

An Empirical Approach Software Testing Methods And

Techniques

Malla Reddy Institute Of Technology/Computer Science Engineering, Hyderabad India

Abstract :- This Paper looks at what Software Testing is and then briefly explains some of the more common methods and

techniques used in the testing process. First we look at the traditional (procedural) environment and then the Object Oriented

environment. Comparisons are made (where appropriate) between the two models and methods and techniques used. Lastly

some issues with testing under both models are discussed.

 KEYWORDS: Software Testing, Level of Testing, Testing Technique, Testing Process

Introduction:-

Software has infiltrated almost all areas in the

industry and has over the years become more and

more wide spread as a crucial component of many

systems. System failure in any industry can be very

costly and in the case of critical systems (flight

control, nuclear reactor monitoring, medical

applications, etc.) it can mean lost human lives.

These "cost" factors call for some kind of systems

failure prevention. One way to ensure system's

reliability is to extensively test the systems. Since

software is a system component, it requires testing

process also.

Software testing is a critical component of the

software engineering process. It is an element of

software quality assurance and can be described as a

process of running a program in such a manner as to

uncover any errors. This process, while seen by some

as tedious, tiresome and unnecessary, plays a vital

role in software development.

Testing should be based on user requirements. This is

in order to uncover any defects that might cause the

program or system to fail to meet the client's

requirements.

Testing time and resources are limited. Avoid

redundant tests. It is impossible to test everything.

Exhaustive tests of all possible scenarios are

impossible, simple because of the many different

variables affecting the systems and the number of

paths a program flow might take.

Use effective resources to test. This represents use of

the most suitable tools, procedural and individuals to

conduct the test. The test team should use tools that

they are confident and familiar with. Testing

procedures should be clearly defined. Testing

personnel may be a technical group of people

independent of the developers.

Testing should begin at the module. The focus of

testing should be concentrated on the smallest

programming units first and then expand to other

parts of the system.

We look at software testing in the traditional

(Procedural) sense and then describe some testing

strategies and methods used in Object Oriented

environment.

3628

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

There are Two Testing methods Functional Testing

and Structural Testing.

Functional Testing-

 Functional testing, tests are designed from

functional point of view.

 It is also known as Black box testing or

closed box or opaque box testing.

 This is equivalent to partitioning boundary

value analysis cause-effect Graphing

techniques and comparison testing.

Structural Testing-

 Structural testing, tests are designed from

structural point of view.

 It is also known as white box testing or glass

box or open box testing.

 This is basis path testing loop testing and

control structure testing.

Definition and the goal of testing-

The general aim of testing is to affirm the quality of

software systems by systematically exercising the

software in carefully controlled circumstances.

Miller's description of testing views most software

quality assurances activities as testing. He contends

that testing should have the major intent of finding

errors. A good test is one that has a high probability

of finding an as yet undiscovered error, and a

successful test is one that uncovers an as yet

undiscovered error, This general category of software

testing activities can be further divided. For purposes

of this paper, testing is the dynamic analysis of a

piece of software, requiring execution of the system

to produce results, which are then compared to

expected outputs.

Figure 1.Test Information Flow

The Testing Spectrum-

Testing is involved in every stage of software life

cycle but the testing done at each level of software

development is different in nature and has different

objectives.

 Unit Testing is done at the lowest level. it

tests the basic unit of software, which is the

smallest testable piece of software, and is

often called "unit", "module", or

"component" interchangeably.

 Integration Testing is performed when two

or more tested units are combined into a

larger structure. The test is often done on

both the interfaces between the components

and the larger structure being constructed,

security, and maintainability, are also

checked.

 System Testing tends to affirm the end to

end quality of the entire system. system test

3629

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

is often based on the functional requirement

specification of the system. Non-functional

quality attributes, such as reliability,

security, and maintainability, are also

checked.

 Acceptance Testing is done when the

completed system is handled over from the

developers to the customers or users. The

purpose of acceptance testing is rather to

give confidence that the system is working

than to find errors.

Testing Methods-

Test cases are developed using various test

techniques to achieve more effective testing. By this

software completeness is provided and conditions of

testing which get the greatest probability of finding

errors are chosen. So testers do not guess which test

cases to chose, and test techniques enable them to

design testing conditions in a systematic way. Also, if

one combines all sorts of existing test techniques ,

one will obtain better results rather if one uses just

one test technique.

