

An Efficient Scheme for Secured Deduplication

Using Dekey for Reliable Convergent Key

Management

Prabha Devi. D1, K. Sivachandran 2

1 PG Scholar, 2 Assistant Professor, Computer Science and Engineering Department,

Sasurie Academy of Engineering,

Abstract: One of the most important data compression

techniques for eliminating duplicate copies of repeating data is

the Data Deduplication, and it is widely used in cloud storage

to reduce the amount of storage space and also to save

bandwidth. To protect the confidentiality of sensitive data

along with deduplication, the convergent encryption technique

has been proposed to encrypt the data before outsourcing.

Convergent encryption has been proposed to enforce data

confidentiality while making deduplication feasible. It

encrypts/decrypts a data copy with a convergent key, which is

obtained by computing the cryptographic hash value of the

content of the data copy. After key generation and data

encryption, users retain the keys and send the cipher text to the

cloud. Since the encryption operation is deterministic and is

derived from the data content, identical data copies will

generate the same convergent key and hence the same cipher

text. To prevent unauthorized access, a secure proof of

ownership protocol is also needed to provide the proof that the

user indeed owns the same file when a duplicate is found.

1. INTRODUCTION

1.1 CLOUD COMPUTING

The advent of cloud storage motivates enterprises

and organizations to outsource data storage to third-party

cloud providers, as evidenced by many real-life case studies.

One critical challenge of today’s cloud storage services is

the management of the ever-increasing volume of data. To

make data management scalable, deduplication has been a

well-known technique to reduce storage space and upload

bandwidth in cloud storage. Instead of keeping multiple data

copies with the same content, deduplication eliminates

redundant data by keeping only one physical copy and

referring other redundant data to that copy. Each such copy

can be defined based on different granularities: it may refer

to either a whole file (i.e., file level deduplication), or a

more fine-grained fixed-size or variable-size data block (i.e.,

block-level deduplication).

Today’s commercial cloud storage services, such

as Dropbox, Mozy, and Memopal, have been applying

deduplication to user data to save maintenance cost. From a

user’s perspective, data outsourcing raises security and

privacy concerns. We must trust third-party cloud providers

to properly enforce confidentiality, integrity checking, and

access control mechanisms against any insider and outsider

attacks. However, deduplication, while improving storage

and bandwidth efficiency, is incompatible with traditional

encryption. Specifically, traditional encryption requires

different users to encrypt their data with their own keys.

Thus, identical data copies of different users will lead to

different cipher texts, making deduplication impossible.

Convergent encryption provides a viable option to

enforce data confidentiality while realizing deduplication. It

encrypts/decrypts a data copy with a convergent key, which

is derived by computing the cryptographic hash value of the

content of the data copy itself. After key generation and data

encryption, users retain the keys and send the cipher text to

the cloud. Since encryption is deterministic, identical data

copies will generate the same convergent key and the same

cipher text. This allows the cloud to perform deduplication

on the cipher texts. The cipher texts can only be decrypted

by the corresponding data owners with their convergent

keys. To understand how convergent encryption can be

realized, I considered a baseline approach that implements

convergent encryption based on a layered approach. That is,

the original data copy is first encrypted with a convergent

key derived by the data copy itself, and the convergent key

is then encrypted by a master key that will be kept locally

and securely by each user. The encrypted convergent keys

are then stored, along with the corresponding encrypted data

copies, in cloud storage. The master key can be used to

recover the encrypted keys and hence the encrypted files. In

this way, each user only needs to keep the master key and

the metadata about the outsourced data.

1.2 OBECTIVE

Data management through cloud is being viewed

as a technique that can save the cost for data sharing and

management. A key concept for remote data storage is

client-side deduplication, in which the server stores only a

single copy of each file, regardless of how many clients

need to store that file. That is only the first client needs to

upload the file to the server. This design will save both the

communication bandwidth as well as the storage capacity.

