
An Efficient Multi Precision Floating Point 

Complex Multiplier Unit in FFT 

 
Mrs. Yamini Gayathri T 

Assistant Professor,  

ACS College of Engineering, 

Department of ECE,  

Bangalore-560074, India 

  
   Abstract- Discrete Fourier Transform (DFT) is a 

fundamental digital signal processing domain transformation 

technique used in many applications for frequency analysis 

and frequency domain processing. Fast Fourier Transform 

(FFT) is an algorithm to compute discrete transform and its 

inverse. FFT computation involves addition, multiplications 

and subtraction. Multipliers are slow performing units. 

Multiplier has the disadvantages of large area, long 

propagation delay and consumes power. Low power 

multiplier design has an important role in the design of low 

power VLSI systems. As twiddle Factor contains a floating-

point complex number, the FFT needs a Floating-point 

complex multiplier for computations. In some biomedical 

applications, apart from power, area and speed, the 

importance has given to the accuracy. The main aim of our 

study is to improve the accuracy of the multipliers used by 

using a precision floating point complex multiplier in the unit. 

For FFT analysis, theverilog code should framed for the 

various combinations given in the methodology and the ASIC 

design Flow(Front end and Backend simulation) is carried out 

using Cadence Verilog ASIC Simulator using 90nm 

technology to find out power, area and delay. 

 

Keywords – Double-Precision, twiddle factor, IEEE754 Format, 

katarsubha urdhva tiryagbhyam algorithm, Mixed-Radix, 

Floating point 

 
1. INTRODUCTION 

The Discrete Fourier Transform (DFT) decomposes a 

sequence of values into components of different 

frequencies (Time domain to Frequency domain). The Fast 

Fourier transform (FFT) is the efficient algorithm to 

compute the DFT and its inverse. The FFT was proposed 

by Cooley and tukey to efficiently reduce the time 

complexity to O(Nlog2N), where N denotes the FFT size. 

The hardware implementation of FFT classified into 

memory-based architecture and pipeline architecture.The 

Memory based architecture design composes of main 

processing element (PE) and several memory units. It 

consumes less power and less hardware cost comparing to 

other styles. The main disadvantage is long latency, low 

throughput and can’t be parallelized. The Pipeline 

architecture has get rid of the disadvantages of the memory 

based style at the cost of an acceptable hardware overhead. 

The types of the pipeline architecture are single path delay 

feedback (SDF), single path delay commutator (SDC) and 

multiple delay commutator (MDC). In addition, pipeline 

structure is highly regular, which can be easily scaled and 

parameterized when Hardware Description Language 

(HDL) is used in the design. 

2. OBJECTIVE OF THE STUDY 

The main aim of the study is to implement an efficient 

Floating point complex multiplier in FFT for biomedical 

applications. The tool used for implementation is Cadence 

Verilog ASIC simulator with 90nm technology. As the 

twiddle factor has a complex value, the complex addition 

and complex multiplication is used. The complex 

multiplication method is varied and used in twiddle factor 

multiplication of N point FFT. Then the comparison of 

power, area and speed has to make for the implemented 

design of an N point FFT. In addition to power area and 

speed, Accuracy is improved for the Multiplier by 

increasing the significant figures for the twiddle factor.. 

3. LITERATURE SURVEY 

Booth encoded Wallace tree multiplier uses, booth 

encoding to increase the speed of algebra by reducing the 

number of partial products and Wallace tree for decreasing 

the number of levels of additions [1]. The three term fused 

dot product unit implemented in the paper achieved a 

reduction in area compared to conventional multiplier 

[2].Golub method can reduce the complexity with a slight 

increase in latency [2]. To obtain a high throughput, Mixed 

radix and delay Feedback style is used for implementing 

the 128 point FFT Processor [3].CORDIC is an efficient 

and economic approach to compute trigonometric functions 

using addition, subtraction and shifting operations [3]. The 

Number of multipliers in complex multipliers has reduced 

from 4 to 3 and the design using this multiplier proved to 

be superior to the existing system with complex multipliers 

of 4 relating to area and time consumption [4]. The Urdhva 

tiryagbhyam method used in the paper [5] can reduce the 

time delay by adding the partial products concurrently 
with the multiplication operations.The Multi-functional 

floating point multiplier design proposed in the paper [6] 

has a advantage of Accuracy at the cost of area. The 

pipelined architecture has advantage of high data 

throughput, relatively small area and a relatively simple 

control [7]. As Accuracy requirement decreases, the width 

of the multiplier decreases [8]. The multiplication of   

lower bit length mantissa consumes less amount of power 

[8]. Karatsubha Algorithm is best suited for higher bit 

length [8]. 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060395
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

874



4. PROPOSED METHODOLOGY 

 

4.1 Complex Multiplication method 

4.1.1 Conventional Complex Multiplication 

The two complex value a+jb and c+jd can be 

multiplied as follows. 

