
An Evaluation Of Cs-Rtdbs Over Ce-Rtdbs And Improving Its 

Performance 

  Amit Sinha       Dr. R.K. Isaac 

Ph.D(CS/IT) Scholar, SHAITS        Professor, CET, SHAITS 
(Formerly Allahabad Agricultural Institute) (Formerly Allahabad Agricultural Institute) 
    Deemed University, Allahabad     Deemed University, Allahabad 

      

ABSTRACT 

In this paper, we reviewed the behavior of 

response time in various situation of real time 

transaction. The centralized real time 

databases (CE-RTDB) and client server real 

time databases (CS-RTDB) are the two areas 

on which real time transactions can be taken 

place. Till date, the real time transaction with 

time constraint has been analyzed according 

to scheduling of the transaction. Here we 

studied and then have some experiments for 

real time transactions on the basis of CPU 

usage, processor consumption and number of 

transaction performed background and 

foreground of the system. Our objective is to 

investigate the dependence of efficiency of 

real time processing in centralized database 

and then in client server database. The 

graphical representation of the experiments 

performed on centralized database can give an 

idea of behavior of the real time transaction 

and hence can be used to reduce the response 

time. 

1. INTRODUCTION 

In real-time databases, a transaction, also 

called sometimes real time transaction, 

completes successfully only if it finishes its 

execution within a pre-specified deadline. 

Deadlines are a mandatory part which is used 

to satisfy quality of service requirements or 

control the operation of physical systems. 

Therefore, the key measure of performance is 

the percentage of all transactions that 

complete within their deadlines rather than the 

average transaction response time or 

throughput.  

Alternatively, the key issue of performance in 

a system is response time. In any transaction, 

good response time implies sub second 

response time. The reduced response time is 

required for good performance of a system. It 

depends on a variety of factors including 

system architecture, transaction configuration, 

user requirements and system reliability etc. It 

is necessary to note that set of constraints 

performing good performance for one system 

may be poor performance for another system.  

If, for example, a transaction requires 200 

accesses to a database, a response time of two 

to four seconds may be considered to be quite 

good. On the other hand, another 

application requires only ten accesses and 

result into a response time of three to six 

seconds. So accesses would need to be 

investigated. Response times, however, 

depend on the speed of the processor, and on 

the nature of the application being run on the 

production system. 

A generic (i.e. hard or soft) RTS can be 

describes as consisting of three principle 

subsystems as shown below 

 

                                                                                                                             

       Application Interface          Man Machine Interface 

Figure1: a RTS Organization 

Controll

ed 

subsyste

m 

Control 

subsyste

m 

Operator 

subsyste

m 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012ISSN: 2278-0181

1www.ijert.org



The controlled subsystem represents the 

application or environment which indicates 

the real time requirements; the control 

subsystem controls some computing and 

communication equipment for use from the 

controlled subsystem; the operator subsystem 

initiates and monitors the entire system 

activity. The interface between the controlled 

and the control subsystems consists of devices 

such as sensors and actuators. The interface 

between the control subsystem and the 

operator consists of a man machine interface. 

Successful completion of an operation in a 

RTS depends upon the correct and timely 

operation of the system. So, we need to design 

the hardware and software that is to be used in 

the system in such a way so that it might meet 

the RT requirements of the entire system. The 

designers need to focus very early on the RT 

response requirements.  
 

Each database transaction usually involves to 

several data items, using which it carries out 

necessary processing. The transactions that 

are active at any time are called concurrent 

transactions. For the purpose to achieve non-

interference among transactions, concurrency 

control schemes normally restrict concurrent 

transactions to be serialzable. Hence, a RTS 

must be designed in such a way that 

concurrency protocols should allow several 

transactions to access the database 

concurrently, but leave the database consistent 

by enforcing seraliazability.  Techniques to 

provide real-time transaction scheduling 

include priority-driven techniques, earliest-

deadline-first techniques [12], and hybrid 

scheduling techniques [13]. Concurrency 

control techniques must also be adjusted for 

the requirements of real-time. Typically these 

techniques relax serializability as the 

concurrency control correctness criteria 

through lock-based techniques [14], optimistic 

techniques [15], and semantic concurrency 

control [16]. Real-time database test beds 

have been developed for military applications, 

and in academic settings, but are not currently 

used widely in commercial applications. 
 

  

2. RELATED WORK 
 

The real time processing is time based and it 

depends on various constraints such as the 

processor speed, size of the RAM, network 

congestion and bus bandwidth. 

