
An Experimental Study of Parallel

Multi-Objective Genetic Algorithm Models

S. Mishra, S. S. Singh
School of Electronics Engineering

KIIT University, Bhubaneswar, India

B. S. P. Mishra
School of Computer Engineering

KIIT University, Bhubaneswar, India

Abstract- In the real world most of the optimization

problems are more than one objective. To address these

problems Non-dominated Sorting Genetic Algorithm (NSGA

II) is universally referred as a suitable instrument.

Nevertheless, problems having many objectives take immense

amount of time which leads classical NSGA II to provide

solution in tolerable time. In this perspective, parallelization

can be an appropriate choice. This paper represents about

parallelization of NSGA-II in different models and gives a

comparative study by considering a multi-objective rucksack

problem. Further, we emphasize on two factors i.e.,

convergence and time. From the analysis it is clear that cone

separation model exhibit better result in comparison to other

existing models.

Keywords — PMOGA; NSGA II; Parallel Models; Rucksack

Problem

I. INTRODUCTION

In engineering domain majority of the problems are
multi-objective in nature, where the objectives are
contradictory to each other [1]. In a single objective problem
it is easy to find a single solution where as in a Multi-
objective Problem (MOP) it is very difficult to converge to a
single solution. Hence, the procedure to solve a MOP
provides tradeoff solutions, which resides on a Pareto font.
This provides more flexibility to the user to select a
particular solution. The solutions present on the pareto font
are known as non-dominated solution as no other solution
are better than them present in the search space by taking
into account all objectives at a time. Evolutionary
Algorithms (EAs) can find multiple Pareto fonts in a single
run. The main objective of Multi-objective Evolutionary
Algorithm (MOEA) [1] can be enumerated as below:

i. The distance between True Pareto font and
resultant Pareto font should be minimized.

ii. Proper distribution of solution in the
Pareto font.

iii. Solution should cover each objective in
wide range.

While addressing the Multi-objective problems of higher
domain it covers large search space, so the population size
increases due to which MOGA consumes huge amount of
time to provide the solution. Hence, parallelizing MOGA can
be a best solution to address the above problem.

There are two type of parallelism: one is data parallelism
and the other one is control parallelism. In case of data
parallelism the data is parallelized. In this case a common
instruction is operated on a different data set. Whereas in
case of control parallelism the instruction is parallelized i.e.

different instructions operate on a common data set in
parallel. As in MOEA, a set of solution is achieved, so it
opens the possibility of

There exist three basic models for parallelization of
MOGA [2, 3, 6]. This paper describes the basic MOGA
algorithm i.e. NSGA II parallel implementation and
addresses rucksack problem. The result is studied on the
basis of two parameter i.e., convergence and time.

Section II describes different models of PMOGA.
Rucksack problem and its experimental analysis is discussed
in section III and IV respectively. Finally section V describes
the conclusion.

II. LITERATURE SURVEY ON EXISTING MODELS

Pragmatic operators of Evolutionary algorithms like
crossover, mutation and operations like fitness evaluation
can be carried out exclusively on different individuals.
Parallization of MOGA has to address the following issues
like:

 Selection (globally or locally), Fitness evaluation

and mutation;

 Single or multiple subpopulations;

 Crossover in multiple populations.

The Parallelize multi-objective GAs can be figured out
into three different categories which are mentioned below.

A. Master-Slave

In this model, one processor known as master processor
maintains control over selection, crossover, and mutation.
Fitness evaluation is done by other processor known as slave
processors. This is done to decrease the overall execution
time. Trigger model is a variant of Master slave model as
described in Figure 1. Master activates the slaves and each
one populates initial solution and performs the fitness
evaluation. The calculated fitness value is returned back to
the master who performs the other operations. This model
uses the perception of in-depth search of solution space
through random exploration by the slaves [1].

B. Island Model

In this model each processor is known as a deme. The
population is divided among the processors. Then each
processor runs the GA independently. The exchange of best
individuals between the demes by a process known as
migration. The pictorial representation is given in Figure 2.
Low communication overhead and higher diversity are the
key features of the Island model [3].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IC3S - 2016 Conference Proceedings

Volume 4, Issue 28

Special Issue - 2016

1

C. Cone Separation model

It was suggested by Deb et al. in 2004 [4]. In this model
the search space is divided and distributed among the
processors. The fitness space is also partitioned in to cones.
In this model they also used the concept of frequent
normalization and renormalization to handle the individuals.
This approach is established with NSGA II [4, 6]. The
pictorial representation is given in Figure 3.

Fig. 1. Master-slave Model

Fig. 2. Island Model

Fig. 3. Cone separation Model

III. MULTI-OBJECTIVE RUCKSACK PROBLEM

The Rucksack problem is a well known combinatorial
optimization problem due its NP-hard and realistic nature.
Many papers can be founded in the literature about multi-
objective Rucksack problem or knapsack problem and about
the algorithms proposed for solving them [5, 7]. 0/1
knapsack problem is a variant of Rucksack Problem.
Keeping the capacity constraints in the knapsack the profit
has to be maximized. By making the number of knapsack
variable the problem can be converted to a multi-objective
problem. Multi-objective 0/1 knapsack problem can be
formulated by (1) and (2)

Let us, consider t = set of items and k = set of knapsacks

Pa,b = Profit earned from item b with respect to knapsack a,
wa,b = Weight of item b with respect to knapsack a,

Ca = capacity of knapsack a.

Objective: Uncover a vector x =(x1,x2,, xt) {0, 1}t such
that

∀i {1, 2, ..., k} (1)

and for which f(x)=(f1(x),f2(x), ..., fk(x)) is maximum,
where

fi(x)= ∑ tb=1 pab .xb (2)

and xb = 1 iff item b is selected.

