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Abstract—This paper proposes an exact algorithm for
solving the open vehicle routing problem with hiring cost
(OVRPHC). Given a central depot, vehicles depart to deliver
goods demanded by a set of clients. There is a cost associated
with every vehicle used for deliveries. Every client is visited by a
vehicle part of a homogeneous fleet, which delivers the required
amount of a given product or products. Vehicles depart from the
depot and are not required to return to it, finishing their routes
after delivering the products to the last client. There is an
associated cost for the distance traveled by vehicles. The
problem’s objective function is to minimize the total traveling
and hiring costs while considering vehicle capacity constraints.
To solve the problem, a node-based formulation and a branch-
and-cut algorithm based on a three-index formulation are
proposed. A set of 14 benchmark instances was used to test the
proposed algorithm. The results obtained in the computational
experiments, show the effectiveness of the approach.
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I.  INTRODUCTION

As competition between companies continues growing due to
the incorporation of new competitors, the reduction of prices,
the reduction of market share and others factors, companies
continue working on reducing cost while improving the
efficiency of the available resources. Logistic costs are said to
represent about 20 % of the product cost. One of the most
important activities in logistics is the delivery of the goods
produced to the clients which are usually made by a fleet of
vehicles usually owned by the company. To reduce costs and
improve efficiency some companies have decided to outsource
the delivery activity using a transport company or by renting
vehicles. Is in this context where the open vehicle routing
problem takes its importance since vehicles are not required to
return to the depot after servicing the last client.

At present there are an important number of companies which
offer delivery services that rely on outsourcing, allowing them
to hire vehicles to make deliveries, saving the purchase of
vehicles and their maintenance. These companies face the
challenge of solving routing designs problems to optimize the
use of the vehicles as well as save money. The basic problem
that arises to optimize the use of vehicles to deliver goods is
the wvehicle routing problem (VRP). There are many
extensions and generalizations of the vehicle routing problem,
which consider additional constraints that, affect the route
design process. Among the most important variants of the
VRP, we can mention the ones with time windows, pickup
and delivery, back-hauls, multi-depot, open routes, etc.

routing; OVRP; branch-and-cut;

Normally in VRP problems vehicles are required to return to
the depot after they serve the last client, but that is not the case
in the open vehicle routing problem (OVRP), in which routes
end after servicing the last client. The difference between
VRP and OVRP is shown in Figures 1 and 2.

Figure 2. OVRP example

The OVRP has been studied in different applications like the
one in [14] about an air express courier problem, the train
services planning at the Channel tunnel [4], or the one in [16]
among other applications. The OVRP considers capacity
constraints over the vehicles and maximum length constraints
over the routes. Since the OVRP is of type NP-hard (by the
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reduction of the Hamiltonian path problem), many of the
previous research works have concentrated on using heuristic
methods to solve instances of the problem. Among such works
we can mention the one by [3], who proposed a variable
neighborhood search, the Hybrid Evolutionary Strategy by
[13], the ant colony optimization-based metaheuristic by [7],
the work by Repoussis et al [10] which proposes a hybrid
evolution strategy, the Bumble Bees Mating Optimization by
[8], the work by [17] and the ILP improvement by [12].
Although the difficulty of the problem, also exact methods
have been developed like the branch-and-cut algorithm by [5].
In this paper, the Open Vehicle Routing Problem with Hiring
Costs (OVRPHC) is presented and studied. This new
combinatorial optimization problem is an extension of the
open vehicle routing problem (OVRP). In the OVRP many
authors use a hierarchical objective function that first
minimizes the number of vehicles and then minimizes the total
traveled distance. Other authors consider only the
minimization of the total traveled distance.

The OVRPHC considers a hiring cost for each vehicle, which
is included in the objective function. In this sense is no longer
required to use a hierarchical objective function. A
formulation and a cutting plane algorithm to solve the problem
are presented. Two sets of benchmark instances from the
literature are used to perform the computational experiments.
The size of the instances varies from 32 to 51 vertices. Every
test instance was solved using the cutting plane algorithm. The
cutting plane algorithm obtains lower gaps between the lower
bound and the best integer solution found than the formulation
without cuts. Finally, is worth mentioning that the cutting
plane algorithm finds the optimal solution for 26 of the 27 test
instances.

