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Abstract—This paper proposes an exact algorithm for 

solving the open vehicle routing problem with hiring cost 

(OVRPHC). Given a central depot, vehicles depart to deliver 

goods demanded by a  set of clients. There is a cost associated 

with every vehicle used for deliveries. Every client is visited by a 

vehicle part of a homogeneous fleet, which delivers the required 

amount of a given product or products. Vehicles depart from the 

depot and are not required to return to it, finishing their routes 

after delivering the products to the last client.  There is an 

associated cost for the distance traveled by vehicles. The 

problem’s objective function is to minimize the total traveling 

and hiring costs while considering vehicle capacity constraints.  

To solve the problem, a node-based formulation and a branch-

and-cut algorithm based on a three-index formulation are 

proposed. A set of 14 benchmark instances was used to test the 

proposed algorithm. The results obtained in the computational 

experiments, show the effectiveness of the approach. 
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I.  INTRODUCTION  

As competition between companies continues growing due to 

the incorporation of new competitors, the reduction of prices, 

the reduction of market share and others factors, companies 

continue working on reducing cost while improving the 

efficiency of the available resources. Logistic costs are said to 

represent about 20 % of the product cost. One of the most 

important activities in logistics is the delivery of the goods 

produced to the clients which are usually made by a fleet of 

vehicles usually owned by the company. To reduce costs and 

improve efficiency some companies have decided to outsource 

the delivery activity using a transport company or by renting 

vehicles. Is in this context where the open vehicle routing 

problem takes its importance since vehicles are not required to 

return to the depot after servicing the last client. 

At present there are an important number of companies which 

offer delivery services that rely on outsourcing, allowing them 

to hire vehicles to make deliveries, saving the purchase of 

vehicles and their maintenance. These companies face the 

challenge of solving routing designs problems to optimize the 

use of the vehicles as well as save money. The basic problem 

that arises to optimize the use of vehicles to deliver goods is 

the vehicle routing problem (VRP). There are many 

extensions and generalizations of the vehicle routing problem, 

which consider additional constraints that, affect the route 

design process. Among the most important variants of the 

VRP, we can mention the ones with time windows, pickup 

and delivery, back-hauls, multi-depot, open routes, etc. 

Normally in VRP problems vehicles are required to return to 

the depot after they serve the last client, but that is not the case 

in the open vehicle routing problem (OVRP), in which routes 

end after servicing the last client. The difference between 

VRP and OVRP is shown in Figures 1 and 2.  

 
 

Figure 1. VRP example 

 

 
Figure 2. OVRP example 

 

 The OVRP has been studied in different applications like the 

one in [14] about an air express courier problem, the train 

services planning at the Channel tunnel [4], or the one in [16] 

among other applications. The OVRP considers capacity 

constraints over the vehicles and maximum length constraints 

over the routes. Since the OVRP is of type NP-hard (by the 
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reduction of the Hamiltonian path problem), many of the 

previous research works have concentrated on using heuristic 

methods to solve instances of the problem. Among such works 

we can mention the one by [3], who proposed a variable 

neighborhood search, the Hybrid Evolutionary Strategy by 

[13], the ant colony optimization-based metaheuristic by [7], 

the work by Repoussis et al [10] which proposes a hybrid 

evolution strategy, the Bumble Bees Mating Optimization by 

[8], the work by [17] and the ILP improvement by [12]. 

Although the difficulty of the problem, also exact methods 

have been developed like the branch-and-cut algorithm by [5]. 

In this paper, the Open Vehicle Routing Problem with Hiring 

Costs (OVRPHC) is presented and studied. This new 

combinatorial optimization problem is an extension of the 

open vehicle routing problem (OVRP). In the OVRP many 

authors use a hierarchical objective function that first 

minimizes the number of vehicles and then minimizes the total 

traveled distance. Other authors consider only the 

minimization of the total traveled distance.  

The OVRPHC considers a hiring cost for each vehicle, which 

is included in the objective function. In this sense is no longer 

required to use a hierarchical objective function. A 

formulation and a cutting plane algorithm to solve the problem 

are presented. Two sets of benchmark instances from the 

literature are used to perform the computational experiments. 