Data deduplication is a technique for eliminating duplicate

copies of data, and has been widely used in cloud storage to

reduce storage space and upload bandwidth.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACS-2015 Conference Proceedings

Volume 3, Issue 15

Special Issue - 2015

1

2. PRELIMINARIES:

Cryptographic primitives used in this secured

deduplication is described as follows:

2.1 Symmetric Encryption:

Symmetric encryption uses the same key to both

encrypt and decrypt tha data. A symmetric encryption

consists of three primitive functions namely:

(i) key Gen(k)

(ii) Encrypt(k,M)

(iii) Decrypt(k,C)

2.2 Convergent Encryption:

Convergent encryption results with data

confidentiality in deduplication. From the given original

text, the user derives the convergent key and as well as tag,

this tag is used to detect the data duplicates which are

described with the tag correctness property ie. If two data

copies are similar, then their tag will be the same user first

sends the tag to the server side to check if the identical

copies has been stored already in the server side to detect

the duplicate copies of data. Formally, a convergent

encryption scheme can be

defined with four primitive functions:

(i) keyGen(k)

(ii) encrypt(k,M)

(iii) decrypt(k,C)

(iv) TagGen(M)

2.3 Proof of Ownership

PoW is used as a proxy for the entire file in client

side deduplication which provides more security at the client

side. By this one can prove that the user /client has the same

file to the server with the support of Dekey techniqueIn

more general, this PoW concept is used as an interactive

algorithm that is to be run by both prover and a verifier.

2.4 Ramp Secret Sharing

To store the convergent keys,Dekey uses the

concept of Ramp secret sharing scheme (RSSS) .

Specifically, the (n,k,r)-RSSS (where n > k > r > 0)

generates n shares from a secret such that 1) the secret can

be recovered from any k shares but cannot be recovered

from fewer than k shares, and 2) no information about the

secret can be deduced from any r shares. The (n,k,r)-RSSS

builds on two primitive functions:

(i)Share divides a secret S into (k-r) pieces of equal size,

generates r random pieces of the same size, and encodes the

k pieces using a non-systematic k-of-n erasure code1 into n

shares of the same size.

(ii)Recover takes any k out of n shares as inputs and then

outputs the original secret S.

3. SYSTEM MODEL:

3.1.1 Cloud System Set Up

 The cloud server provides data storage and sharing

services to data owners and data users. After verify the

member connection under signature, member can able to

access the particular owner’s data with respect to owner’s

private key and identity (IDdata).So the cloud verifies

whether the request member is in the revoke list which is

send by group manager under signature if so, it provide

permission to access the data else throw unauthorized

member request. So the revoke list is updated once member

leave or join the group by cloud.

3.1.2 User Registration, File Upload And Download

 An entity, which has large data files to be stored in

the cloud and relies on the cloud for data maintenance and

computation, can be either individual consumers or

organizations. User first chose a random parameter to

construct the public and the private keys then he\she will

sign the data using the private key to be uploaded to the

cloud, then he/she send the signed data to the cloud server

and deletes its local copy.

3.1.3 Convergent Encryption

 Convergent encrypt allowed one cloud storage

provider to claim ‘infinite storage’ in addition to ‘security’.

For another storage provider it resulted in controversy when

some of the weaknesses became apparent. Convergent

encryption is an interesting trade-off between efficiency and

privacy. At the epicenter is an interesting question: Can a

file provide the entropy for its own key? In this article I will

explain the situation both practically and technically. Take

the cryptographic primitives

HAHBED::::{0,1}∗{0,1}∗{0,1}lK×{0,1}∗{0,1}lK×{0,1}∗
→{0,1}lA→{0,1}lB→{0,1}∗→{0,1}∗,where HA and HB

are cryptographic hash functions of length lA and lB

respectively

and E and D are symmetric encryption and decryption

functions with key length lK. This implies,

HA(X1)HB(X2)D(K1,E(K2,X))=HA(X2)=HB(X2)=X⇔⇔
⇔X1X1K1=X2=X2=K2

Where, the implications in the leftward direction are exact

but in the rightward implications are only with

cryptographic confidence. This will be important later in the

security analysis.

For permanent storage, we will use an associative array with

interface

StoreRetrieve::{0,1}lB×{0,1}∗{0,1}lB→∅→{0,1}∗
The convergent encryption store will have the interface as,

PutGet::{0,1}∗{0,1}lB×{0,1}lA→{0,1}lB×{0,1}lA→{0,1}

∗
The Put operation takes a piece of information and stores it

encrypted in the associative array. It is implemented as

Put(X)KX′H≕(H,K)=HA(X)=E(K,X)=HB(X′)Store(H,X′).

The Get operation is simply the inverse operation

Get(H,K)X′X≕X=Retrieve(H)=D(K,X′)

The Get operation can optionally verify the integrity of the

data by checking K=HA(X) and/or H=HA(X′). The later has

an advantage that will be shown below.