The Following suggestions in [7], the knapsack capacities
are set to half the total weight according to the corresponding
knapsack as indicated in (3).

Ci = 0.5 ∑ tb=1 wab (3)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IC3S - 2016 Conference Proceedings

Volume 4, Issue 28

Special Issue - 2016

2

IV. EXPERIMENTAL ANALYSIS

This part describes the experimental analysis of the
problem.

A. Experiment has done in the following setup

TABLE I. EXPERIMENTAL SETUP

Programming

Language

System Speed of the

Processor

RAM OS

C I7 , 8

cores

1.4 Ghz 2 GB Linux

B. Experimental result

To find out the solution to the problem, the experiment is
conducted with a very well-known multi-objective 0/1-
knapsack problem. Problem is addressed by all the 3
models by using two processor and four processors and it is
compared with the result using single processor. The Figure
4 explains the convergence result in trigger model. From that
Figure, it can be seen that in a single processor the profit is
maximum than two processor and four processors. The
convergence quality is inversely proportional to the number
of processors.

The same thing we get when dealing with cone
separation model (Figure 5.) and island model (Figure 6.).
Figure 7. and Figure 8. explains the comparative analysis on
different models having two processors and four processors
respectively.

While running the experiment it has been observed that
in single processor every independent run terminates due to
the first termination condition (i.e., average profit greater
than 20000). In case of two processor cone separation 10%
of the independent run stop due to the first termination
condition and rest terminates due to the stop of the Pareto
movement (1st termination condition). In all other models,
irrespective of the number of processors, algorithm
terminates due to the steady state of the Pareto. So it can be
concluded that two processor cone separation model is
relatively better than any other model, irrespective of the
number of processors. Since single processor terminates
only because of the average profit exceeds the upper bound
(i.e., 20000) we can assume that the uni-processor could
have converged more, leading to much more better results.
Again the analysis has been done by considering one of the
basic parallel parameter, i.e., time. TABLE III explains the
time taken for convergence of Pareto front in single
processor, two processor and four processors by using the
cone separation model, island model and trigger model
respectively. In TABLE III, the column one explains about
different models taken, column two explains about number
of processors taken in each model and column three
represents the time taken by the models to converge to the
Pareto front.

The Figure-9 explains the speed up obtained in different
models by increasing the number of processors.

TABLE II. PARAMETER SETTING

Process

or

Population size Crosso

ver

rate

Mutatio

n rate

Terminati-

on

condition

1 2 3 300 200 100 0.9 0.15/bit No. of

generation
or Profit >

20,000

TABLE III. TIME TAKEN FOR CONVERGENCE OF PARETO

WITH DIFFERENT FRONT BY DIFFERENT MODELS

Model No of Processor Time Taken (in sec)

Single Processor 1 38.159

Cone separation 2 11.242

4 15.644

Island 2 13.7107

4 9.0811

Trigger 2 10.4696

4 9.1595

Fig. 4. Convergence result in trigger model using different processors.

Fig. 5. Convergence result in cone separation model using different
 processors.

By analyzing it has also been found that the time taken
by the single processor is more due to its characteristics of
constant movement towards the true Pareto front. All other
models take less time than the single processor but the
quality of the convergence detoriates. Hence there is a bit
tradeoff between the time and the convergence. It is clear
that if we consider the time constraint the island model takes

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IC3S - 2016 Conference Proceedings

Volume 4, Issue 28

Special Issue - 2016

3

less time for obtaining the Pareto front than any single and
parallel models.

Fig. 6. Convergence result in island model using different processors

Fig. 7. Convergence result of two processors with different models

Fig. 8. Convergence result of four processors models

Fig. 9. Speedup analysis among different models

V. CONCLUSION

This paper presents a comparative analysis on different
models of PMOGA by implementing it on 0/1 knapsack
problem. It is concluded that, cone separation method
provides an opportunity to explore the pareto font in parallel.
Over all it is found that, cone separation model has the
ability of better convergence than any other model. While
considering the time parameter it is concluded that, single
processor takes more time than any other parallel processing
models but having better convergence.

REFERENCES

[1] Al-Somani, T & Qureshi, Kalim (2000), Reliability Optimization
Using Genetics Algorithms", M. Sc. Thesis, Saudi Arabia: King

Abdul-Aziz University.

[2] Branke, J., Schmeck, H., Deb, K. & Reddy, M. S. (2004),
"Parallelizing Multi-objective Evolutionary Algorithms: Cone

Separation", a congress on evolutionary Computation, Vol. 2, pp.

1952–1957.
[3] Cantu-Paz, E. (1998), "A Survey of Parallel Genetic Algorithms",

Calculateurs Paralleles, Vol.10, No. 2, pp. 141-171.

[4] Deb, K., Pratap, A., Agrawal, S. & Meyarivan, T. (2002), “A Fast
and Elitist Multi-objective Genetic Algorithm: NSGA-II”, IEEE

Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182-

197.
[5] Grosan, C. (2003),"How to compare the multi-objective

evolutionary algorithms performances?", Zilele Academice,

Clujene.
[6] Streichert, F. B., Ulmer, H. & Zell, A. (2005),"Parallelization of

Multi-objective Evolutionary Algorithms Using Clustering

Algorithms", In Evolutionary Multi-Criterion Optimization ed. by
Coello Coello, Carlos, Hernández Aguirre, Arturo, Zitzler, Eckart,

Springer, Vol. 3410, pp. 92-107.

[7] Zitzler, E., Deb, K. & Thiele, L. (1999), “Comparison of multi-
objective evolutionary algorithms: Empirical results”, Institution

Swiss Federal Institute of Technology (ETH), Zurich.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

IC3S - 2016 Conference Proceedings

Volume 4, Issue 28

Special Issue - 2016

4

