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Abstract- In the real world most of the optimization 

problems are more than one objective. To address these 

problems Non-dominated Sorting Genetic Algorithm (NSGA 

II) is universally referred as a suitable instrument. 

Nevertheless, problems having many objectives take immense 

amount of time which leads classical NSGA II to provide 

solution in tolerable time. In this perspective, parallelization 

can be an appropriate choice. This paper represents about 

parallelization of NSGA-II in different models and gives a 

comparative study by considering a multi-objective rucksack 

problem. Further, we emphasize on two factors i.e., 

convergence and time. From the analysis it is clear that cone 

separation model exhibit better result in comparison to other 

existing models. 
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I.  INTRODUCTION 

In engineering domain majority of the problems are 
multi-objective in nature, where the objectives are 
contradictory to each other [1]. In a single objective problem 
it is easy to find a single solution where as in a Multi-
objective Problem (MOP) it is very difficult to converge to a 
single solution. Hence, the procedure to solve a MOP 
provides tradeoff solutions, which resides on a Pareto font. 
This provides more flexibility to the user to select a 
particular solution. The solutions present on the pareto font 
are known as non-dominated solution as no other  solution 
are better than them present in the search space by taking 
into account all objectives at a time. Evolutionary 
Algorithms (EAs) can find multiple Pareto fonts in a single 
run. The main objective of Multi-objective Evolutionary 
Algorithm (MOEA) [1] can be enumerated as below:     

i. The distance between True Pareto font and 
resultant Pareto font should be minimized. 

ii. Proper distribution of solution in the 
Pareto font. 

iii. Solution should cover each objective in 
wide range. 

While addressing the Multi-objective problems of higher 
domain it covers large search space, so the population size 
increases due to which MOGA consumes huge amount of 
time to provide the solution. Hence, parallelizing MOGA can 
be a best solution to address the above problem. 

There are two type of parallelism: one is data parallelism 
and the other one is control parallelism. In case of data 
parallelism the data is parallelized. In this case a common 
instruction is operated on a different data set. Whereas in 
case of control parallelism the instruction is parallelized i.e. 

different instructions operate on a common data set in 
parallel. As in MOEA, a set of solution is achieved, so it 
opens the possibility of  

There exist three basic models for parallelization of 
MOGA [2, 3, 6]. This paper describes the basic MOGA 
algorithm i.e. NSGA II parallel implementation and 
addresses rucksack problem. The result is studied on the 
basis of two parameter i.e., convergence and time.   

Section II describes different models of PMOGA. 
Rucksack problem and its experimental analysis is discussed 
in section III and IV respectively. Finally section V describes 
the conclusion. 

II. LITERATURE SURVEY ON EXISTING MODELS 

Pragmatic operators of Evolutionary algorithms like 
crossover, mutation and operations like fitness evaluation 
can be carried out exclusively on different individuals. 
Parallization of MOGA has to address the following issues 
like: 

 Selection (globally or locally), Fitness evaluation 

and mutation; 

 Single or multiple subpopulations;  

 Crossover in multiple populations. 
 

The Parallelize multi-objective GAs can be figured out 
into three different categories which are mentioned below. 

A. Master-Slave 

In this model, one processor known as master processor 
maintains control over selection, crossover, and mutation. 
Fitness evaluation is done by other processor known as slave 
processors. This is done to decrease the overall execution 
time. Trigger model is a variant of Master slave model as 
described in Figure 1. Master activates the slaves and each 
one populates initial solution and performs the fitness 
evaluation. The calculated fitness value is returned back to 
the master who performs the other operations. This model 
uses the perception of in-depth search of solution space 
through random exploration by the slaves [1]. 

B. Island Model 

In this model each processor is known as a deme. The 
population is divided among the processors. Then each 
processor runs the GA independently. The exchange of best 
individuals between the demes by a process known as 
migration. The pictorial representation is given in Figure 2. 
Low communication overhead and higher diversity are the 
key features of the Island model [3]. 
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C. Cone Separation model 

It was suggested by Deb et al. in 2004 [4]. In this model 
the search space is divided and distributed among the 
processors. The fitness space is also partitioned in to cones. 
In this model they also used the concept of frequent 
normalization and renormalization to handle the individuals. 
This approach is established with NSGA II [4, 6]. The 
pictorial representation is given in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Master-slave Model 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Island Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Cone separation Model 

III. MULTI-OBJECTIVE RUCKSACK PROBLEM 

The Rucksack problem is a well known combinatorial 
optimization problem due its NP-hard and realistic nature. 
Many papers can be founded in the literature about multi-
objective Rucksack problem or knapsack problem and about 
the algorithms proposed for solving them [5, 7]. 0/1 
knapsack problem is a variant of Rucksack Problem. 
Keeping the capacity constraints in the knapsack the profit 
has to be maximized. By making the number of knapsack 
variable the problem can be converted to a multi-objective 
problem. Multi-objective 0/1 knapsack problem can be 
formulated by (1) and (2) 

Let us, consider t = set of items and k = set of  knapsacks  

Pa,b = Profit earned from item b with respect to  knapsack a, 
wa,b = Weight of item b with respect to knapsack a, 

Ca = capacity of knapsack a. 