The size of the instances varies from 32 to 51 vertices. Every 

test instance was solved using the cutting plane algorithm. The 

cutting plane algorithm obtains lower gaps between the lower 

bound and the best integer solution found than the formulation 

without cuts. Finally, is worth mentioning that the cutting 

plane algorithm finds the optimal solution for 26 of the 27 test 

instances. 

 

II. PROBLEM DESCRIPTION AND FORMULATION 

As with many routing problems the OVRPHC can be 

defined over a graph. As in the VRP, clients are represented as 

vertices as well as the depot. Edges or arcs represent the 

distance between the depot and any customer and between any 

customer to the rest of the customers. Then the OVRPHC is 

defined as follows: 

Let G = (V, A) be a graph where V is a set of vertices and 

A a set of arcs. Set V is defined as V={υ0, υ1, . . . , υn}, where υ0 

is the depot and V+={υ1, . . . , υn}⊂V is a set of n clients. Each 

client υi, i = 1, . . . , n, has an associated demand wi that must 

be delivered. Each arc a=(i, j)∈A has an associated cost cij>0. 

Feasible solutions to the OVRPHC are open routes with origin 

at υ0 that satisfy capacity and route length constraints.  Finally, 

there is a set K of available vehicles, which have an associated 

hiring cost hck. 

The OVRPHC is to find a set of open routes with origin at 

υ0 that minimize the hiring and routing costs and satisfy the 

capacity and route length constraints. Since the OVRPHC is 

an extension of the OVRP, it is also of type NP-hard. 

The OVRPHC can be formulated in many ways. 

Following, we present a node-based formulation for the 

problem. 

A. Node-based formulation 

To solve instances of the OVRPHC, we propose a  Mixed 

Integer Linear Programming (MILP) formulation. Therefore, 

the following variables are defined: 

 
Using these variables, the OVRPHC is formulated as 

follows: 

 
The Objective Function (1) minimizes de total cost 

including routing and hiring costs. Constraints (2) impose that 

every client is visited, while constraints (3) state that vehicles 

can only depart one time from a client. Constraints (4) impose 

that vehicles can only depart from the depot if they are used.  

Finally, constraints (5) are the well-known Miller-Tucker-

Zemlin (MTZ) connectivity constraints and (6) are variable 

domain constraints. 

 

III. BRANCH-AND-CUT ALGORITHM 

Since the OVRPHC is of type NP-hard, it is difficult to 

find optimal solutions even for small instances of the problem. 

Therefore, we developed a branch-and-cut algorithm based on 

the separation of valid inequalities valid for routing problems, 

like the multistar, bin-packing and root-cutset inequalities.  

A. Multistar inequalities 

These inequalities were first proposed by [1]. These 

inequalities enhance the connectivity of vertices, considering 

the required capacity to serve a subset of vertices S∈V+. 

Considering the variables used to formulate the OVRPHC, 

they are expressed as follows: 
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B. Bin-packing inequalities 

The Bin-packing inequalities can be expressed as 

connectivity or as sub-tour elimination constraints (SEC). The  

SEC version takes the following form: 

 
where  

 

 
is the minimum required number of vehicles to supply the 

demand of  the clients in set S. 

C. Root-cutset inequalities 

This family of inequalities were also proposed by [1]. 

These inequalities help enforce the connection with the depot 

and have probed to be helpful in network design and routing 

problems. They are expressed as follows: 

 
 

where 

,  and 

 . 

D. Branch-and-cut algorithm 

The branch-and-cut algorithm solves the linear relaxation of 

the model presented in the previous section. The branch-and-

cut algorithm removes constraints (7) and (8) and replaces 

them with: 

 

 
and the relaxed problem LR is obtained.  The branch-and-cut 

algorithm solves LR to obtain the fractional solution X*. Once 

a solution is obtained, the separation  algorithm proposed in 

[1] is used to find multistar, bin-packing and root-cutset 

inequalities violated by the fractional solution  X*. The 

violated inequalities are then included in the relaxed problem 

LR and solved. This procedure is repeated until no violated 

inequalities are found. The final LR model is then used with a 

branch and bound algorithm to find the optimal solution to the 

problem. 