Some results have been observed [1] that a 

Client Server Real Time Data Base system 

(CS-RTDBS) can be more efficient than a 

centralized system in the presence of the 

following conditions:  

(i) if there is a reasonable amount of 

spatial and temporal locality in 

client data access patterns, and 

(ii) if the percentage of data accesses 

with respect to  updating  is low. 

  

The important requirement of a traditional DB 

system is to provide fast average response 

time while Real-time database systems 

(RTDBS) may be evaluated based on the 

number of transactions miss their deadline [2], 

the average late transactions, the cost incurred 

in transactions missing their deadlines. 

Therefore, in RTDBS, transactions should be 

scheduled according to their criticalness and 

the tightness of their deadlines, even if this 

means sacrificing fairness and system 

throughput. Also it always must guarantee 

preceding process of a high priority 

transaction (HPT) than low priority 

transaction (LPT). If HPT is eliminated in a 

system because of its deadline missing, an 

unnecessary aborting or blocking of LPT is 

occurred. To resolve the problem, AVCC 

(alternate version concurrency control) 

algorithm was proposed. However, AVCC 

must always create the alternative version and 

have additionally a technique to manage 

complex alternative versions. A new and 

efficient scheduling algorithm, called Multi-

level EFDF (earliest feasible deadline first) 

that combines EFDF and Multilevel Queue 

scheduling algorithm very ably and achieves 

good performance over the other existing 

methods proposed earlier. 

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012ISSN: 2278-0181

2www.ijert.org



Earliest deadline first (EDF) is one of the 

main scheduling policies used in real-time 

database systems (RTDBSs) for transactions 

processing. With EDF, prioritized transactions 

are not necessarily the most important in the 

system. Moreover, it is well-known that EDF 

is not efficient in overload conditions. [3] 

Another notion of transaction importance and 

a new priority assignment technique based on 

both transactions importance and deadlines is 

present. This assignment policy leads to a new 

scheduling policy, called generalized earliest 

deadline first (GEDF).  

 

Although, there has not been much research 

into this specific area, there has been 

considerable interest in two closely related 

areas, viz, client server information and 

database systems, and active rule based 

systems.  Delis and Roussopoulos [5] examine 

the problem of managing server updates that 

affect client cached data. They introduce five 

possible strategies. In the simplest strategy, 

updates are sent to clients only on demand 

while in more complicated ones the server 

maintains a catalog of binding information 

which designates the specific areas of the 

database that each client has cached. Keller 

and Basu [6] introduce the concept of 

predicate-based client-side caching. Client 

queries are executed at the server and the 

results are used to load the client cache. The 

contents of client caches are described by 

means of predicates. If a client determines 

from its local cache description that a new 

query is not computable locally then the query 

(or a part of it) is sent to the server for 

execution. Otherwise, the query is executed 

on the cached local data. All the above 

described protocols deal with the issue of 

providing relatively up-to-date data accesses 

while providing shorter query response times, 

lower data transfer costs and reduced network 

contention. The other important related area is 

Active Database Systems which allow 

database designers the ability to define rules 

that make the DBMS. 

 

3. ISSUES IN CE-RTDBS and 

CS-RTDBS 

 
In the CS-RTDBS, the object-server executes 

one thread per client. Each such thread 

maintains two persistent socket connections 

with the client for the entire duration of the 

experiment. One connection is used 

exclusively for messages, while the other is 

used for the transfer of database objects to and 

from the client. Here too, like the CE-RTDBS, 

each transaction is executed as a separate 

thread, but the distinction is that transactions 

at each client are scheduled locally, 

independent of the server. The clients also 

make use of the short and the long term 

memory available to them [4]. Data object / 

locks that have been fetched from the server 

are maintained in the local cache so that the 

future requests on the cached data can be 

satisfied without interaction with the server. 

 

Sometimes no change in existing working 

system (Centralized RTDBs) is required. 

However, it needs to increase its efficiency. 

Also few situations may occur where 

centralized RTDBs give reasonable 

performance. For example, If the environment 

requires a frequent and larger update then 

centralized systems demonstrate better 

performance than their client-server 

counterparts. This is because a large volume 

of updates increases the overhead incurred in 

coordinating distributed concurrency and 

shipping objects among sites significantly. 

Thus, transactions at client sites are forced to 

block for long periods of time waiting for 

their required data objects and locks to 

become available. 