There are many ways to conduct software testing, but

the most common methods. rely on following steps.

 Test Case Design

 Structural Testing (White-Box Testing)

 Basis Path Testing

 Control structure Testing

 Functional Testing (Black Box Testing)

Test Case Design

Test cases should be designed in such a way as to

uncover quickly and easily as many errors as

possible. They should "exercise" the program by

using and producing inputs and outputs that are both

correct and incorrect.

Variables should be tested using all possible values

(for small ranges) or typical and out-of-bound values

(for larger ranges). They should also be tested using

valid and invalid types and conditions. Arithmetical

and logical comparisons should be examined as well,

again using both correct and incorrect parameters.

The objective is to test all modules and then the

whole system as completely as possible using a

reasonable wide range of conditions.

Structural Testing

white box methods relies on intimate knowledge of

the code and a procedural design to derive the test

cases. It is most widely utilized in unit testing to

determine all possible paths within a module, to

execute all loops and to test all logical expressions.

Using white-box-testing, the software engineer can

 Guarantee that all independent paths

within a module have been exercised at

least once

 Examine all logical decisions on their true

and false sides

 Execute all loops and test their operation

at their limits

 Exercise internal data structures to assure

their validity (Pressman, 1997)

This form of testing concentrates on the procedural

detail. However, there is no automated tool or testing

system for this testing method. Therefore even for

relatively small systems, exhaustive white-box

testing is impossible because of all the possible path

permutations.

Basis path Testing

Basis path testing is a white box technique. It allows

the design and definition of a basis set of execution

paths. The test cases created form the basis set allow

the program to be executed in such a way as to

examine each possible path through the program by

executing each statement at least once (pressman,

1997)

To be able to determine the different program paths,

the engineer needs a representation of the logical

flow of control. The control structure can be

illustrated by a flow graph. A flow graph can be used

to represent any procedural design.

Control Structure Testing

3630

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

Because basis path testing alone is insufficient, other

techniques should be utilized.

Condition testing can be utilized to design test cases

which examine the logical conditions in a program. It

focuses on all conditions in the program and includes

testing of both relational expressions and arithmetic

expressions.

This can be accomplished using branch testing and

domain testing methods. Branch testing executes both

true and false branches of a condition. Domain

testing utilizes values on the left-hand side of the

relation by making them greater than, equal to and

less then the right hand side value. This method test

both values and the relation operators in the

expression.

Data flow testing method is effective for error

protection because it is based on the relationship

between Loop testing method concentrates on

validity of the loop structures.

Functional Testing

Black box on the other hand focuses on the overall

functionality of the software. That is why it is the

chosen method for designing test cases used in

functional testing. This method allows the functional

testing to uncover faults like incorrect or missing

functions, errors in any of the interfaces, errors in

data structures or databases and errors related to

performance and program initialization or

termination.

Using Black-box testing, the software engineer can

 Performing the tests which exercise

all functional requirements of a

program

 Finding the following errors

1. Incorrect or missing

functions

2. Interface errors

3. Errors in data structures

or external database

access

4. Performance errors

5. Initialization and

termination errors.

Research Strategies for testing techniques

We have studied the research strategies of

twelve influential papers since the year 1975 and

tried to find out the common form and

successful examples of research settings that

offer concrete guidance for future research work.

The results are listed in table it's not hard to find

out that most of researches on testing techniques

are motivated by questioning if there is a better

method of doing something. The questions is

answered by inventing, implementing,

combining, referring, evaluating, alternating or

proposing new ways to do this task, and the

result gets analyzed through analysis most of

times. Combined with the test gap mentioned in

last section, we contend that fundamental

researches should address the challenge testing

techniques are facing in the real world,

generalize them and pursue practical solutions

for them. Research should be carried out with

industry partners on real world problems, instead

of simple toy systems.

Researchers in academic community and in

industry should talk often to address the need for

each other.

Paper

Ref.