Objective: Uncover a vector x =(x1,x2, ......, xt)  {0, 1}t such 
that  

∀i {1, 2, ..., k}                                                              (1) 

and for which f(x)=(f1(x),f2(x), ..., fk(x)) is maximum, 
where 

fi(x)= ∑ tb=1  pab .xb                                                        (2) 

and xb = 1 iff item b is selected. 

The Following suggestions in [7], the knapsack capacities 
are set to half the total weight according to the corresponding 
knapsack as indicated in (3). 

Ci = 0.5 ∑ tb=1 wab                                                         (3) 
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IV. EXPERIMENTAL ANALYSIS 

This part describes the experimental analysis of the 
problem. 

A. Experiment has done in the following setup 

TABLE I.  EXPERIMENTAL SETUP 

 

Programming 

Language 

System Speed of the 

Processor 

RAM OS 

C I7 , 8 

cores 

1.4 Ghz 2 GB Linux 

B. Experimental result 

To find out the solution to the problem, the experiment is 
conducted with a very well-known multi-objective 0/1- 
knapsack problem.   Problem is addressed by all the 3 
models by using two processor and four processors and it is 
compared with the result using single processor. The Figure 
4 explains the convergence result in trigger model. From that 
Figure, it can be seen that in a single processor the profit is 
maximum than two processor and four processors. The 
convergence quality is inversely proportional to the number 
of processors. 

The same thing we get when dealing with cone 
separation model (Figure 5.) and island model (Figure 6.). 
Figure 7. and Figure 8. explains the comparative analysis on 
different models having two processors and four processors 
respectively.  

While running the experiment it has been observed that 
in single processor every independent run terminates due to 
the first termination condition (i.e., average profit greater 
than 20000). In case of two processor cone separation 10% 
of the independent run stop due to the first termination 
condition and rest terminates due to the stop of the Pareto 
movement (1st termination condition). In all other models, 
irrespective of the number of processors, algorithm 
terminates due to the steady state of the Pareto. So it can be 
concluded that two processor cone separation model is 
relatively better than any other model, irrespective of the 
number of processors.  Since single processor terminates 
only because of the average profit exceeds the upper bound 
(i.e., 20000) we can assume that the uni-processor could 
have converged more, leading to much more better results. 
Again the analysis has been done by considering one of the 
basic parallel parameter, i.e., time. TABLE III explains the 
time taken for convergence of Pareto front in single 
processor, two processor and four processors by using the 
cone separation model, island model and trigger model 
respectively. In TABLE III, the column one explains about 
different models taken, column two explains about number 
of processors taken in each model and column three 
represents the time taken by the models to converge to the 
Pareto front.  

The Figure-9 explains the speed up obtained in different 
models by increasing the number of processors. 

 

 

 

TABLE II.  PARAMETER SETTING 

Process

or 

Population size Crosso

ver 

rate 

Mutatio

n rate 

Terminati-

on 

condition 

1 2 3 300 200 100 0.9 0.15/bit No. of 

generation 
or Profit > 

20,000  

TABLE III.  TIME TAKEN FOR CONVERGENCE OF PARETO 

WITH DIFFERENT FRONT BY DIFFERENT MODELS 

Model No of Processor Time Taken (in sec) 

Single Processor 1 38.159 

Cone separation 2 11.242 

4 15.644 

Island 2 13.7107 

4 9.0811 

Trigger 2 10.4696 

4 9.1595 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Convergence result in trigger model using  different processors. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Convergence result in cone separation model using different 
    processors. 

By analyzing it has also been found that the time taken 
by the single processor is more due to its characteristics of 
constant movement towards the true Pareto front. All other 
models take less time than the single processor but the 
quality of the convergence detoriates. Hence there is a bit 
tradeoff between the time and the convergence. It is clear 
that if we consider the time constraint the island model takes 
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less time for obtaining the Pareto front than any single and 
parallel models. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Convergence result in island model using different processors 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Convergence result of two processors with different models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Convergence result of four processors models 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Speedup analysis among different models 

V. CONCLUSION 

This paper presents a comparative analysis on different 
models of PMOGA by implementing it on 0/1 knapsack 
problem. It is concluded that, cone separation method 
provides an opportunity to explore the pareto font in parallel. 
Over all it is found that, cone separation model has the 
ability of better convergence than any other model. While 
considering the time parameter it is concluded that, single 
processor takes more time than any other parallel processing 
models but having better convergence. 
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