3.1 STUDY    OF     RESPONSE  

TIME WITH INCREASING     

LOAD TRANSACTION 

A graph can be plotted between response time 

and increasing load of transactions. However 

this dependency is also possible in centralized 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012ISSN: 2278-0181

3www.ijert.org



data bases, we have analyzed in CS-RTDBS.   

The response time in the system, obviously, 

may vary with increasing transaction rate. But 

the study shown by the curve exhibits it 

increases gradually at first then deteriorates 

rapidly (i.e. response time increases 

suddenly). The typical curve shows a sharp 

change when the response time increases 

dramatically for a relatively small increase in 
the transaction rate.  

 

Figure2: Effect of response time versus 

increasing transaction load 

4. TECHNIQUES FOR 

IMPROVING REAL-TIME 

PROCESSING 
 

This section describes the techniques that we 

have used in our load-sharing algorithm such 

as transaction-shipping [9], transaction 

decomposition [19], object migration, and 

object request scheduling. 

In a non real-time environment, the order in 

which client object requests are served is 

often First-Come First-Serve. However, in a 

real-time system, object requests can be 

prioritized according to the deadlines of the 

requesting transactions. Object requests by 

clients can convey the deadline information of 

the requesting transactions. Requests by 

transactions with earlier deadlines are 

satisfied before others. If a client transaction 

has already missed its deadline then the server 

can unilaterally decide not to ship the object 

to that client. In fact, if reasonably accurate 

estimates of transaction execution times were 

available, the server could decide whether to 

satisfy certain object requests at all viz. 

requests by transactions that are expected to 

miss their deadlines. 

 

In this paper, we have taken the case of object 

request scheduling. Various object requests by 

clients can come across to the server and 

accordingly these requests can be satisfied. In 

a real time system, these objects also carry the 

deadline information of the requesting 

transactions. Since  the RT- processes are 

ensured to finish its job within its time 

constraints imposed from outside the 

computer therefore these processes are used to 

handle time-driven materials, e.g., audio, 

video, games, robot controllers and so far.     

 

4.1   PROPOSED       ALGORITHM    

  FOR      OBJECT     REQUEST  

  SCHEDULING 
 

We have taken CS-RTDBS as a sample case 

where the transactions can be processed 

through the objects available at client side 

(local service) or at the server side (global 

service). The following algorithm gives an 

idea of handling of various clients’ requests at 

the same time. We have not considered some 

of the problems like network congestion and 

BUS bandwidth. 

 

Step-1: Real time transaction T is initiated 

at a client side.  

Step2: If  

T can be processed at local host 

with a reasonable chance of meeting 

its deadline 

Then 

T is appended in local queue i.e. 

local cache / disc memory and 

processed accordingly. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012ISSN: 2278-0181

4www.ijert.org



else  

(T needs to be processed at server 

end) 

follow either step-3 or step-4 

Step-3: If 

server can provide objects to T 

Then 

these objects are locked 

appropriately w.r.t. the concerned 

client and process it. 

Step-4: If  

server is unable to process T 

immediately  

Then  

T will be appended in server queue 

and picked another client’s request 

that is in better position.    

 

 

 

4.2    EXPERIMENT RESULT 
 

We have taken a case of Intel core ™ 2 duo 

CPU T5670 1.80 GHz at the server side and 

PIV processor 631 3.0 GHz at the client side. 

We have considered one transaction from one 

client. The total consumption of processor at 

server side is measured with the same 

transaction repeatedly few times.  

Case 

The request size is 5KB  

CPU consumption before the transaction         

= 2% 

Processor consumption before the transaction 

= 52% 

Table1:  Processor utilization w.r.t. to the  

same transaction several times 

 

Turn of 

the same 

transaction 

Processor consumption 

Before the 

service 

After the 

service 

1 93% 300% 

2 109% 353% 

3 109% 262% 

4 125% 615% 

5 109% 300% 

6 109% 276% 

7 94% 239% 

8 78% 274% 

9 93% 388% 

10 109% 282% 

 

The above values are taken as a particular 

case and specific purpose of study. The values 

may be changed in different scenarios. 

The equivalence graphic notation is shown in 

figure2. 

 

 

 
 

Figure3:Processor utilization before& after 

              the execution of the transaction 

 

The graph states that there is one highest 

value, say Pmax (max. consumption of 

processor). The value of Pmax can help in 

evaluating the performance of CS-RTDBS. If 

the consumption of processor is below Pmax , 

some real time transactions can be allocated to 

processor to improve the performance. 