Year Age Idea Validation

GG75 1975 26 Fundamental

Theorem

Analysis

Huang

75

1975 26 Edge

approach

Evaluation

Analytic

Model

Analysis

Howden

75

1976 25 Path

Approach

Reliability

Method

Analysis

WC80 1980 21 Domain

Testing

strategy

Analysis

Howden

80

1980 21 Functional

design

abstraction

method

Persuasion

3631

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

RW85 1985 16 Data Flow

Strategy

Analysis

ROT89 1989 12 Integrate

spec. impl.

testing

method

Analysis

JM94 1994 7 Coverage

reliability

estimation

method

Analysis

BBL97 1997 4 Probabilistic

functional

testing

method

Analysis

BIMR97 1997 4 Testing

based on

architectural

method

Persuasion

HIM00 2000 1 UML based

technique

Experience

BG01 2001 0 Component

based testing

Analysis

 Table No. 1 Research Stratergies

Test Techniques According to the Project of the

IEEE Computer Society, 2004

The IEEE Computer Society is established to

promote the advancements of theory and practice in

the field of software engineering.

The Society completed IEEE Standard 730 for

software quality assurance (it is any systematic

process of checking to see whether a product or

service being developed is meeting specified

requirements, see) in the year 1979. This was the

first standard of this society The purpose of IEEE

standard 730 was to provide uniform minimum

acceptable requirements for preparation and content

of software quality assurance plans. Another, new

standards are meaningful not only for promotion

software requirements, software design and software

construction, but also for software testing, software

construction, but also for software testing, software

maintenance,

 So for improving software testing and for

decreasing risk on all fields, there is classification of

test techniques according to this Society, which is

listed below.

 Based on the software engineer's intuition

and experience

i. Ad hoc testing-

Test cases are developed basing on

the software engineer's skills,

intuition, and experience with

similar programs.

ii. Exploratory testing-

This testing is defined like

simultaneous learning, which

means that test are dynamically

designed, executed, and modified.

 Specification-based techniques

1. Equivalence Partitioning

2. Boundary -value analysis

3. Decision table

 Decision tables represent logical

relationships between inputs and

outputs (Conditions and

actions), so test cases represent

every possible combination of

inputs and outputs.

 4. Finite-state machine-

based

 Test cases are developed to cover

states and transitions on it.

 5. Testing from formal

specifications

 The formal specifications (the

specifications in a formal language) provide

automatic derivation of

functional test cases and a reference output for

checking test results.

 6. Random testing

 Random points are picked within

the input domain which must be known, so test

 cases are based on random.

 Code-based techniques

1. Control-flow based criteria

Determine how to test logical

expressions (decision) in computer

program. Decisions are considered

as logical functions of elementary

3632

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

logical predicates (conditions)

and combinations of condition's

values are used as data for

testing of coverage

requirement as a component

part every statement in the

program has been executed at

least once. Control-flow criteria

are considered as program-

based and useful for white-box

testing. For control-flow

criteria, the objects of

investigation have been

relatively simple. Random

Coverage, Decision Coverage

(every decision in the program

has taken all possible outcomes

at least once), Condition

Coverage (every condition in

each decision has taken all

possible outcomes at least

once), Decision Condition

Coverage (every decision in the

program has take all possible

outcomes at least once and

every condition in each decision

has taken all possible outcomes

at least once), etc.

 2. Data Flow-based criteria

 3. Reference models for code-based

testing

 This means that the control

structure of a program is graphically represented

using a flow graph

 Fault-based techniques

 1. Error guessing

 Test cases are developed by

software engineers trying to find out the

most frequently faults in a given

program. The history of faults discovered in

earlier projects and the software engineer's

expertise are helpful in this situations.

 A mutant is a modified version of

the program under test. It is differing from

the program by a syntactic change.

Every test case exercises both the original

and all generated mutants. Test cases are

generating until enough mutants have been

 killed or test cases are developed to

kill surviving mutants.

 Usage-based techniques

 1. Operational profile

 From the observed test results

someone can infer the future reliability of

the software.

 2. Software Reliability Engineered

Testing

 Techniques based on the nature of the

application

 By this test we can find where the

element under test does not perform as

 specified. Besides the goal of this

technique is to select, structure and organize

the tests to find the errors as early as

possible.

 2. Component-based testing

 Is based on the idea of creating test

cases from highly reusable test components.

A test component is a reusable and

context-independent test unit, providing test

 services through its contract based

interfaces. More about this test technique on

 http://www.componentbasedtesting

.org/site/.