(a+jb) X (c+jd) =(ac-bd) + j(bc+ad)                (1) 

Then, Conventional complex multiplier needs 4 

multiplications and 1 subtraction and 1 addition. 

Figure 1. Conventional Complex Multiplication 

4.1.2 Golub Complex Multiplication 

The two complex value a+jb and c+jd can be 

multiplied as follows. 

(a+jb) X (c+jd) =(ac-bd) + j(bc+ad)               (2) 

The complex multiplication can be reduced as follows 

Real =ac-bd –ad+ad 

        =a(c-d)+d(a-b)                                        (3) 

Imaginary=ad+bc-bd+bd 

               =d(a-b)+b(c+d)                                (4) 

Then, Golub complex multiplier needs 3 multiplication and 

2 subtractions and 3 additions. 

 

Figure 2:  Golub Complex Multiplication 

 
 

 
 

 

 
 

 

 
 

4.1.3 Three term fused dot product unit: 

 

Figure 3. Fused ADD-SUBTRACT unit                             

 
Figure 4. Fused DOT-PRODUCT unit 

 
Figure 5. Three term fused dot product unit 

 
Fig (3) shows the add and subtract unit using MUX 

reducing the hardware complexity. 

Fig (4) shows the multiplication, add and subtract unit 

using MUX reducing the hardware complexity. 

Fig (5) shows the three multiplications fused with add and 

subtract unit using MUX reducing the hardware 

complexity. 

The Three terms fused dot product unit is used for 

conventional complex multiplications. If fused unit is used 

for golub complex multiplication, the complexity of 

architecture will become complex. 

4.2 Multi precision floating point Multiplier 

Floating point multiplication is one of the crucial 

operations in many application domains such as image 

processing, signal processing etc. Every application 

requires different working features like Precision, low 

power consumption, low latency, low area etc. 

The proposed work based on the multi precision floating 

point complex multiplier involving six modes of 

operations. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060395
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

875



Mode1: Auto mode  

Mode2: double-precision floating multiplier having 

mantissa size of 8 bit 

Mode3: double-precision floating multiplier having 

mantissa size of 16 bit 

Mode4: double-precision floating multiplier having 

mantissa size of 23 bit 

Mode5: double-precision floating multiplier having 

mantissa size of 23 bit 

Mode6: double-precision floating multiplier having 

mantissa size of 52 bit 

The mode with less number of mantissa bits consumes less 

amount of power. The mode is chosen according to the 

accuracy needed for the application. If the application 

needs low power, mode2/mode3 is chosen. If accuracy is 

given priority mode4, mode5 and mode6 is used in the 

increasing order of accuracy. 

The double precision floating point IEEE754 format is as 

follows. 

1 11 52 

Sign       Exponent           Mantissa 

 

The multi precision Floating point format for the proposed 

work is as below 

 

3 1 11 52 

Mode    Sign      Exponent       Mantissa 

 

The different mode select bit combinations for different 

modes is shown below: 

 

Mode Mode select bits 

Mode1 000 

Mode2 001 

Mode3 010 

Mode4 011 

Mode5 100 

Mode6 101 

Table 1. Modes of Multi-precision floating point multiplier 

 

A Floating-point number is represented in IEEE-754 

format as 

±s x be    (or)   ±significant x baseexponent   

 

4.2.1 Sign calculation:  

The MSB of floating point number represents the sign bit. 

The sign of the product will be positive if both the numbers 

are of same sign and will be negative if numbers are of 

opposite sign. This logic can be implemented using XOR 

gate. 

4.2.2 Addition of exponents: 

The input exponents are added together to get the product 

exponent. The simple ripple carry adder and ripple borrow 

subtractor is optimal for exponent addition. 

 

4.2.3 Mantissa Multiplications: 

The mantissa multiplication is the most important and 

complex part of the floating point multiplication. 

Multiplication operation requires more time compared to 

addition. As the no of bits increases, there will be an 

increase in delay and power. As double precision multiplier 

contains 53 bits of mantissa, it requires 53 X 53 multiplier. 

For the implementation of 53 X 53 multiplier requires 

much time for the operations. 