 

 

5. CONCLUSION 
 

In this paper, we studied various issues 

relating to RTS. Two different databases CE-

RTDBS and CS-RTDBS are associated with 

real time transactions. A graphical 

representation shows the importance of these 

two in different scenarios. We propose the 

usage of the client-server database paradigm 

for handling requests with time constraints. 

The resulting configuration takes advantage 

of the available client resources and 

schedules requests locally. The proposed 

algorithm can explain the allocation of 

processor to the client’s requests available in 

waiting queue. 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012ISSN: 2278-0181

5www.ijert.org



The experimental result also gives an idea of 

maximum value of processor utilization. This 

Pmax can be used in performance evaluation.   
 

 

 

REFERENCES 
 

1. V. Kanitkar and A. Delis, A Case for 

Real-Time Client-Server Databases, In 

Proceedings of the 2nd International 

Workshop on Real-Time Databases, 

September 1997, p121-132. 

2. Seok Jae Lee  Jae Ryong Shin Seok Il, 

Song Jae Soo YooKi Hyung Cho, A 

concurrency control algorithm for firm 

real-time database systems, Proceeding 

ICCS'03 Proceedings of the 2003 

international conference on 

Computational science Springer-Verlag 

Berlin, Heidelberg 2003, p431-438. 

3. Samy Semghouni, Laurent Amanton, 

Bruno Sadeg, Alexandre Berred, On new 

scheduling policy for the improvement of 

firm RTDBSs performances, Journal 

Data & Knowledge Engineering, 

Elsevier Science Publishers B. V. 

Amsterdam, The Netherlands, Volume 

63, Issue 2, p176-188, November, 2007. 

4. A Delis and N. Roussopoulos, 

“Performance Comparison of Three 

Modern DBMS Arcitectures”, IEEE 

Trans. Software Eng., volume 19, No.2, 

pp. 120-138, Feb. 1993. 

5. A. Delis and N. Roussopoulos, 

Management of Updates in the Enhanced 

Client–Server DBMS, In Proceedings of 

the 14th IEEE International Conference 

on Distributed Computing Systems, June 

1994. 
6. A. Keller and J. Basu. A Predicate–based 

Caching Scheme for Client-Server 

Database Architectures. The VLDB 

Journal, 5(1), 1996. 
7. R. Abbott and H. Garcia-Molina. 

Scheduling Real–Time Transactions: A 

Performance Evaluation. ACM–

Transactions on Database Systems, 

17(3), 1992. 

8.  R. Alonso, D. Barbara, and H. Garcia-

Molina. Data Caching Issues in an 

Information Retrieval System. ACM–

Transactions on Database Systems, 

15(3):359–384, September 1990. 

9. V. Ballingam, K. Christensen, and F. 

Noel. Analysis of Client/Server 

Transaction Delay through a Local Area 

Network Switch. In Proceedings of 

SOUTHEASTCON 1996, pages 571–577, 

Tampa, FL, USA, April 1996. 

10. M. Carey, M. Franklin, M. Livny, and E. 

Shekita. Data Caching Tradeoffs in 

Client–Server DBMS Architecture. In 

11. ACM–SIGMOD–Conference on the 

Management of Data, Denver, CO, May 

1991. 
12. Harista ,J; Livny, M; Carey, M. Earliest 

deadline scheduling for real-time 

database systems. Proceedings of the 

IEEE Real-Time Systems Symposium 

(1990) 11, 94--103. 

13.  Abbott, R., Garcia-Molina, H. 

Scheduling real-time transactions: A 

performance evaluation. Proceedings of 

the Very Large Database Conference 

(1988), p 14, 203-210. 

14. Sha, L; Rajkumar, R., Son, S; & 

Chang,C. A Real-Time Locking 

Protocol. IEEE Transactions on 

Computers, 40(7), p793-800. (1991). 

15.  Huang, J., Stankovic, J; Towsley, D; 

Ramamritham,K (1991). Experimental 

Evaluation of Real-Time Optimistic 

Concurrency Control Schemes. 

Proceedings of the Very Large Database 

Conference, 17, 110-118. 

16.  Garcia-Molina, H. Using Semantic 

Knowledge For 

Transaction Processing in a Distributed 

Database   

 System  ACM Transactions on 

Database Systems,    

 1993, 8(2), p186-213.

 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012ISSN: 2278-0181

6www.ijert.org