 3. Web-based testing

 Is a computer based test delivered

via the internet and written in the "language"

of the internet HTML and possibly

enhanced by scripts. The test is located as a

 website on the tester's server where

it can be accessed by the test-taker's

 computer, the client. The client's

browser software (e.g. Netscape navigator,

MS internet Explorer) displays the test,

the test taker completes it, and if so desired

 sends his/her answers back to the

3633

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

server, from which the tester can download

and score them.

 4. GUI testing

 Is the process of testing a product

that uses a graphical user interface, to ensure

it meets its written specifications.

 5. Testing of concurrent programs

 6. Protocol conformance testing

 A protocol describes the rules with

which computer systems have to comply in

 their communication with other

computer systems in distributed systems.

 Protocol conformance testing is a

way to check conformance of protocol

 implementations with their

corresponding protocols standards, and an

important technology to assure

successful interconnection and

interoperability between different

manufacturers. Protocol conformance testing

is mostly based on the standard ISO

9646. Conformance testing Methodology

and Framework. However this conventional

method of standardization used for protocol

conformance test, sometimes gives

wrong test result because the test is based on

static test sequences.

 7. Testing of real-time systems

 systems require time a special

attention must be given to timing during

testing. components) at its normal

operating frequency, speed or timing. But it

is actually a conformance testing,

which goal is to check whether the behavior

of the system generated offline or

online. In the first case, the complete test

scenarios and verdict are computed a-

prior and before execution. The offline test

generation is often based on coverage

criterion of the model, on a test purpose or a

fault model. Online testing combines

test generation and execution.

 8. Testing of safety-critical systems

 Selecting and combining techniques

 1. Functional and structural

 Functional testing (also known as

black-box testing), is a software testing

approach in which:

1. the tester will have a user perspective in

mind,

2. not knowing and doesn't mind how the

program works.

3. Input and output are the only things that

matter.

4. The tester acts as if he/she is the final user

of the program.

On the other hand, structural testing (also

known as white-box testing), is a software

testing approach in which:

1. the tester will have a developer

perspective in mind,

2. knowing how the program works behind

the scene,

3. such that the test will test all algorithm

paths in the program.

4. Everything does matter.

5. The tester acts as a developer of the

program who knows the internal structure of

the program very well.

 2. Deterministic Vs. random

 Test cases can be selected in a

deterministic way or randomly. drawn from

some distribution of inputs, such as is in

reliability testing

Fig 2. Testing Techniques

3634

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

Testing Results

Testing documentation involves the documentation of

artifacts which should be developed before or during

the testing of Software.

Documentation for Software testing helps in

estimating the testing effort required, test coverage,

requirement tracking/tracing etc. This section

includes the description of some commonly used

documented artifacts related to Software testing such

as:

 Test Plan

 Test Scenario

 Test Case

 Traceability Matrix

Test Plan

A test plan outlines the strategy that will be used to

test an application, the resources that will be used, the

test environment in which testing will be performed,

the limitations of the testing and the schedule of

testing activities. Typically the Quality Assurance

Team Lead will be responsible for writing a Test

Plan.

A test plan will include the following.

 Introduction to the Test Plan document

 Assumptions when testing the application

 List of test cases included in Testing the

application

 List of features to be tested

 What sort of Approach to use when testing

the software

 List of Deliverables that need to be tested

 The resources allocated for testing the

application

 Any Risks involved during the testing

process

 A Schedule of tasks and milestones as

testing is started

Test Scenario

A one line statement that tells what area in the

application will be tested. Test Scenarios are used to

ensure that all process flows are tested from end to

end. A particular area of an application can have as

little as one test scenario to a few hundred scenarios

depending on the magnitude and complexity of the

application.

The term test scenario and test cases are used

interchangeably however the main difference being

that test scenarios has several steps however test

cases have a single step. When viewed from this

perspective test scenarios are test cases, but they

include several test cases and the sequence that they

should be executed. Apart from this, each test is

dependent on the output from the previous test

Fig 3. Testing Scenarios

Test Case

Test cases involve the set of steps, conditions and

inputs which can be used while performing the

testing tasks. The main intent of this activity is to

ensure whether the Software Passes or Fails in terms

of its functionality and other aspects. There are many

types of test cases like: functional, negative, error,

logical test cases, physical test cases, UI test cases

etc.