 

4.3 Karatsuba urdhva tiryagbhyam algorithm 

It is the combination of the karatsubha algorithm and 

urdhva tiryagbhyam algorithm.Kartsubha algorithm is used 

for the operands of higher bit lengths, But at lower bit 

lengths it is not suited as it has higher bit lengths. So 

urdhva tiryagbhyam algorithm is used for lower bit lengths 

and provides less area and low power advantages when it is 

used for the lower bit length binary multiplications as the 

partial products are added in ripple manner. To increase the 

efficient, ripple adder can be replaced by the carry select 

and carry save adders. Kartsubha algorithm uses divide and 

conquer approach where it breaks down the inputs into 

Most significant half and least significant half and then 

multiplication is performed. It reduces the number of 

multipliers required by replacing multiplication operations 

by addition operations. The Kartsubha algorithm is optimal 

if width of the inputs is more than 16 bits.In urdhva 

tiryagbhyam algorithm speed of the multiplications is 

increased by reducing the number of steps for 

multiplication using the concept of vertically and crosswise 

use in Vedic mathematics. 

 

Katarsubha Algorithm: 

X=10^(n/2)  * a+ b                                      (5) 

Y=10^(n/2)   * c+d                                       (6) 

X*Y=10^n *ac + 10^(n/2)*(ad+bc) +bd      (7) 

Example: 

X= 5678,     a=56 b=78 

Y=1234,      c=12, d=34 

Step1:      ac=672 

Step2:      bd=2652 

Step3:      (a+b)(c+d)=134*46=6164 

Step4:     ad+bc= step3 value - step2 value - step1 value= 

2840  

Step5:   10^n *ac              6720000 

     + bd                                  2652 

     +10^(n/2)*(ad+bc)         284000 

ADD three values=    70006652 (which is X*Y)      

 

Urdhva tiryagbhyam algorithm: 

• Actual meaning is vertically and crosswise 

• Example: 

• X=ab; Y=cd                                   (8) 

• X*Y=ab x cd                                 (9) 

 

 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060395
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

876



 

                   a                        b          (multiplicand) 

 

                   c                        d(multiplier) 
 

Left:a*b=l  ;  

Middle:(a*d)+(b*c)=m 

Right:b*d =n 

X*Y = lmn 

4.4 Booth Encoded Wallace Tree multiplier 

The Booth Encoded Wallace Tree multiplier is a 

combination of booth tree multiplier and Wallace tree 

multiplier. This algorithm shows a better performance in 

terms of power and area than booth multiplier. The booth 

encoding is used to increase the speed of algebra by 

reducing the number of partial products and Wallace tree 

module for decreasing number of levels of addition. 

 

Example:     -21 X -25 = ??? 

-21 =  1 0 1 0 1 1              -25 = 1 0 0 1 1 1 

1 0 1 0 1 1            -21     (Multiplicand) 

1 0 0 1 1 1            -25     (Multiplier) 

Booths Recoded Multiplier: 

 -1   0  +1   0  0  -1 

 
 

         -2       +2       -1    (Bit Pair recoding) 

          24         22          20     (power of 2) 

 

0 0 0 0 0 0 0 1 0 1 0 1   -1(-21)(20)=+21->A 

1 1 1 1 0 1 0 1 1 0 0 0  +2(-21)(22)=-168->B   0 0 1 0 1 0 1 

0 0 0 0 0  -2(-21)(24)=+672->C 

 

0 0 1 0 0 0 0 0 1 1 0 1  

Final Result  = +525 (add the values ) 
 

Steps involved: 

1. Booths Recoded Multiplier: Take -1 as LSB. Next Lsb: 

If the values of the multiplier are same, the next LSB is 

Zero. If the values changes from right to left , then it is +1 

and the next change of value will give -1. 

2. Bit Pair recoding: The values are taken from the 

recoding table for booth recoded multiplier values. 

3. Bit Pair recoding, respective power of 2 values and 

multiplicand values are multiplied. The sum values for the 

three combinations A, B and Care added gives the final 

result. 
 

Booth Pair Recoded Bit pair 

  

0 0 0 

0 +1 +1 

0 -1 -1 

+1 0 +2 

+1 +1 ---- 

+1 -1 +1 

-1 0 -2 

-1 +1 -1 

-1 -1 ---- 

Table 2. Modified booth Recoding  

 

4.5 Mixed-Radix Algorithm 

 Radix FFT Algorithm has less number of 

complex multiplications compared with radix-2 FFT 

algorithm which is the simplest form of all FFT algorithms. 

In order to save the number of complex multiplications, 

Radix-8 Algorithm is chosen. Since the 128-point FFT is 

not a power of 8, the Mixed-Radix FFT Algorithm, 

including Radix-2 and Radix-8 FFT algorithm is used. 

Hence the hardware can be reduced by using the Mixed-

Radix Algorithm. 

 

4.6 DIT vs DIF 

 The two main types of FFTs are the Decimation In 

Time (DIT) and Decimation In Frequency (DIF) varieties. 

Both calculate two butterfly outputs, X and Y , from two 

butterfly inputs, A and B, and a complex coefficient W. 