II. PROBLEM DESCRIPTION AND FORMULATION

As with many routing problems the OVRPHC can be
defined over a graph. As in the VRP, clients are represented as
vertices as well as the depot. Edges or arcs represent the
distance between the depot and any customer and between any
customer to the rest of the customers. Then the OVRPHC is
defined as follows:

Let G = (V, A) be a graph where V is a set of vertices and
A asetof arcs. Set V is defined as V={uvq, v1, . . ., vn}, Where vg
is the depot and V*={vs, . . ., v}V is a set of n clients. Each
clientvi, i=1,...,n, has an associated demand w; that must
be delivered. Each arc a=(i, j) €A has an associated cost c;;>0.
Feasible solutions to the OVRPHC are open routes with origin
at vo that satisfy capacity and route length constraints. Finally,
there is a set K of available vehicles, which have an associated
hiring cost hcy.

The OVRPHC is to find a set of open routes with origin at
vo that minimize the hiring and routing costs and satisfy the
capacity and route length constraints. Since the OVRPHC is
an extension of the OVRP, it is also of type NP-hard.

The OVRPHC can be formulated in many ways.
Following, we present a node-based formulation for the
problem.

A. Node-based formulation

To solve instances of the OVRPHC, we propose a Mixed
Integer Linear Programming (MILP) formulation. Therefore,
the following variables are defined:

y _ 1, if vehicle k is used
0, otherwise
_1,if arc (i, j)is traversed by vehicle k
ik — :

0,otherwise

T,=load in vehicle after visiting clienti€ V"

Using these variables, the OVRPHC is formulated as
follows:

Minimize ) > > ¢; X+ 2, he, i @

keK ieV jeV ke K
Subject to:

2, 2, cxp=1 Vjev? @
keK ieV

i#j
Z Z Cji X =<1 Y jev® (©)
keK ieV

i#j
2 Xo =Y YV keK “
JjeV
Tr‘Tij;( Qx;<Q—d;, [(i,j)€A ®)
xx€(0,1)  i€V,jeV, keK ©

The Objective Function (1) minimizes de total cost
including routing and hiring costs. Constraints (2) impose that
every client is visited, while constraints (3) state that vehicles
can only depart one time from a client. Constraints (4) impose
that vehicles can only depart from the depot if they are used.
Finally, constraints (5) are the well-known Miller-Tucker-
Zemlin (MTZ) connectivity constraints and (6) are variable
domain constraints.

I1l.  BRANCH-AND-CUT ALGORITHM
Since the OVRPHC is of type NP-hard, it is difficult to
find optimal solutions even for small instances of the problem.
Therefore, we developed a branch-and-cut algorithm based on
the separation of valid inequalities valid for routing problems,
like the multistar, bin-packing and root-cutset inequalities.

A. Multistar inequalities

These inequalities were first proposed by [1]. These
inequalities enhance the connectivity of vertices, considering
the required capacity to serve a subset of vertices SeV*.
Considering the variables used to formulate the OVRPHC,
they are expressed as follows:

Z ZQXOjk"'Z ZZ(Q_di)Xijk ®

keK jeS keK igS jeS
=2 2 2 dixu=2 d
keK igS jeS jes
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B. Bin-packing inequalities

The Bin-packing inequalities can be expressed as
connectivity or as sub-tour elimination constraints (SEC). The
SEC version takes the following form:

2, 2, 2 xu<ISI-VR(S) &

keK ieS jeS

where

)

JES

VR(S)= g

is the minimum required number of vehicles to supply the
demand of the clients in set S.

C. Root-cutset inequalities

This family of inequalities were also proposed by [1].
These inequalities help enforce the connection with the depot
and have probed to be helpful in network design and routing
problems They are expressed as follows:

HZZZx.,wZZZx,J,(_ #1 40

keK i€B jeS keK ieB jeS

., and

=>4,

i€S

D. Branch-and-cut algorithm

The branch-and-cut algorithm solves the linear relaxation of
the model presented in the previous section. The branch-and-
cut algorithm removes constraints (7) and (8) and replaces
them with:

x.. €[0,1]

ijk

}’k[:]

and the relaxed problem LR is obtained. The branch-and-cut
algorithm solves LR to obtain the fractional solution X”. Once
a solution is obtained, the separation algorithm proposed in
[1] is used to find multistar, bin-packing and root-cutset
inequalities violated by the fractional solution X". The
violated inequalities are then included in the relaxed problem
LR and solved. This procedure is repeated until no violated
inequalities are found. The final LR model is then used with a
branch and bound algorithm to find the optimal solution to the
problem.

