversely, setting BC = 0.5 gives a fairly good 

agreement between the storm peak-value wave-height 

distributions but produces overestimated durations, with sea 

storminess greatly increased; actually, sea states with Hmo over 

the 5m threshold persist 40% more than the observed one. 

 

Hmo [m] 

F(Hmo) [-] 

 [hh] 

F() [-] 

 
Fig. 7. Comparison between the non-exceedance cumulate frequency 

distributions of the storm duration (up) and its peak-value wave-height 

(down), computed from the observed and simulated time series using the 
Box-Cox transformation, with different λBC and different width of loess 

window. 

 

With the aim to improve the generation task, the 

probability equivalence transformation was adopted. 

Accordingly, a probability law should be chosen to properly 

model the significant wave-height distribution. To this aim, 

several different probability laws were considered in literature, 

mainly focused on the distribution upper-tails (see, among 

others [18], [27], [28]). Thought the efforts made, the 

achieved results do not give any clear evidence of a true 

distribution [29]. Generally, it is considered that GEV type III 

describes better the upper tail, at the cost of larger deviations 

for small Hmo values, while the log-normal distribution fits 

better the distribution mode. Thus, GEV seems more 

appropriate for extreme-value analysis (see [26]), while the 

lognormal distribution seems more suitable for moderate-

value analysis (e.g. fatigue-life analysis, estimation of the 

wave-energy resource, operativeness analysis, etc.).  

Here, several probability functions were tested and fitted 

to the observed data by using the complex modified method to 

minimize the overall least square error. The goodness of fit 

was verified by using the Kolmogorov-Smirnov test. The 

distribution functions having higher K-S confidence level 

were: GEV type III, three parameters lognormal, four 

parameters power-lognormal, Beta, gamma, 2 and f (see [30] 

for distribution details). Each of the above functions was then 

used in the series simulation, but only the GEV type III and 

the Beta distributions gave fully satisfying results. Namely, 

the lognormal and power-lognormal distributions involve 

exponential transformation and therefore present drawbacks 
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similar to the Box-Cox transformation with too many sea state 

with unreal giant waves.   
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 [hh] 
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Fig. 8. Comparison between the non-exceedance cumulate frequency 

distributions of storm duration (up) and its peak-value wave-height (down), 

computed from the observed and simulated time series using PLET with Beta 
and GEV III wave-height theoretical probability distributions. 
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Fig. 9. Comparison between the non-exceedance cumulate frequency 

distributions of storm duration (up) and its peak-value wave-height (down), 

computed from the observed and simulated time series using PLET with Beta 

and GEV III wave-height theoretical probability distributions. 
 

Conversely, the gamma, 2 and f distributions gave 

slightly biased distribution lower tails, giving rise to storm 

persistence too long. Accordingly, only the results obtained 

implementing the GEV and Beta distributions are reported in 

fig. 8; the attained improvements are evident inasmuch as 

generated series comply both frequency distributions of 

storms duration and wave-height peak-value quite well. 

Finally, the Beta distribution was chosen for the generation 

task at Alghero owing to its slightly better performance in 

replicating the duration of the storm with extreme peak-value 

wave-height (upper tail of the frequency distribution). The 

parameters of the best fitting Beta distribution resulted A=0.0, 

B=96.6, k1=1.275, k2 =100.0. 

 

 

The optimal configuration of the linear parametric model 

at Alghero resulted in a second order Auto Regressive one, 

with parameters equal to 1 =1.017, 2 =-0.068 and residual 

variance   2
r =0.087.  

 Hmo [m] 

F(Hmo) [-] 

F(Hmo) [-]  
Fig. 10. Comparison between the non-exceedance cumulate frequency 

distributions of Hmo observed and simulated by the AR(2) model. 
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Fig. 11. Comparison between the non-exceedance cumulate frequency 

distributions of storm duration (up) and its peak-value wave-height (down), 

computed from the observed and simulated time series using PLET with Beta 
and GEV III wave-height theoretical probability distributions. 
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Fig. 12. Comparison between the non-exceedance cumulate frequency 

distributions of storm duration (up) and its peak-value wave-height (down), 
computed from the observed and simulated time series using PLET with Beta 

and GEV III wave-height theoretical probability distributions. 

 

Fig. 9 shows the autocorrelation functions of the generated 

and observed series, revealing a nice matching for lags less or 

equal to a week as well as a nearly perfect seasonal trend. 

Figs. 10 and 11 respectively show the not-exceedance and 

occurrence frequencies of the significant wave-height. The 

achieved results are quite gratifying, in that distributions are in 

very nice agreement starting from values greater than 0.5m, 

value generally assumed as the lower threshold below which 

data are discarded both in extreme and climatic analysis. In 

addition, the over-threshold persistence curves are pretty 

overlapped (fig. 12); it is relevant to stress that the persistence 

curves almost exactly overlap for Hmo > 3m, given that many 
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engineering activities are limited or broken down by the 

occurrence of such sea states. 

TABLE IV.  STATISTICAL SUMMARY OF BOTH THE SERIES OBSERVED AT 

ALGHERO AND THE AR(2) SIMULATED ONE. 
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Fig. 13. Comparison between the occurrence frequencies of storm-peak 

significant wave-height (Hp - on the left) and storm duration ( - on the right) 

for the observed time series and the simulated one. 

 

All these fine agreements reflect themselves into the 

descriptive statistics of the observed and simulated series (see 

Table IV). The only dissonant note is the mismatch between 

observed and simulated data kurtosis in Table IV, which 

points out a greater peakedness of observed frequency mode 

(fig. 11).  