 

IV. COMPUTATIONAL EXPERIMENTS 

To asses the performance of the proposed branch-and-cut 

algorithm computational experiments were performed. To 

perform the computational experiments a set of 27 benchmark 

instances from the literature was used. The characteristics of 

the instances are described in Table I, where n represents the 

number of clients and minK the capacity of the vehicles. For 

the computational experiments, three different values for the 

hiring cost (HC) were used. In total 81 computational 

experiments were run. 

TABLE I.  TEST INSTANCES  

Instance n minK Instance n minK 

A-n32-k5 32 5 A-n48-k7 48 7 

A-n33-k5 33 5 A-n53-k7 53 7 

A-n33-k6 33 6 A-n54-k7 54 7 

A-n34-k5 34 5 A-n55-k9 55 9 

A-n36-k5 36 5 A-n60-k9 60 9 

A-n37-k5 37 5 A-n61-k9  61 9 

A-n37-k6 37 6 A-n62-k8 62 8 

A-n38-k5 38 5 A-n63-k9 63 9 

A-n39-k5 39 5 A-n63-k10 63 10 

A-n39-k6 39 6 A-n64-k9 64 9 

A-n44-k7 44 7 A-n65-k9 65 9 

A-n45-k6 45 6 A-n69-k9 69 9 

A-n45-k7 45 7 A-n80-k10 80 10 

A-n46-k7 46 7 - - - 

 

The formulation and the branch-and-cut algorithm were 

programmed in C++, using GUROBI 9.0 as the solver. The 

experiments were performed on a PC using Linux with an 

intel i7 6600 processor running at 3.4 GHz.,  and 16 GB of 

memory. For every test instance, a solution time limit of 

72000 seconds was used.    

The results of the computational experiments of the 

branch-and-cut algorithm are presented in Tables II, III, and 

IV. In both tables, column gap shows the percentile difference 

between the upper bound and lower bound obtained by the 

respective solution approach, and column k presents the 

number of vehicles used in the optimal/best solution found by 

the respective solution method. Finally, column Time shows 

the time used by the respective solution method. 

TABLE II.  BRANCH-AND-CUT ALGORITHM RESULTS (HC=0) 

Instance gap k Time Instance gap k Time 

A-n32-k5 0.00 5 1.5 A-n48-k7 0.00 7 39.4 

A-n33-k5 0.00 5 1.6 A-n53-k7 0.00 8 15.1 

A-n33-k6 0.00 6 4.9 A-n54-k7 0.00 7 476.6 

A-n34-k5 0.00 6 7.5 A-n55-k9 0.00 9 277.4 

A-n36-k5 0.00 5 5.3 A-n60-k9 0.00 10 81.9 

A-n37-k5 0.00 5 2.8 A-n61-k9  0.00 9 73.7 

A-n37-k6 0.00 6 10.4 A-n62-k8 0.00 8 2756.5 

A-n38-k5 0.00 6 2.1 A-n63-k9 0.00 10 3093.4 

A-n39-k5 0.00 6 5.5 A-n63-k10 0.00 10 115 

A-n39-k6 0.00 6 7.6 A-n64-k9 0.00 9 2610.1 
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A-n44-k7 0.00 7 60.9 A-n65-k9 0.00 9 598.2 

A-n45-k6 0.00 7 6.6 A-n69-k9 0.00 9 557.6 

A-n45-k7 0.00 7 62.9 A-n80-k10 4.75 11 7200.0 

A-n46-k7 0.00 7 14.3 -  - - 

a.  

TABLE III.  BRANCH-AND-CUT ALGORITHM RESULTS (HC=50) 