ieV,jeV, kekK (11)
keK 12)

IV. COMPUTATIONAL EXPERIMENTS
To asses the performance of the proposed branch-and-cut
algorithm computational experiments were performed. To
perform the computational experiments a set of 27 benchmark

instances from the literature was used. The characteristics of
the instances are described in Table I, where n represents the
number of clients and minK the capacity of the vehicles. For
the computational experiments, three different values for the
hiring cost (HC) were used. In total 81 computational
experiments were run.

TABLE I. TEST INSTANCES
Instance n minK Instance n minK
A-n32-k5 32 5 A-n48-k7 48 7
A-n33-k5 33 5 A-n53-k7 53 7
A-n33-k6 33 6 A-n54-k7 54 7
A-n34-k5 34 A-n55-k9 55
A-n36-k5 36 5 A-n60-k9 60
A-n37-k5 37 5 A-n61-k9 61 9
A-n37-k6 37 6 A-n62-k8 62 8
A-n38-k5 38 5 A-n63-k9 63 9
A-n39-k5 39 5 A-n63-k10 63 10
A-n39-k6 39 6 A-n64-k9 64
A-nd44-k7 44 7 A-n65-k9 65 9
A-n45-k6 45 6 A-n69-k9 69 9
A-n45-k7 45 7 A-n80-k10 80 10
A-n46-k7 46 7 -

The formulation and the branch-and-cut algorithm were
programmed in C++, using GUROBI 9.0 as the solver. The
experiments were performed on a PC using Linux with an
intel i7 6600 processor running at 3.4 GHz., and 16 GB of
memory. For every test instance, a solution time limit of
72000 seconds was used.

The results of the computational experiments of the
branch-and-cut algorithm are presented in Tables II, 1ll, and
V. In both tables, column gap shows the percentile difference
between the upper bound and lower bound obtained by the
respective solution approach, and column k presents the
number of vehicles used in the optimal/best solution found by
the respective solution method. Finally, column Time shows
the time used by the respective solution method.

TABLE Il BRANCH-AND-CUT ALGORITHM RESULTS (HC=0)
Instance gap | k | Time Instance gap | k | Time

A-n32-k5 0.00 5 15 A-n48-k7 0.00 7 39.4

A-n33-k5 0.00 5 1.6 A-n53-k7 0.00 8 15.1

A-n33-k6 0.00 6 4.9 A-n54-k7 0.00 7 476.6

A-n34-k5 0.00 6 7.5 A-n55-k9 0.00 9 277.4

A-n36-k5 0.00 5 53 A-n60-k9 0.00 10 81.9

A-n37-k5 0.00 5 2.8 A-n61-k9 0.00 9 73.7

A-n37-k6 0.00 6 10.4 A-n62-k8 0.00 8 2756.5

A-n38-k5 0.00 6 2.1 A-n63-k9 0.00 | 10 | 30934

A-n39-k5 0.00 6 55 A-n63-k10 0.00 10 115

A-n39-k6 0.00 6 7.6 A-n64-k9 0.00 9 2610.1
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A-nd4-k7 0.00 7 60.9 A-n65-k9 0.00 9 598.2

A-n45-k6 0.00 7 6.6 A-n69-k9 0.00 9 557.6

A-n45-k7 0.00 7 62.9 A-n80-k10 475 | 11 | 7200.0
A-n46-k7 0.00 7 14.3 - - -
a.
TABLE III. BRANCH-AND-CUT ALGORITHM RESULTS (HC=50)