Taking all these features in mind makes possible to say 

that the correlation structure of the observed data is very well 

reproduced into the synthetic time series. 

By considering the derived dataset of the storm features, 

characterized by the peak-value of the significant wave-height 

and by its duration over the threshold of 1m, the agreement is 

slightly less gratifying but still suitable.  

Namely, fig. 13 shows the occurrence frequencies of the 

storm duration and peak-value. The achieved results indicate 

that the simulated mild storms, characterized by a peak-value 

of the significant wave-height in the range of 1÷3m, are more 

frequent than the observed ones. On the contrary, the 

simulated violent storms, characterized by a peak-value of the 

significant wave-height in the range of 3÷5m, are fairly less 

frequent than the observed one. For the extreme storms, 

characterized by a peak-value of the significant wave-height 

greater than 5m, both simulated and observed ones exhibit 

nearly the same frequencies. 

Furthermore, the simulated storms show a little bit shorter 

duration. Actually, results indicate that the simulated short 

storms, characterized by a duration less or equal to 3 days, are 

more frequent than the observed ones. On the contrary, the 

simulated persistent storms, characterized by a duration in the 

range of 3÷10gg, are fairly less frequent than the observed 

one. Finally, the very long storms, characterized by a duration 

greater than 10gg, show nearly the same frequencies for both 

the simulated and observed series. 
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Fig. 14. Comparison between bivariate occurrence frequencies of storm-

peak significant wave-height (Hp) and storm duration () for the observed 

series (on the right) and the simulated one (on the left). 
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 [hh]  
Fig. 15. Evolutions of real and simulated sample storms for severe (left) and 

mild (right) sea-state conditions. 

 

These trends reflect themselves into the bivariate density 

of occurrence frequency for the simulated series (fig. 14), 

which appears more peaked near the origin. Fig. 14 states also 

that the simulated rare storm events (small occurrence 

frequency) last shorter than the observed one, independently 

from the peak wave-height.  

 

The described deviations can be explained considering the 

evolution of sample storms for both the observed and 

generates series, in mild and severe conditions, reported in fig. 

15; as shown, the storm decreasing-tails decay slightly faster 

for the generated events than for the observed ones. Moreover, 

the decay stops when generated wave-heights became very 

small while the observed ones show a more persistent 

behaviour; accordingly, a possible successive event reaches 

faster the sea-storm censoring-threshold of 1m. These 

elements concur to give a slightly greater duration of the 

observed storms. 

VIII. CONCLUSION 

This paper describes an improved methodology for the 

analysis, missing-value completion and simulation of an 

incomplete, non-stationary and non-Gaussian time series of 

wave significant height. The method analyses a finite-length 

time series to identify an ARMA model, which can be used to 

recover missing values, forecast short-term wave evolution or 

to generate arbitrarily long sequences of wave data, preserving 

the primary statistical properties of original dataset, including 

persistence over threshold, autocorrelation, non-Gaussian 

distribution and seasonality. 

 

Three main improvements to the general ARMA fitting 

procedure are introduced: a robust estimation of the seasonal 

components, and accurate method to compute model 

parameters along with an automatic expert system for the 

model optimal-configuration selection. These implementations 
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are effectively verified to be fine improvements. Namely, STL 

method computes very regular as well as detailed seasonal 

components; in addition, the Whittle’s approximation coupled 

with the complex-modified optimization-procedure give 

parameter-estimates with lower variance and unbiased mean 

when different series drawn out from the same process are 

analysed. Finally, if the observed series is unaffected by 

significant outliers, the expert system is able to automatically 

and properly identify the true model with rates very close to 

50% and, generally, slightly overestimating the model total 

order and correctly identifying the right prevalence of the AR 

and MA model parts.  

The proficiency of the herein proposed methodology is 

demonstrated in this paper through comparisons of simulated 

series with data observed by the directional buoy of RON, 

located offshore Alghero coast – Sardinia, Italy. The achieved 

results point out that statistical properties of the observed and 

simulated time series are almost nearly equivalent; this nice 

agreement embraces winter and summer seasonal patterns, sea 

state sequencing, over-threshold persistence, occurrence and 

cumulate frequency distribution of significant wave-height as 

well as both the cumulate frequency distribution of the storm 

duration and its wave-height peak-value. 

Accordingly, the described ARMA-modelling procedure is 

an efficient tool in representing the wave-height climate. Its 

straightforward application is accordingly associated to the 

comprehension of sea state conditions, which is of central 

importance for many offshore and nearshore activities. 

Actually, estimates of risk for critical scenarios are often 

defined as some over-threshold responses of complex and 

interlaced systems; Monte Carlo can therefore be the only way 

to derive the probabilities of interest. Accordingly, even if 

there is a huge amount of data collected on ocean waves, 

which is jet geographically sparse and time limited, ARMA 

models can be very helpful, being able to provide large 

database of observed statistically-equivalent information.  

Moreover, taking into consideration the modern 

engineering-area of wave-energy conversion, a fresh and 

promising application of linear model is delineated. Actually, 

according with [31], a real-time control of converters is 

required to approach the optimal efficiency of wave-energy 

extraction; to this aim the knowledge of future incident wave 

elevation is mandatory. Treating wave surface fluctuations as 

a time series and applying an ARMA model, makes possible 

to predict incoming wave elevation only from its past history. 

Results achieved on real data from Galway Bay and Pico 

Island showed the proficiency of a linear model to render a 

very accurate prediction of the incoming swell waves for a lag 

up to two wave periods. The herein presented methodology 

can be promptly adapted to wave elevation time series 

excluding the seasonal components estimation. 
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