The DIT approach calculates the outputs using the 

equations: X = A+BW and Y = A−BW, while the DIF 

approach calculates its outputs using: X = A + B and Y = 

(A − B)W. 

 

4.7 Twiddle Factor of a 64 Point FFT  

 The 64 points FFT design needs (W64)0 to (W64)63 

64 complex values as shown in figure 4. The real (I) 

component is cosine and the imaginary components (Q) is -

sine. 

W64=e-j(2π/64)                                       (10) 

W64=cos(2π /64)-jsin (2π/64)                  (11) 

Real part = cos(2π/64)                                 (12) 

Imaginary part = -sin (2π/64)  (13) 

 
Figure 4.Twiddle Factor for 64 FFT. 

TWIDDLE 
FACTOR 

REAL 
PART 

IMAGINARY 
PART 

W64
0 1 0 

W64
1 0.99518 -0.00980 

W64
2 0.98070 -0.19509 

W64
3 0.95694 -0.29028 

W64
4 0.92387 -0.38268 

Table 3. Few Samples of Twiddle Factor for 64 point FFT 

The twiddle factor is of floating point complex number. In 

DIT Algorithm the twiddle factor has to multiply with the 

various outputs of the stages. To implement this, floating 

point complex multipliers is used. The values for twiddle 

factor are given in the table 1. The value here is restricted 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060395
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

877



to 4digits.If the significant figures are increased for the 

twiddle factors, the Accuracy of the FFT analysis can be 

increased. The floating point numbers as to be converted 

into an IEEE 754 format. 

4.8 FFT in Biomedical Applications 

Electroencephalography (EEG) is a mechanism of 

measuring electrical activity of the brain. Upon studying 

EEG signals, various health conditions can be monitored 

and diagnosed ex: brain diseases like Alzheimer, tumors, 

epilepsy, human behavior etc. These signals are recorded 

from various positions on scalp through electrodes and 

conductive media. Diagnostic results are made from the 

spectral content of EEG signal analysis. The sample must 

be given as an input to the DIT-FFT and the outputs is 

obtained using the Mixed Radix for 128 point FFT. 

5. EXPECTED RESULTS 

The FFT is implemented using a DIT algorithm. 

The power, area, delays and Accuracy must be compared 

for the following combinations. 

 
 

 

 

 
 

From all the above Combinations, an efficient combination 

is applied for the applications for analysis according to the 

requirement of power, area, speed and Accuracy because 

always there will be a tradeoff between these parameters. 

 

REFERENCES 
[1] Arathi Ajay, Dr.R.Mary Loudre  , BITS Pilani, Dubai, UAE “VLSI 

Implementation of an improved multiplier for FFT computation in 

Biomedical Applications”-2015 IEEE computer society Annual 
Symposium on VLSI. 

[2] Sangho Yun and Gerald. E. Sobelman, University of Minnesota, 

Minneapolis, MN 55455 USA, “A Low Complexity Floating-Point 
Complex Multiplier with a Three-term Dot-Product Unit” -2014 

IEEE 

[3] Namarata sarode, Rajeev Atluri, P.K Dakhole, “Mixed-Radix and 
CORDIC Algorithm for implementation of FFT”-2015 IEEE 

[4] Dr.Uma B V, Harsha R Kamath, Mohith s, Sreekar V, Shravan 

Bhagirath, ECE, RVCE, Bangalore,India “Area and time optimized 
Realization of 16 point FFT and IFFT Blocks by using IEEE754 

Single precision complex floating point multiplier”- 2015 ICSCTI, 

IEEE 
[5] Srinivasa Rao, M.Kamaraju,Gudlavalleru Engineering College, AP, 

India- “An FPGA implementation of high speed and area efficient 

Double-precision Floating point multiplier using Urdhva 
tiryagbhyam technique”-2015 IEEE. Conference on PCCCTSG, 

Kurnool, AP,India. 

[6] De Liu, Mingjiang Wang, Yiwen Wang, Hang Su, Harbin Institute 
of technology Shenzhen graduate school Shenzhen, china “A multi-

functional Floating Point Multiplier”- 2015 IEEE. 

[7] Guihua Liu1,Quanyuan Feng,  Institute of Microelectronics, 
Southwest Jiaotong University, Southwest University of Science and 

Technology, “ASIC Design of Low-power Reconfigurable FFT 

Processor” in 2007 IEEE pp 44-46. 
[8] Arish S, R K Sharma,NIT, Kurushetra, India, “Run-time 

reconfigurable multi-precision floating point multiplier design for 
high speed, low-power applications”-IEEE 2015 SPIN.

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS060395
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 06, June - 2017

878