Instance gap | k | Time Instance gap | k | Time

A-n32-k5 0.00 5 2.7 A-n48-k7 0.00 7 29.7

A-n33-k5 0.00 5 4.7 A-n53-k7 0.00 7 85.4

A-n33-k6 0.00 6 9.7 A-n54-k7 0.00 7 612.6

A-n34-k5 0.00 5 40.7 A-n55-k9 0.00 9 222.2

A-n36-k5 0.00 5 9.3 A-n60-k9 0.00 9 590.5

A-n37-k5 0.00 5 16.0 A-n61-k9 0.00 9 2327

A-n37-ké 0.00 6 68.0 A-n62-k8 0.00 8 1390.0

A-n38-k5 0.00 5 169.2 A-n63-k9 0.00 9 1234.6

A-n39-k5 0.00 5 41.3 A-n63-k10 0.00 10 208.7

A-n39-k6 0.00 6 12.0 A-n64-k9 0.00 9 1730.1

A-nd4-k7 0.00 7 78.7 A-n65-k9 0.00 9 1690.2

A-n45-ké 0.00 6 252 A-n69-k9 0.00 9 446.3

A-nd5-k7 0.00 7 2315 A-n80-k10 5.31 10 7200

A-n46-k7 0.00 7 19.8 - - -

TABLE IV. BRANCH-AND-CUT ALGORITHM RESULTS (HC=100)
Instance gap | k | Time Instance gap | k | Time

A-n32-k5 0.00 5 3.1 A-n48-k7 0.00 7 55.1

A-n33-k5 0.00 5 9.1 A-n53-k7 0.00 7 385.1

A-n33-k6 0.00 6 5.6 A-n54-k7 0.00 7 452.4

A-n34-k5 0.00 5 45.3 A-n55-k9 0.00 9 434.1

A-n36-k5 0.00 5 131 A-n60-k9 0.00 9 341.1

A-n37-k5 0.00 5 15.0 A-n61-k9 0.00 9 298.8

A-n37-k6 0.00 6 9.2 A-n62-k8 0.00 8 2628.1

A-n38-k5 0.00 5 202.6 A-n63-k9 0.42 9 7200

A-n39-k5 0.00 5 61.7 A-n63-k10 0.00 10 154.8

A-n39-k6 0.00 6 16.4 A-n64-k9 0.42 9 1264.5

A-nd4-k7 0.00 7 139.1 A-n65-k9 0.00 9 874.7

A-n45-ké 0.00 6 25.2 A-n69-k9 0.00 9 1134.8

A-n45-k7 0.00 7 34.1 A-n80-k10 2.03 10 7200

A-nd6-k7 0.00 7 97.5 - - -

The results in Table I (with HC=0) show that the branch-
and-cut algorithm is able to find the optimal solutions for 26
of the 27 benchmark instances when there is no hiring cost.
The solution approach finds the optimal solution for instances
of up to 69 vertices (clients). For the largest instance with 80
vertices (clients), the algorithm is unable to find the optimal
solution and obtains a gap of 4.75% reaching the time limit.

Regarding the number of vehicles to be used, for eight of the
test instances, the optimal solution found uses one more
vehicle than the minimum required.

For a hiring cost of 50 (HC=50), the results in Table Il
show that the branch-and-cut algorithm again optimally solves
26 of 27 benchmark instances. Also, the largest instance with
80 vertices (clients) is not solved to optimality and obtains a
gap of 5.31% after reaching the time limit. In this case, the
number of vehicles used in the optimal solutions found by the
algorithm is equal to the minimum required.

Finally, in Table Il with (HC=100) the branch-and-cut
algorithm finds the optimal solutions for 25 of the 27
benchmark instances. In this case, the algorithm is unable to
find the optimal solution for instances “A-n64-k9” and “A-
n80-k10”. Reaching in both cases the time limit. The gap for
both instances is 0.42% and 2.03 respectively. As in the
previous case (HC=50) the solutions found by the algorithm,
use the minimum of required vehicles.

V. CONCLUDING REMARKS

The Open Vehicle Routing Problem with Hiring Cost, a
new variant of the well-known Open Vehicle Routing
Problem, was introduced and formulated. A branch-and-cut
algorithm, based on the separation of valid inequalities was
used to perform computational experiments. The results show
that the algorithm is capable of finding optimal solutions for
instances with up to 69 vertices (clients). For larger instances
of 80 vertices, the solution approach is unable to find the
optimal solution. Therefore, the approach is efficient for small
and medium-sized instances and struggles with larger
instances.
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