Furthermore test cases are written to keep track of

testing coverage of Software. Generally, there is no

formal template which is used during the test case

writing. However, following are the main

components which are always available and included

in every test case:

 Test case ID.

 Product Module.

 Product version.

 Revision history.

 Purpose

 Assumptions

 Pre-Conditions.

 Steps.

 Expected Outcome.

3635

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

 Actual Outcome.

 Post Conditions.

Many Test cases can be derived from a single test

scenario. In addition to this, some time it happened

that multiple test cases are written for single Software

which is collectively known as test suites.

Traceability Matrix

Traceability Matrix (also known as Requirement

Traceability Matrix - RTM) is a table which is used

to trace the requirements during the Software

development life Cycle. It can be used for forward

tracing (i.e. from Requirements to Design or Coding)

or backward (i.e. from Coding to Requirements).

There are many user defined templates for RTM.

Each requirement in the RTM document is linked

with its associated test case, so that testing can be

done as per the mentioned requirements.

Furthermore, Bug ID is also include and linked with

its associated requirements and test case. The main

goals for this matrix are:

 Make sure Software is developed as per the

mentioned requirements.

 Helps in finding the root cause of any bug.

 Helps in tracing the developed documents

during different phases of SDLC

Fig 4. Testing Process

Conclusion

Testing has been widely used as a way to help

engineers develop high quality systems, and the

techniques for testing have evolved from an ad hoc

activates means of small group of programmers to an

organized discipline in software engineering.

However, the maturation of testing techniques has

been fruitful. Pressure to produce higher quality

software at lower cost is increasing and existing

techniques used in practice are not sufficient for this

purpose.

It is my intent to overstate the obvious proper testing

methods must be used to conduct "true" testing. What

constitutes a proper method is driven by the

environment the situation and most importantly, by

the objectives.

References

 [1] Suresh Chand Gupta, Prof. Ashok Kumar,”

Reusable Software Component Retrieval System”,

International Journal of Application or Innovation in

Engineering & Management, Volume 2, Issue 1,

January 2013

[2] AnupamaKaur, HimanshuMonga,

MnupreetKaur,“ Performance Evaluation of

Reusable Software Components”, International

Journal of Emerging Technology and Advanced

Engineering, Volume 2, Issue 4, April 2012.

[3] www Consortium, Extensible Markup Language

(XML) 1.0, February, 2004.

[4] M.E.El-Sharkawi,N.A. El-Hadi El Tazi. LNV,

“Relational Database Storage Structure for XML

Documents”, 3
rd

 ACS/IEEE International Conference

on Computer Systems and Applications 2005.

[5] Liu Sainan, Liu Caifeng, Guan Liming,” A

Storage Method for XML document based on

Relational Database”, International Symposium on

Computer Science and Computational Technology,

IEEE, 2008.

[6] T. Bakota, R. Ferenc, and T. Gyimothy, “ Clone

smells in Software Evolution”, 23
rd

 International

Conference on Software Maintenance (ICSM 2007),

pages 24-33, IEEE Computer Society, October, 2007.

[7] www Consortium, XML schema Part:0 Prime,

October, 2004.

[8] Hosam F. El-Sofany, Samir A. El- Seoud, Fayed

F.M.Ghaleb, Jihad M. Al Ja’am, Sameh S. Daoud,

and Ahmad M, Hasnah, “ A DOM- Based Approach

of Storage and Retrieval of XML Documents using

Relational Databases”, International Journal of

3636

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

Computing & Information Sciences Vol.5, No.2,

August 2007.

[9] Irena Mlynkova, JaroslavPokorny, “ From XML

schema to Object Relational Database – An XML

schema driven mapping”, 2004.

[10] AnjuShri, Parvinder S. Sandhu, Vikas Gupta,

SanyamAnand, “Prediction of Reusability of Object

Oriented Software Systems using Clustering

Approach” World Academy of Science, Engineering

and Technology 43, 2010.

[11] Parvinder Singh Sandhu and Hardeep Singh,

“Software Reusability Model for Procedure Based

Domain-Specific Software Components”,

International Journal of Software Engineering &

Knowledge Engineering (IJSEKE), Vol. 18, No. 7,

2008, pp. 1–19.