 The implementation given above requires

three passes through the data. The passes have data

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACS-2015 Conference Proceedings

Volume 3, Issue 15

Special Issue - 2015

2

dependencies so they cannot be parallelized. It is possible to

develop a two-pass system. The hash H of the output stream

X′ can be calculated while the output stream is being

produced. This is similar to authenticated encryption but

differs in the use of a hash instead of a message

authentication code. But it is not possible to construct a one-

pass system that deduplicates and has at least the security of

convergent encryption. In a one-pass system, the first couple

of bytes cannot rely on all the remaining bytes. But this is

necessary to have a key with the entropy of the entire file.

3.1.4 Dekey

Dekey is designed to efficiently and reliably

maintain convergent keys. Its idea is to enable deduplication

in convergent keys and distribute the convergent keys across

multiple KM-CSPs. Instead of encrypting the convergent

keys on a per-user basis, Dekey constructs secret shares on

the original convergent keys (that are in plain) and

distributes the shares across multiple KM-CSPs. If multiple

users share the same block, they can access the same

corresponding convergent key. This significantly reduces

the storage overhead for convergent keys. In addition, this

approach provides fault tolerance and allows the convergent

keys to remain accessible even if any subset of KM- CSPs

fails.

Thus, the overall system architecture is described below:

Fig: System Architecture of Secured deduplication using Dekey concept

4. CONCLUSION & FUTURE ENHANCEMENTS

4.1 CONCLUSION

 This project proposes Dekey, an efficient and reliable

convergent key management scheme for secure

deduplication. Dekey applies deduplication among

convergent keys and distributes convergent key shares

across multiple key servers, while preserving semantic

security of convergent keys and confidentiality of

outsourced data. Dekey using the Ramp secret sharing

scheme and demonstrate that it incurs small

encoding/decoding overhead compared to the network

transmission overhead in the regular upload/download

operations is implemented.

4.2 FUTURE ENHANCEMENT

Convergent encryption enables identical encrypted files to

be recognized as identical, but there remains the problem of

performing this identification across a large number of

machines in a robust and decentralized manner. This

problem is solved by storing file location and content

information in a distributed data structure called a SALAD:

a Self-Arranging, Lossy, Associative Database. For

scalability, the file information is partitioned and dispersed

among all machines in the system; and for fault-tolerance,

each item of information is stored redundantly on multiple

machines. Rather than using central coordination to

orchestrate this partitioning, dispersal, and redundancy,

SALAD employs simple statistical techniques, which have

the unintended effect of making the database lossy.

REFERENCES:

[1] P. Anderson and L. Zhang, ‘‘Fast and Secure Laptop Backups with
Encrypted De-Duplication,’’ in Proc. USENIX LISA, 2010.

[2] M. Bellare, S. Keelveedhi, and T. Ristenpart, ‘‘Message-Locked

Encryption and Secure Deduplication,’’ in Proc. IACR Cryptology.
[3] Jin Li, Xiaofeng Chen, Mingqiang Li, Jingwei Li, Patrick P.C. Lee, and

Wenjing Lou, “Secure Deduplication with Efficient and Reliable

Convergent Key Management, June 2014.
[4] W. Wang, Z. Li, R. Owens, and B. Bhargava, ‘‘Secure and Efficient

Access to Outsourced Data,’’ in Proc. ACM CCSW, Nov. 2009

[5] A. Yun, C. Shi, and Y. Kim, ‘‘On Protecting Integrity and
Confidentiality Of Cryptographic File System for Outsourced

Storage,’’ in Proc. ACM CCSW, Nov. 2009.

[6] D. Meister and A. Brinkmann, ‘‘Multi-Level Comparison of Data
Deduplication in a Backup Scenario,’’ in Proc. SYSTOR, 2009.

[7] R.D. Pietro and A. Sorniotti, ‘‘Boosting Efficiency and Security in

Proof of Ownership for Deduplication,’’ in Proc. ACMSymp. Inf.,

Comput. Commun. Security, H.Y. Youm and Y. Won, Eds., 2012.

[8] G.R.Blakley and C. Meadows, ‘‘Security of Ramp Schemes’’.

Cloud Server

Generat

e hash

 hash ha

Encrypt

ed file

outsour

ce

Fi

le

s

Data

owne

r

hash

download

Check

duplicate

Dat

a

use

r

Search

request

Download

data

If duplicate

mapping

data

owner

If

downloa

d get

mapping

data

owner

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCACS-2015 Conference Proceedings

Volume 3, Issue 15

Special Issue - 2015

3