Instance gap k Time Instance gap k Time 

A-n32-k5 0.00 5 2.7 A-n48-k7 0.00 7 29.7 

A-n33-k5 0.00 5 4.7 A-n53-k7 0.00 7 85.4 

A-n33-k6 0.00 6 9.7 A-n54-k7 0.00 7 612.6 

A-n34-k5 0.00 5 40.7 A-n55-k9 0.00 9 222.2 

A-n36-k5 0.00 5 9.3 A-n60-k9 0.00 9 590.5 

A-n37-k5 0.00 5 16.0 A-n61-k9  0.00 9 232.7 

A-n37-k6 0.00 6 68.0 A-n62-k8 0.00 8 1390.0 

A-n38-k5 0.00 5 169.2 A-n63-k9 0.00 9 1234.6 

A-n39-k5 0.00 5 41.3 A-n63-k10 0.00 10 208.7 

A-n39-k6 0.00 6 12.0 A-n64-k9 0.00 9 1730.1 

A-n44-k7 0.00 7 78.7 A-n65-k9 0.00 9 1690.2 

A-n45-k6 0.00 6 25.2 A-n69-k9 0.00 9 446.3 

A-n45-k7 0.00 7 231.5 A-n80-k10 5.31 10 7200 

A-n46-k7 0.00 7 19.8 -  - - 

 

TABLE IV.  BRANCH-AND-CUT ALGORITHM RESULTS (HC=100) 

Instance gap k Time Instance gap k Time 

A-n32-k5 0.00 5 3.1 A-n48-k7 0.00 7 55.1 

A-n33-k5 0.00 5 9.1 A-n53-k7 0.00 7 385.1 

A-n33-k6 0.00 6 5.6 A-n54-k7 0.00 7 452.4 

A-n34-k5 0.00 5 45.3 A-n55-k9 0.00 9 434.1 

A-n36-k5 0.00 5 13.1 A-n60-k9 0.00 9 341.1 

A-n37-k5 0.00 5 15.0 A-n61-k9  0.00 9 298.8 

A-n37-k6 0.00 6 9.2 A-n62-k8 0.00 8 2628.1 

A-n38-k5 0.00 5 202.6 A-n63-k9 0.42 9 7200 

A-n39-k5 0.00 5 61.7 A-n63-k10 0.00 10 154.8 

A-n39-k6 0.00 6 16.4 A-n64-k9 0.42 9 1264.5 

A-n44-k7 0.00 7 139.1 A-n65-k9 0.00 9 874.7 

A-n45-k6 0.00 6 25.2 A-n69-k9 0.00 9 1134.8 

A-n45-k7 0.00 7 34.1 A-n80-k10 2.03 10 7200 

A-n46-k7 0.00 7 97.5 -  - - 

 

The results in Table I (with HC=0) show that the branch-

and-cut algorithm is able to find the optimal solutions for 26 

of the 27 benchmark instances when there is no hiring cost. 

The solution approach finds the optimal solution for instances 

of up to 69 vertices (clients). For the largest instance with 80 

vertices (clients), the algorithm is unable to find the optimal 

solution and obtains a gap of 4.75% reaching the time limit. 

Regarding the number of vehicles to be used, for eight of the 

test instances, the optimal solution found uses one more 

vehicle than the minimum required. 

For a hiring cost of 50 (HC=50), the results in Table II 

show that the branch-and-cut algorithm again optimally solves 

26 of 27 benchmark instances. Also, the largest instance with 

80 vertices (clients) is not solved to optimality and obtains a 

gap of 5.31% after reaching the time limit. In this case, the 

number of vehicles used in the optimal solutions found by the 

algorithm is equal to the minimum required. 

Finally, in Table III with (HC=100) the branch-and-cut 

algorithm finds the optimal solutions for 25 of the 27 

benchmark instances. In this case, the algorithm is unable to 

find the optimal solution for instances “A-n64-k9” and “A-

n80-k10”. Reaching in both cases the time limit. The gap for 

both instances is 0.42% and 2.03 respectively. As in the 

previous case (HC=50) the solutions found by the algorithm, 

use the minimum of required vehicles. 

V. CONCLUDING REMARKS 

The Open Vehicle Routing Problem with Hiring Cost, a 

new variant of the well-known Open Vehicle Routing 

Problem, was introduced and formulated. A branch-and-cut 

algorithm, based on the separation of valid inequalities was 

used to perform computational experiments. The results show 

that the algorithm is capable of finding optimal solutions for 

instances with up to 69 vertices (clients). For larger instances 

of 80 vertices, the solution approach is unable to find the 

optimal solution. Therefore, the approach is efficient for small 

and medium-sized instances and struggles with larger 

instances. 
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