[12] T. Bakota, R. Ferenc, and T. Gyim´othy, ” Clone

smells in software evolution” , in Proceedings of the

23
rd

 International Conference on Software

Maintenance (ICSM 2007), pages 24–33, IEEE

Computer Society, Oct. 2–5, 2007.

[13] Mylopoulos, J., Chung, L., Yu, E.: From object-

oriented to goal-oriented requirements analysis,

CACM 42 (1999) 31–37

[14] Parvinder Singh Sandhu and Hardeep Singh, "A

Reusability Evaluation Model for OO-Based

Software Components", International Journal of

Computer Science, vol. 1, no. 4, 2006, pp. 259-264.

[15] Parvinder S. Sandhu, Parwinder Pal

Singh,hardeep Singh, "Reusability Evaluation With

Machine Learning Techniques", WSEAS

TRANSACTIONS on COMPUTERS, issue 9,

Volume 6, September 2007.

[16] Frakes, W.B. and Kyo Kang (2005) “Software

Reuse Research: Status and Future”, IEEE Trans.

Software Engineering, vol. 31, issue 7, July 2005, pp.

529 - 536.

[17] James F Peters, WitoldPedrycz, “ Software

Engineering, An Engineering Approach”, Wiley

India Private Limited, 2007.

[18] Parvinder Singh Sandhu and Hardeep Singh,

"Automatic Quality Appraisal of Domain-Specific

Reusable Software Components", Journal of

Electronics & Computer Science, vol. 8, no. 1, June

2006, pp. 1-8.

[19]. Pressman, R.S. (1997). Software Engineering, a

practitioner's approach. U.S.A, McGraw Hill.

[20]. Humphrey, W.S. (1989). Managing the software

process. U.S.A., Eddision-Wesley.

[21]. Marick, B. (1995a). Testing foundation, Part 1.

www.stlabs.com/MARICK/1-fauld.htm

[22]. Marick, B. (1995b). Testing foundation, Part 2.

www.stlabs.com/MARICK/2-sen.htm

[23]. Binder, R.V (1994). Testing objects-oriented

systems.. A status report

 www.rbsc.com/pages/ootstat.html.

[24]. Binder, R.V. (1995). Object-Oriented Testing:

Myth and Reality.

 www.rbsc.cm/pages/myths.html

[25].

http://www.his.sunderland.ac.uk/cs0mel/comm83wk

5.doc, February 08.2009

[26]. IEEE, "IEEE Standard Glossary Of Software

Engineering Terminology" (IEEE std 610.12-

 1990) Los Alamitos, CA: IEEE Computer

society press, 1990

[27]. Myers, Glenford J., IBM systems Research

Institute Lecturer in computer science, Polytechnic

 Institute of New York, "The Art of software

Testing", Copyright 1979, by John Wiley & Sons,

Inc.

[28]. Wikipedia The Free Encyclopedia

http://en.wikipedia.org/wiki/

Guided By

Srinivasa Babu. Kasturi

received B.E degree in

Computer Science and

Engineering from Madras

University in 2003 and

M.Tech degree in Computer

Science and Engineering

from KLCE, in 2006. Now

he is a Research Scholar

from reputed University in the field of Software

3637

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

Engineering. Having 10 years of teaching experience.

Presently working as Associate Professor in the

Department of Computer Science and Engineering,

MallaReddy Institute of Technology, Hyderabad. He

is a Life Member of ISTE. Published four paper at

National and international journal. Attended more

than 6 National conferences and published articles at

conference journals. Participated at various kinds of

Workshops. His research interests Software

Engineering and Data Mining & Ware housing.

Presented By

KiranKumar Tambalkar

Pursuing My B.tech

degree from Jawaharlal

Nehru Technological

University Hyderabad.

Got Price in National

Level Presentation at

Malla Reddy Institute Of

Technology in 2012.

Participated at various

kinds of Workshops. And Participated in The

National Seminar Cum Tutorials On "Advances In

Image Processing & Remote Sensing at Institution of

Electronics and Telecommunication Engineers

(IETE) 2012. Participated in the event of Paper

Presentation in (CBIT) 2011 and my favorite subjects

are software testing, Web technologies, Operating

system.

3638

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS101139

